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Abstract: The necessary and sufficient conditions of existence of the nonlinear operator equations’ branches
of solutions in the neighbourhood of branching points are derived. The approach is based on the
reduction of the nonlinear operator equations to finite-dimensional problems. Methods of nonlinear
functional analysis, integral equations, spectral theory based on index of Kronecker-Poincaré, Morse-Conley
index, power geometry and other methods are employed. Proposed methodology enables justification
of the theorems on existence of bifurcation points and bifurcation sets in the nonstandard models.
Formulated theorems are constructive. For a certain smoothness of the nonlinear operator, the asymptotic
behaviour of the solutions is analysed in the neighbourhood of the branch points and uniformly converging
iterative schemes with a choice of the uniformization parameter enables the comprehensive analysis of
the problems details. General theorems and effectiveness of the proposed methods are illustrated on the
nonlinear integral equations.

Keywords: branch points; bifurcation points; Fredholm operator; uniformization; asymptotics;
iterations; regularization

1. Introduction

The progress in the methods of analysis development and the new nonlinear problems of applied
mathematics enable the nonlinear functional analysis novel concepts formulation. In the seminal
paper of L.A. Lusternik [1] the main directions of this field paved the anevue for the branching
theory of nolinear equations development. The classic works of A.M. Lyapunov, A.I. Nekrasov,
J.H. Poincaré, M.A. Krasnoselsky [2], J. Toland and others contributed to this field. In their studies,
reductions of the given nonlinear models to the finite-dimensional systems with parameters were
used. The finite-dimensional equivalent system is now known as Lyapunov-Schmidt branching
system and the corresponding method is known as Lyapunov-Schmidt (LS) method. In the review [3]
and monograph of M.M. Vainberg and V.A. Trenogin [4] the basement of the analytical theory of
branching solutions in Banach spaces with applications is given. These works contributed to the
modern functional analysis development with applications to concrete classes of equations, see [5–19].

Studies of the integral equations in mechanics played the principal role not only in LS method
development, but also iniciated the way for functional analysis new chapters construction. Studies of
integral equations’ bifurcation points are necessary in various mathematical models in the various
fields of natural sciences. For some parameter values there the loss of stability may occur and another
series of solutions branches off from that bifurcation point.

Such problems include both classical problems of the critical load of the rod and the formation,
the emergence of new forms of equilibrium of rotating fluids, a branch at a critical wind speed from
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the horizontal surface of the waves, and a number of novel challenging bifurcation problems in
biochemistry, plasma physics, electrical engineering and many other applied fields. Over the past
decade, the branching theory of solutions of nonlinear equations with parameters and its applications
have received enormous development and practical applications.

The monographs [14,20] and papers [21–26] review of the recent results and number of
applications in this fields are given. [21] deals with operator equation Bx − R(x, λ) = 0,
where B : D(B) ⊂ E1 → E2 is closed Fredholm operator, R(x, λ) = R01λ + ∑

i+k≥2
Rik(x)λk is

analytic in the neighborhood of origin: x = 0, λ = 0. For solution of desired x → 0 as λ → 0
the iterative scheme is proposed. In [22], the sufficient conditions of bifurcation of solutions
of boundary-value problem for Vlasov-Maxwell system are obtained. The analytical method of
Lyapunov-Schmidt-Trenogon is employed. In [23] the nonlinear operator equation with paremer
B(λ)x + R(x, λ) = 0 is studied. In [24] the N-step iterative method in the theory of the branching
of solutions of nonlinear equations also numerical method is discussed. The explicit and implicit
parametrizations is employed in [25] in the construction of branching solutions by iterative methods.
The methods are correspondingly used for solution of the Hammerstein and the Volterra integral
equations in the irregular case in [26] and in [27].

The special attention has been paid to the theory development in term of the Sobolev–Schwartz theory
of distributions [28,29]. Applications of group methods [30] in bifurcation theory are given in [7,13,31,32].

Despite the abundance of literature in the last 20 to 30 years and interesting results focused on the
theory of branching solutions, the formulation and proof of the general existence theorems in nonlinear
non-standard models with parameters is still an open problem. The problem of approximate methods
development in the neighborhood of critical points ia still open. The clarity of the methods and results
presentation using the elementary methods is also important. The objective of this article to fill the gap
between abstract theory development and concrete problems solution.

It is to be noted that only some part of the total set of results in this field we discuss due to the
limited size of the article. Applications and many other outstanding results including cosymmetry
by Yudovich, projective-iterative techniques, center manifold reduction, global existence theorems,
have remained beyond its scope.

The remainder of this paper is structured as follows. Section 2 demonstrates the construction of
the main part of the branching Lypunov-Schmidt equation and its analysis. The existence theorems of
bifurcation points and bifurcation manifolds of real solutions are proved. These theorems generalizes
the numbder of well-known theorems on bifurcation points. Examples of solving integral equations
with bifurcation points and points of enhanced bifurcation are given. Methods for parameterizing
the branches of solutions of nonlinear equations in a neighborhood of branch points are described
in Sections 3 and 4. Iterative methods for constructing branches with the choice of a uniformization
parameter are provided that ensure uniform convergence of iterative schemes in the neighborhood of
the critical parameter values. Regularization and generalizations for interwined equations as well as
illustrative example are discussed in Section 5. Concluding remarks are included in Section 6.

2. Existence Theorem of Bifurcation Points and Manifolds of Nonlinear Equations

Let X, Y are real Banach spaces, Λ is real normed space. We consider the equation

Bx = R(x, λ), (1)

where B : D ⊂ X → Y is closed Fredholm operator with dense domain D, λ ∈ Λ. Nonlinear operator
R(x, λ) with values in Y is defined, continuous, and continuosly differentiable in Fréchet sense wrt x
in the neighborhood

Ω = {x ∈ X, λ ∈ Λ|||x|| < r, ||λ|| < ρ}.
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We assume that Equation (1) has trivial solution x = 0 for all λ and

R(0, λ) = 0, Rx(0, 0) = 0.

Definition 1. Point λ = 0 is called bifurcation point of Equation (1) if in any neighborhood of point x =

0, λ = 0 exists pair (x, λ) for x 6= 0 which satisfies Equation (1).

Corollary 1. If equation Bx = R(x, 0) has nonisolated trivial solution x = 0 then λ = 0 will be bifurcation
point for Equation (1).

Definition 2. Point λ = 0 is called as the strong bifurcation point of Equation (1) if in the arbitrary
neighborhood of pair x = 0, λ = 0 exists pair (x, λ) such as x 6= 0, λ 6= 0 which satisfies Equation (1).

Corollary 2. If λ = 0 is strong bifurcation point, then λ = 0 is bufurcation point.

Theorem 1. If order for the point λ = 0 to be a bifurcation point, it is necessary that homogenius linear
equation Bx = 0 has nontrivial solution.

Proof. If equation Bx = 0 has only trivial solution, then Fredholm operator B has bounded inverse
B−1 and Equation (1) can be reduced to equation

x = B−1R(x, λ) (2)

which meets the condition of the contraction mapping principal in the small neighborhood of pair
x = 0, λ = 0. Therefore, equation enjoys unique solution in that neighborhood. Because of improsed
conditions R(0, λ) = 0 Equation (2) has only trivial solution in the small neighborhood of the point
x = 0, λ = 0. Theorem is proved.

Let us now focus on the sufficient conditions of bifurcation points existence. We introduce the
basis {φi}n

1 in subspace N(B), basis {ψi}n
1 in N(B∗) and system {γi}n

1 ∈ X∗, {zi}n
1 ∈ Y which are

biorthogonal to these basises, i.e.

〈φi, γk〉 =
{

1, i = k

0, i 6= k,

〈zi, ψk〉 =
{

1, i = k

0, i 6= k.

Then from the Schmidt – Trenogin Lemma (see Lemma 2.1.1 in [4]) it follows that operator
B̂ = B + ∑n

i=1〈·, γi〉zi is contunuosly invertible. Let Γ = B̂−1. Then Γzi = φi, i = 1, 2, . . . , n. Let us
introduce the projectors

P =
n

∑
i=1
〈·, γi〉φi,

Q =
n

∑
i=1
〈·, ψi〉zi

and direct decompositions X = Xn+̇X∞−n, Y = Yn+̇Y∞−n, where Xn = PX = N(B), Xn−∞ =

(I − P)X, Yn = QY = span{z1, · · · , zn}, Y∞−n = (I − Q)Y = R(B). Obviusly, X∞−n = {x ∈ X :
〈x, γi〉 = 0, i = 1, . . . , n}, Y∞−n = {y ∈ Y : 〈y, ψi〉 = 0, i = 1, . . . , n}. Let us rewrite Equation (1) as
following system

B̂x = R(x, λ) +
n

∑
s=1

ξszs, (3)

ξs = 〈x, γs〉, s = 1, . . . , n. (4)



Symmetry 2020, 12, 912 4 of 19

Equation (3) by multiplication with operator Γ can be reduced to

x = ΓR(x, λ) +
n

∑
s=1

ξsφs. (5)

Using change

x =
n

∑
s=1

ξsφs + u(ξ, λ) (6)

Equation (5) can be reduced to the following equation

u(ξ, λ) = ΓR(ξφ + u(ξ, λ), λ). (7)

For sake of clarity let us assume ∑n
s=1 ξsφs = ξφ. For arbitrary ξ, λ from small neighborhood of

origin due to contraction mapping principal the sequence um = ΓR(ξφ + um−1, λ), u0 = 0 converges
to unique solution u(ξ, λ) of Equation (7). In that case u(0, λ) = 0. Because of

∂u
∂ξi

= ΓRx(ξφ + u, λ)

(
φi +

∂u
∂ξi

)
,

then, taking into account function u continuity wrt ξ, λ and equality Rx(0, 0) = 0 in the small
neighborhood of origin, we get the following equality

∂u
∂ξi

= [I − ΓRx(ξφ + u, λ)]−1ΓRx(ξφ + u, λ)φi, i = 1, . . . , n.

This formula can be presented as follows

∂u
∂ξi

=
∞

∑
n=1

(ΓRx(ξφ + u, λ))nφi

as ||Rx(ξφ + u, λ)|| ≤ q < 1. Therefore, using the Taylor formula, the desired function u(ξ, λ) in
the problem of bifurcation point search in the neighborhood of point ξ = 0 can be represented as
following series

u(ξ, λ) =
∞

∑
k=1

(ΓRx(0, λ))k
n

∑
s=1

ξsφs + r(ξ, λ),

where ||r(ξ, λ)|| = o(||ξ||). Taking into account (4), (6) and (7), the following finite-dimentional
branching system of Lyapunov-Schmidt (LS) can be derived

Lk(ξ, λ) :=

〈
∞

∑
i=1

(ΓRx(0, λ))i
n

∑
s=1

ξsφs + r(ξ, λ), γk

〉
= 0, k = 1, . . . , n. (8)

Taking into account equality Γ∗γk = ψk, branching system (8) can be presented as follows

n

∑
s=1

〈
Rx(0, λ)(I − ΓRx(0, λ))−1φs, ψk

〉
ξk + ρk(ξ, λ) = 0, k = 1, 2, . . . , n

or, briefly, in the matrix form

L(ξ, λ) := M(λ)ξ + b(ξ, λ) = 0. (9)

Here M(λ) = [〈Rx(0, λ)(I − ΓRx(0, λ))−1φs, ψk〉]ns,k=1, b(ξ, λ) = (ρ1(ξ, λ), · · · , ρn(ξ, λ))T , ||b|| =
o(||ξ||). Let us employ matrix M(λ) to get the sufficient conditions for point λ = 0 to be such a
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bifurcation. We introduce the set {λ ∈ Λ : det M(λ) = 0} which contain the possible bifurcation
point λ = 0.

Let us introduce the condition

Condition 1. Let in the neighborhood of point λ = 0 there exists set S which is Jordan continuum,
and S = S+ ∪ S− and 0 ∈ ∂S+ ∩ ∂S−. There let exists continuous mapping λ(t) as t ∈ [−1, 1] with
values in S such as λ : [−1, 0) → S−, λ : (0, 1] → S+, λ(0) = 0. Moreover, let det M(λ) = α(t),
where α(t) : [−1, 1]→ R1 is continuous function which is zero only for t = 0.

Theorem 2. (Sufficient bifurcation condition) Let condition 1 be fulfilled, where α(t) is monotone increasing
function. Then λ = 0 is bifurcation point of Equation (1). Moreover, if trivial solution of equation Bx = R(x, 0)
is isolated, then λ = 0 will be such stronger bifurcation.

Proof. Let λ = λ(2(θ − 1)δ) in branching system (21) for arbitrary small δ > 0 and θ ∈ [0, 1] and
consider the continuous vector field

H(ξ, θ) := L(ξ, λ((2θ − 1)δ)) : Rn ×R1 → Rn

defined for ξ, θ ∈ M, where M = {ξ, θ|||ξ|| = r, 0 ≤ θ ≤ 1}, r > 0 is as small as possible.
Case 1. Let us assume H(ξ∗, θ∗) = 0 where (ξ∗, θ∗) ∈ M. Then by Definition 1 λ = 0 will be

bifurcation point of Equation (1).
Case 2. Let us assume H(ξ, θ) 6= 0 for ∀(ξ, θ) ∈ M and consequently null of the space Λ is not

bifurcation point. Then, due to continuity, fields H(ξ, 0), H(ξ, 1) are homotopic on the sphere ||ξ|| = r.
Then its rotations are equal:

J(H(ξ, 0), ||ξ|| = r) = J(H(ξ, 1), ||ξ|| = r). (10)

Due to condition 1 and assumption H(ξ, θ) 6= 0 for ∀(ξ, θ) ∈ M fields H(ξ, 0), H(ξ, 1) are
homotopic to their linear parts M(λ(−δ))ξ, M(λ(+δ))ξ. Then

J(H(ξ, 0), ||ξ|| = r) = J(M(λ(−δ)ξ), ||ξ|| = r), (11)

J(H(ξ, 1), ||ξ|| = r) = J(M(λ(+δ)ξ), ||ξ|| = r). (12)

Because det M(λ) = α(t) then using index Konecker the following equalities are fulfilled

J(M(λ(−δ)ξ), ||ξ|| = r) = sign α(−δ),

J(M(λ(+δ)ξ), ||ξ|| = r) = sign α(+δ).

Due to Condition 1, α(−δ) < 0, α(+δ) > 0 then equality (10) is not satisfied and therefore there
exists point (ξ∗, θ∗) ∈ M for which H(ξ∗, θ∗) = 0 and point λ = 0 is bifurcation point for Equation (1).
Theorem 1 is proved.

Corollary 3. Let condition 1 is fulfilled for ∀λ ∈ Ω0. Then Ω0 will be bifurcation set of Equation (1). If in that
case Ω0 is connected set and each points belongs to the neighborhood of homeomorphic some set of space Rn then
Ω0 will be n-dimentional manyfolds of bifurcation of Equation (1).

From Theorem 1 it follows the known streithern of the known Theorem of M.A. Krasnoselsky on
bifurcation point of odd mutiplicity.

Definition 3. System of branching equations of Lyapunov-Schmidt we call potential if L(ξ, λ) = gradξ v(ξ, λ).



Symmetry 2020, 12, 912 6 of 19

Obviosly, (8) is potential system if matrix
[

∂Lk(ξ,λ)
∂ξi

]n

i,k=1
is symmetric for ∀(ξ, λ) from

neighborhood of null. Let us outline that[
∂Lk
∂ξi

]n

i,k=1
= 〈Rx(ξφ + u(ξ, λ), λ)[I − ΓRx(ξφ + u(ξ, λ), λ)]−1φi, ψk〉ni,k=1.

Then we have the following lemma on potentiality of Equation (9)

Lemma 1. The branching Equation (9) is potential if and only if all the matices

[〈Rx(ΓRx)
mφi, ψk〉]ni,k=1 ,

m = 0, 1, . . . are symmetric in the neighborhood of (0, 0).

Corollary 4. Let X = Y = H, H is Hilbert space. Let operator B is symmetric in D, and operator Rx(x, λ) is
symmetric for ∀(x, λ) from zero neighborhood. Then LS Equation (9) is potential.

Proof. In conditions of the symmetric operators B and Rx the equalities φi = ψi, i = 1, . . . , n are valid
and

〈Rxφi, φk〉 = 〈φi, Rxφk〉.

Since Γ = Γ∗, then
〈Rx(ΓRx)

mRxφi, φk〉 = 〈φi, Rx(ΓRx)
mφk〉

for m = 1, 2, . . . . Therefore, for arbitrary ξ, λ from zero neighnborhood there following equalities are
valid

∂Lk
∂ξi

=
∂Li
∂ξk

, i, k = 1, . . . , n

and LS is potential in sense of Definition 3.

Let us find the corresponding potential U(ξ, λ) of LS system. We introduce the notation

ask(λ) = 〈Rx(0, λ)(I − ΓRx(0, λ))−1φs, φk〉, s, k = 1, . . . , n.

Then branching system in the potential case is as follows

Lk(ξ, λ) :=
n

∑
s=1

ask(λ)ξs + bk(ξ, λ) = 0, k = 1, . . . , n

where ask = aks,
∂bk
∂ξs

= ∂bs
∂ξk

, k, s = 1, . . . , n. Therefore the desired potential will be function U(ξ, λ) =

1
2

n
∑

s,k=1
ask(λ)ξsξk + w(ξ, λ) where |w(ξ, λ)| = O(||ξ||2).

Let us introduce

Condition 2. Let LS Equation (9) is potential and let in the neighborhood of the ||λ|| < ε there
exists space S containing the point λ = 0 and it is Jordan continuum, S = S+

⋃
S−, 0 ∈ ∂S+

⋂
∂S−.

Let det[ajk(λ)]λ∈S+∩S− 6= 0 and matrix [ajk(λ)] for λ ∈ S+ has exactly ν1 negative eighenvalues,
and for λ ∈ S− has exactly ν2 negative eighenvalues.

Lemma 2. Let LS Equation (9) is potential, conditions 2 are fuilfilled, let ν1 6= ν2. Then for ∀ε > 0 there exists
λ∗ in the sphere ||λ|| < ε such as the potential v(ξ, λ) in the sphere ||ξ|| < ε has stationary point ξ 6= 0.
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Proof. (by contradiction) Let grad v(ξ, λ) 6= 0 as 0 < ||ξ|| < ε, ||λ|| < ε. Then based on homotopical
invariance of the generalised index of Morse-Conley [7,8] it is necessary ν1 = ν2 and we observe the
contradiction with conditions of Lemma 2.

Remark 1. In some special cases for λ ∈ R1 we have provided the analytical proofs of this lemma using the
Rolle theorem, Morse lemma and local coordinates. Using Lemma 2 there following theorem on bifurcation points
existence is valid.

Theorem 3. Let LS Equation (9) is potential and let condition 2 be fulfilled for ν1 6= ν2. Then λ = 0 is
bifurcation point of Equation (1). If in such a conditions x = 0 is isolated solution of equation Bx = R(x, 0),
then λ = 0 will be the strong bifurcation point of Equation (1).

Proof follows from Lemma 1, Definitions 1 and 2 and from Corollary 1.

Corollary 5. Let is condition 2, Λ = R1, matrix [αik(λ)] as λ ∈ (0, ε) is positive defined and symmetric
matrix, and for λ ∈ (−ε, 0) is negative defined and symmetric matrix. Then λ = 0 is bifurcation point of
Equation (1).

Example 1. Let is consider the equation

x(t) =
∫ b

a
K(t, s, x(s), λ) ds,

where K(t, s, x, λ) = a(t)a(s)x(s) + ∑∞
i=1 λiKi(t, s)x(s) + o(||x||) as |λ| < ρ, |x| < r and all functions are

continuous. Let
∫ b

a a2(t) dt = 1. Assume X = Y = C[a,b], Λ = R1 and consider this equation as an abstract

Equation (1) such as Bx = x(t)−
∫ b

a a(t)a(s)x(s) ds, Rx(0, λ)x =
∫ b

a ∑∞
i=1 λiKi(t, s)x(s) ds. Let

∫ b

a

∫ b

a
Ki(t, s)a(t)a(s) dsdt =

{
0, i f i = 1, 2, . . . , 2m

c 6= 0, i f i = 2m + 1.

Then correspinding LS is as follows (cλ2m+1 + o(λ2m+2))ξ + o(|ξ|) = 0. Therefore, here branching
system (9) contains the single equation where function M(λ) = cλ2m+1 + o(λ2m+1) changes sign after zero
crossing. Therefore, Theorems 2 and 3 conditions are fulfilled and λ = 0 is bifurcation point.

Under additional conditions on nonlinear functions in the integral eqaution the bifurcation point will be
the strong bifurcation point and its nontrivial real solutions can be constructed in its half-neighborhood.

Let us consider the equation

a(λ)x(t) = 3
∫ 1

0
ts(x(s) + x2(s)) ds.

1st case: a(λ0) = 1, a′(λ0) 6= 0.

Using Theorem 2 we can conclude that λ0 is bifurcation point. Moreover, branching equation
here is following

−a′(λ0)(λ− λ0)ξ +
3
5

ξ3 + · · · = 0

and exists two small real solutions

ξ± = ±
√

5
3

a′(λ0)(λ− λ0) + o((λ− λ0)
1/2)
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as a′(λ0)(λ − λ0) > 0. Hence here λ0 is strong bifurcation point. Moreover, integral equation in

half-neighborhood of point λ has two real solutions x±(t) ∼ ±t
√

5
3 a′(λ0)(λ− λ0).

2nd case: a(λ0) = 1, a′(λ0) = 0, a′′(λ0) 6= 0.

In this case conditions of Theorem 2 are not fulfilled. Moreover, if a(λ) 6= 1 as λ 6= λ0 then
integral equation apart from trivial solution has no other small real solutions. We demonstrated that
trivial solution is isolated in this case.

Under conditions of Theorems 2 and 3 equation Bx = R(x, λ) can have nontrivial solution
depending on arbitrary small parameters only for λ = λ∗, where λ∗ is bifurcation point.

Example 2. Let us consider the following integral equation

(1 + λ)x(t) = 3
∫ 1

0
tsx(s) ds + a(t)

∫ 1

0
x2(s) ds.

Let
∫ t

0 ta(t) dt = 0. Using Theorems 2 and 3 we can conclude that λ = 0 is bifurcation point. All the
solutions of this equation can be presented as follows

x(t) =
3t

1 + λ
C1 + a(t)

C2

1 + λ1
,

where C1 = c1
1+λ , C2 =

∫ 1
0

(
3s

1+λ C1 +
a(s)
1+λ C2

)2
ds.

Then there are two cases:
1st case. Let λ 6= 0. Then c1 = 0, c2 = 1

(1+λ)2

∫ 1
0 a2(s) dsc2

2. If one select c2 = 0, then we get the trivial

solution x(t) = 0. If we assume c2 = (1+λ)2∫ 1
0 a2(s) ds

then we get solutions of equations with no small as λ → 0.

Then λ = 0 is unique bifurcation point.
2nd case. Let λ = 0. Then x(t) = 3tc1 + a(t)c2, and c2 = 3c2

1 + c2
2
∫ 1

0 a2(s) ds. Hence in the second case
equation has two c-parametric solutions

x1,2(t) = a(t)c± 3t

√
c− c2

∫ 1

0
a2(s) ds

which are real for 0 ≤ c ≤ 1∫ 1
0 a2(s) ds

. Obviusly x1,2 → 0 as c→ 0.

Let us consider one more model from mechanics.

Example 3. Let us consider the equation

F(x, λ) := x(t)− 2
∫ π

0

∞

∑
n=1

1 + λ2n

n(1 + λ2n)
cos nt cos ns ex(s) ds

(∫ π

0
ex(s) ds

)−1
= 0.

Operator F(x, λ) is differentiable wrt x in sense of Fréchet and Theorems 2 and 3 can be applied. Here

B(λ)x = x(t)− 2
π

∫ π

0

∞

∑
n=1

1− λ2n

n(1 + λ2n)
cos nt cos ns x(s) ds.
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Operator B(λ) for λ 6= 0 has inverse bounded. Then using Theorem 2 only point λ = 0 is the only
bifurcation point. Equation B(0)x = 0 has nontrivial solution φ(t) = cos t. B(λ) is self-adjoint operator.
Branching equation corresponding bifurcation point λ = 0 is following

L(ξ, λ) := ξλ2(−2 + r(ξ, λ)) = 0,

where ξ(0, 0) = 0. Then for λ = 0 parameter ξ remains arbitrary, and equation F(x, 0) = 0 has nontrivial
parametric solution

x(t, ξ) = 2
∞

∑
n=1

cos nt
n

(ξ/2)n

for |ξ| < 2.

For construction of parametric solutions in other simple cases it is usefull to use the
following result.

Lemma 3. Let B ∈ L(X → Y) is Fredholm operator, {φi}n
1 is basis in N(B), {ψi}n

1 is basis in N(B∗), R(x) is
nonlinear operator, R(0) = 0, Rx(0) = 0. Let 〈R(x), ψi〉 = 0, i = 1, . . . , n for ∀x. Then equation Bx = R(x)
has c-parametric small solution

x =
n

∑
i=1

ciφi + Γu(c)

for c→ 0. Here Γ = (B + ∑n
1 〈·, γi〉zi)

−1 is bounded operator. Function u(t) is constructed for small |c| using
method of successive approximations un = R(∑n

1 ciφi + Γun−1), u(0) = 0, n = 1, 2, . . . .

Proof. First of all let us notice that BΓu = u if 〈u, φi〉 = 0, i = 1, . . . , n. Then, taking into account
conditions of the Lemma, we get the following equation to find u

u = R

(
n

∑
i=1

ciφi + Γu

)
.

The latter equation for sufficiently small |ci|, i = 1, . . . , n using the implicit operator theorem
will enjoy unique continuous solution u(c) → 0 and this solution can be found using successive
approximations un = R (∑n

i=1 ciφ + Γun−1) , u0 = 0.

Example 4. Let us consider the equation

x(t)−
∫ b

a

n

∑
i=1

ai(t)ai(s)x(s) ds =
∫ b

a
K(t, s)x2(s) ds,

where all the function are continuous,

∫ b

a
ai(t)aj(t) dt =

{
1, i = j

0, i 6= j
.

Let
∫ b

a ai(t)K(t, s) dt ≡ 0, i = 1, . . . , n. Then conditions of Lemma 3 are fulfilled for φi = ψi = ai(t).
Moreover, operator Γ appears to be an identity operator. Then the desired solution can be constructed as following
sum x = ∑n

i=1 ciai(t) + u(t, c1, . . . , cn), where function u defined from eqaution

u(t, c) =
∫ b

a
K(t, s)

(
n

∑
i=1

ciai(s) + u(s, c)

)2

ds,
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using successive approximations for arbitrary c1, . . . , cn from some neighborhood of origin. In order to estimate
this neighborhood of covergence, let us employ the method of convex majorants of L. V. Kantorovich [8,19]. Let
max
a≤t≤b

∫ b
a |K(t, s)| ds = m. We define the majorant system

{
r = m(ρ + r)2

1 = 2m(ρ + r).

Then r = ρ = 1/4m.

Let vector c = (c1, . . . , cn)T sutisfies the estimate

max
a≤t≤b

n

∑
i=1
|ci||ai(t)| <

1
4m

.

Then sequence

um(t, c) =
b∫

a

K(t, s)

(
n

∑
i=1

ciai(s) + um−1(s, c)

)2

ds, u0 = 0

will converge. The desired c-parametric solution x(t, c) satisfies the estimate |x(t, c)| < 1
2m .

3. Solutions Parametrization and Iterations in Branch Points Neighborhood

The objective of this section is to describe the iteration scheme with uniformization parameter
selection and initial approximations of branches of solution of Equation (1). It is to be noted that in
Section 3 condition R(0, λ) = 0 can be unsatisfied.

An important role of power geometry [33] and Newton diagram is well known in asymptotic
analysis of finite-dimentional systems when implicite theorem’s conditions are not fulfilled. Solution of
operator Equation (1) reduces to solution of such type finite-dimentional LS system.

The main stages of this approach we describe below. Similar with Section 1 let us consider
the equation

Bx = R(x, λ). (13)

But now Λ = R1, operator R(x, λ) = ∑i+k≥2 Rik(x)λk + R01λ is analytic in the neighborhood of
origin, Rik(tx) = tiRik(x), t ∈ R1, B is Fredholm operator. We have to construct the solution x → 0
as λ → 0. For iteration scheme construction one needs coefficients of branching LS system. Let us use
the change

x =
n

∑
j=0

ξsφs + Γy(ξ, λ), (14)

where
〈y, ψi〉 = 0, i = 1, . . . , n (15)

and Equation (13) will be converted to

y = R(ξφ + Γy, λ). (16)

Using the Implicit Operator Theorem for small ||ξ|| and |λ| we have unique small solution

y = ∑
m≥2

ym0(ξφ) + ∑
m≥0

∑
ν≥1

ymν(ξφ)λν. (17)
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Since ξφ = ∑n
i=1 ξiφ and ymν(ξφ) are m–homogenius in ξ, then for coefficient calculation we

constuct reccurent formulae
y20(ξφ) = R20(ξφ),

ym0 =
1

m!
dm

dµm

m

∑
i≥2

Ri0(Γ
m−1

∑
i=1

yi0µi)µ=0, m = 3, 4, . . . ,

Γy10 := ξφ,

y10 :=
n

∑
i=1

ξizi, y01 = R01,

y0n =
1
n!

dn

dλn

n

∑
i+k≥2

Rik

(
Γ

n−1

∑
s=1

y0sλs

)
λk
∣∣∣∣
λ=0

, n = 2, 3, . . . ,

yn−j,j =
1

(n− j)!j!
∂n

∂λj∂µn−j

n

∑
i+k≥2

λkRik

(
Γ

k−1

∑
i+k≥1

yikµiλk +
j−1

∑
s=0

Γyn−s,sµn−sλs

)∣∣∣∣
λ=µ=0

,

n = 2, 3, . . . , j = 1, . . . , n− 1. The sequence {yn}, y0 = 0 converges to solution (17), where

yn = R(ξφ + Γyn−1, λ), n = 1, 2, . . . .

Substitution of solution (17) into (15) gives the following branching LS system

Lj(ξ, λ) := ∑
m≥2

Lj
m0(ξ) + ∑

m≥0
∑
ν≥1

Lj
mν(ξ)λ

ν = 0, j = 1, . . . , n, (18)

where
Lj

mν = 〈ymν(ξφ), ψj〉 = ∑
m1+···+mn=m

Lj
m1,...,mn ,ν ξm1

1 , . . . , ξmn
n .

For symmetry let us put λ = ξn+1 in (18). Let L(ξ1, . . . , ξn+1) be one of the left hand sides of
system (18). Eliminate on the corresponding power ξi for sake of clarity we assume

L(ξ1, . . . , oi, . . . , ξn+1) 6= 0

for i = 1, . . . , n + 1. Let supp L = {i|i ∈ Nn+1
+ , Li 6= 0}, N+ is set of positive integer numbers.

Let us introduce

Condition 3. We fix positive α1, . . . , αn+1, θ1, . . . , θn such as for ξi = εαi νi, i = 1, . . . , n + 1 and ε→ 0

Lj = εθj(lj(ν1, . . . , νn+1) + rj(ν, ε)), (19)

where lj = ∑
(i,α)=θj

Lj
iν

i, i = (i1, . . . , in+1), α = (α1, . . . , αn+1), νi = νi1
1 , . . . , ν

in+1
n+1, ri(ν, 0) = 0.

Let us now introduce the following

Definition 4. Hyperplane
l : {ξ ∈ Rn+1

+ | (ξ, α) = θ}

we call support plane for supp L, if

1. (ξ, α) ≥ θ for ξ ∈ supp L,
2. l ∩ supp L 6= 0.
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Then algebraic Condition 3 from geometrical point of view means that hyperplanes lj = {ξ ∈
Rn+1
+ | (ξ, α) = θj}, j = 1, . . . , n are correspondingly support hyperplanes for supp Lj, j = 1, . . . , m.

In case of symmetry when α1 = · · · = αm, αm+1 = · · · = αn+1, the hyperplane lj is symmetric wrt axis
ξ1, . . . , ξm and axis ξm+1,...,ξn+1 . In such case for verification of Condition 1 the Newton digramm can
be employed. The method of numbers αi, θi selection proposed by Bruno gaurantees the satisfaction
of Condition 3 in the general case.

Condition 4. Let an algebraic system

lj(ν1, . . . , νn+1) = 0, j = 1, . . . , n (20)

has solution ν0 = (ν0
1 , . . . , ν0

n+1), and for ν = ν0

det
[

∂lj

∂νi

]
j=1,...,n, i=(1,...,n+1)\∗

6= 0,

where (1, . . . , n + 1)\∗ := (1, . . . , ∗ − 1, ∗+ 1, . . . , n∗).
Solution ν0 6= 0 we call as full rank solution for system (20). Here index ∗ fixes rank minor of the

matrix [
∂lj
∂νi

] for ν = ν0.

Lemma 4. Let Conditions 3 and 4 are fulfilled. Then branching system (18) has small solutions as ε→ 0

ξi = εαi (ν0
i + o(1)), i = (1, . . . , n + 1)\∗,

ξ∗ = εα∗ν0
∗,

where ξn+1 := λ(ε).

Proof follows from Implicit Function Theorem due to Conditions 3 and 4. Using substitution of
determined ξi(ε), i = 1, . . . , n and λ(ε) into (17) and taking into account (2) we get the desired pair
x(ε), λ(ε) satisfies Equation (13). Then the following Theorem takes place

Theorem 4. Let Conditions 3 and 4 be fulfilled. Then Equation (13) enjoys small solution x = x(ε) → 0
λ = λ(ε)→ 0 as ε→ 0.

System (20) can contain several solutions and choice of vectors α, θ is not unique in general case,
the Equation (13) can contain several solutions.

Let us consider the basic case on analytical calculation of the solution for Equation (13) using the
method of undetermined coefficients. Let nonlinear system Equation (20) is as follows

lj(ν1, . . . , νn+1) : bj(ν1, . . . , νn+1)
n+1

∑
k=1

ajkνk = 0, j = 1, . . . , n.

Here rank[ajk]k=1,...,n+1, j=1,...,n = n. Then branching Equation (18) call quasilinear. In this case
it is easy to constract the asymptotic of solution for Equation (13). Indeed, fixing rank minor
[ajk]k=(1,...,n+1), j=1,...,n we can construct nontrivial solution ν0 = (ν0

1 , . . . , ν0
n+1) of the following system

of linear algebraic equations
n+1

∑
k=1

ajkνk = 0, j = 1, . . . , n

for selected ν0
∗. Vector ν0 obviously satisfies system (20). Let us assume bj(ν

0
1 , . . . , ν0

n+1) 6= 0, j =

1, . . . , n. Then, using Implicit Function Theorem, branching system (18) has small solution with
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asymptotics νi ∼ εαi ν0
i , i = 1, . . . , n + 1. Using formulae (17) and (2), we can conclude that asymptotics

of the corresponding small solution of Equation (13) satisfies the following estimates

λ(ε) ∼ εαn+1 ν0
n+1,

Px(ε) ∼
n

∑
i=1

εαi ν0
i φi,

where P := ∑n
i=1〈·, γi〉φi is the projector on subspace N(B). Under the certain conditions, analytical

solution of Equation (13) can be effectively constructed using the method of undetermined coefficients
as series x(λ) = ∑∞

i=1 xiλ
i.

Indeed, let in Equation (13)

R(x, λ) =
∞

∑
k=1

R1kλkx +
∞

∑
i+k=3

Rik(x)λk +
∞

∑
k=1

R0kλk,

det[〈R11φk, ψi〉]k=1,...,n 6= 0,

〈R01, ψi〉 = 0, i = 1, . . . , n.

Then branching equation will be quasilinear for α1 = · · · = αn+1 = 1, p = 2. Solution of
Equation (13) we construct as series x = ∑∞

i=1 xiλ
i. For calculation of the coefficients xi using method

of undetermined coefficients we obtain the following recurrent sequence of linear equations

Bx1 = R01,

Bx2 = R11x1 + R02,

Bxm = R11xm−1 + fm(x1, . . . , xm−2), m = 3, 4, . . . .

Hence, x1 = ∑n
i=1 c1iφi + ΓR01, where Γ = (B + ∑n

i=1〈·, γi〉zi)
−1. Vector c1 = (c11, . . . , c1n)

′ can be
uniquely defined from the following system of linear algebraic equations

n

∑
k=1
〈R11φk, ψi〉c1k + 〈R11ΓR01, ψi〉+ 〈R02, ψi〉 = 0, i = 1, . . . , n.

which corresponds to the resolving conditions of the 2nd equation of the sequence. Similarly, xm =

∑n
i=1 c1nφi + x̂m, where vector cm = (cm+1,...,cm+n)

′ is defined from the system of linear algebraic
equations, element x̂m we uniquely construct in the subspace X∞−n using operator Γ.

As result, the following statement can be formulated concerning the existence and construction of
the analytical solution of Equation (13).

Let R(x, λ) =
∞
∑

k=p
R1kλkx+ ∑

i+k=p+2
Rik(x)λk +

∞
∑

k=1
R0kλk, det[〈R1pφi, ψk〉]i,k=1,...,n 6= 0, 〈R0k, ψi〉 =

0, k = 1, . . . , p, i = 1, . . . , n.
Then Equation (13) enjoys an analytical solution x = ∑∞

i=1 xiλ
i, where xi = ∑n

k=1 cikφk + x̂i, i =
1, 2, . . . . Vectors ci = (ci1, . . . , cin)

′ can be uniquely calculated from the system of linear algebraic
equations with matrix [〈R1pφi, ψk〉]i,k=1,...,n, elements x̂i can be determined in the subspace X∞−n

uniquely.

4. N-Step Iteration Scheme for Construction of The Solution of Equation (13)

Let Conditions 3 and 4 are fulfilled for branching system (18) and ξ0 is solution of system (20) is
full rank solution. Let r = min(α1, . . . , αn+1). Solution x(ε), λ(ε) of Equation (13) we seek in the form

x(ε) = ξ(ε)φ + Γεry(ε), λ(ε) = εαn+1 ξn+1(ε), (21)
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where ξ(ε)φ := ∑n
i=1 εαi ξi(ε), ξi(0) = ν0

i , i = 1, . . . , n + 1.

y(0) =

{
0, r < αn+1,

R01ν0
n+1, r = αn+1.

Lets put in (21) ξ∗ = ν0
∗. The rest ξi(ε), i 6= ∗ and y(ε) continuous in zero, we define from system

εry = R(ξ(ε)φ + Γεry, εαn+1 ξn+1(ε)) := Φ(εey, ξ, ε), (22)

with condition
〈y, ψi〉 = 0, i = 1, . . . , n. (23)

Let us outline that lim
ε→0

ε−rΦ(εry, ξ, ε) = y(0.) Because ξ∗(ε) ≡ ν0
∗ then in system (22) and (23)

functions y(ε), ξi(ε) are unknown for i 6= ∗. System (22) and (23) consists of (n + 1) equations with
(n + 1) unknowns.

Let us transfer system (22) and (23) in order to meet the conditions of Implicite Operator Theorem
in the neighborhood of point y(0), ν0

I , i 6= ?. Then by introduction of iterative process in system (22)
and (23) , we get the following system

y = ε−r Φ(Φ . . . (Φ . . . ))︸ ︷︷ ︸
N

:= ε−rΦN(εrΓy, ξ(ε)), (24)

εθj
〈

R(ξ(ε)φ + ΓΦN(εrΓy, ν, ε), εαn+1 νn+1), ψj

〉
= 0, j = 1, . . . , n. (25)

Here ν∗(ε) = ν0
∗.

ΦN := R(ξ(ε)φ + ΓR(ξφ + · · ·+ ΓR(ξφ + Γεry, ξn+1), . . . , ξn+1).

Any solution y, νi, i 6=∗ satisfying system (24) and (25) satisfies also (22) and (23) . System (24)
and (25) we conider as single operator equation

K(u, ε) = 0, (26)

where K : E × R1 → E, E = Y × Rn, ||u|| := ||y|| + |ξ|, u =

(y(ε), ξ1(ε), . . . , ξ∗−1(ε), ξn+1(ε), . . . ξn+1(ε))
T , ξ∗(ε) ≡ ν0

∗. Using Conditions 3 and 4 for
N > max

1≤j≤n
(θj − r) operator K will be continuous in the neighborhood of the point u0 = (y(0), ξ0),

ε = 0, K(u0, 0) = 0 and exists Fréchet derivative Ku(u, ε) continuous in point (u0, 0),

Ku(u0, 0) =

(
I 0
0 D

)
.

Here matrix D =

[
∂lj(ξ

0)

∂ξi

]
is rank minor of matrix

[
∂lj
∂νi

]
on solution νo of algebraic system (20).

Due to Condition 4 det D 6= 0 and there exists bounded inverse operator

K−1
u (u0, 0) =

(
I 0
0 D−1

)
.

Then Equation (26) satisfies all the conditions of Implicite Operator Theorem, Equation (26) enjoys
unique continuous solution u(ε) such as

um = um−1 − K−1(u0, 0)K(um−1, ε) (27)
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converges to this solution in the neighborhood of the point ε = 0. Therefore, if conditions 3 and 4 are
fulfilled, then Equation (26) enjoys small solution x = x(ε)→ 0, λ = λ(ε)→ 0 as ε→ 0, where

Px(ε) =
n

∑
i=1

εαi (ν0
i + o(1))φi,

λ(ε) ∼ εαn+1 ν0
n+1. Moreover, sequences

xm =
n

∑
i=1

εαi ξm
i (ε) + Γεrym,

λm = εαn+1 ξm
n+1(ε), m = 1, 2, . . . ,

where ym, ξm
i (ε), i = 1, . . . , n + 1 are defined iterations (27) converges as m → ∞ to desired small

solution x(ε)→ 0, λ(ε)→ 0 as ε→ 0. Right hand sides of formulae (21) and (22) used in iterations (27)
we build an inverse operator Γ. Therefore for element xm calculation it is necessary to solve N-linear
equations (

B +
n

∑
i=1
〈·, γi〉zi

)
x = f

with continuosly invertiable operator. Therefore, proposed iteration scheme is N-step on each step.

5. Remarks, Regularization and Generalizations

The right hand side of the iteration scheme (27) contains operator Γ introduced by V.A.
Trenogin [34] and negative powers of the small parameter ε. But this singularity is resolvable. Indeed,
in case of polynomial nonlinearity wrt negative powers of ε one can eliminate the corresponding
powers of parameter ε. For more details readers may refer to [8,24,25]. Then, taking into account
boundness of operator Γ and its regularizing properties [20,34] convergence of proposed N-steps
method of successive approximations will be uniform in the branch point’s neighborhood. If it is not
possible to perform explicite eliminations, then for sake of stable computations in case of negative
powers of ε one can employ the change of ε onto ε + signε δν, where 0 < ν < 1/2p, p = max

1≤j≤n
(θj − r),

where δ is maximal absolute error of computations. Then proposed iteration scheme can be classified
as Tikhonov-Lavrentiev regularisation algorithm.

Finally, let us outline that in number of applications Condition 4 for branching system is not
satisfied. Analysis of corresponding branching solutions depending on free parameters linked with
model’s symmetry requires methods from [20,25,31]. Usually, in such cases it is assumed the existence
of linear bounded operators S ∈ L(X → X) and K ∈ L(Y → Y) such as BS = KB, R(SX, λ) =

KR(x, λ) for ∀x, λ ∈ Ω.
Operators S, K can be projectors. If problem G-invariant then S, K can be parametric representations of

G-group. In that case we say that Equation (13) is (S, K)-interwined. In [21,31] the iterative approach
is implemented and developed using ideas of analytical method of Lyapunov-Schmidt in case of
(S, K)-interwined equations. In this case it is allowed to change the parameter of uniformization of
solutions branches.

Because of symmetry (13) with respect to main representatives of rotation group can be employed
to transfer to the spheric coordinates and construct the solution depending on free parameters.

Example 5. [24] Let us consider the equation

x =
1
π

∫ 2π

0
cos(t− s)x(s) ds + λx(t) + x2. (28)
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Here φ1 = cos t√
π

, φ2 = sin t√
π

and Γ is identity operator. Let us seek the small solution as λ → 0 in form

x = ξ1φ1 + ξ2φ2 + y, where
∫ 2π

0 y(t)φi(t)dt = 0, i = 1, 2. In the polar coordinates ξ1 = ρ cos α, ξ2 = ρ sin α,
Branching LS system can be presented as follows(

ρ
λ

1− λ
+

3
2π

ρ3

(1− λ)5 + r(ρ, λ)

)(
cos α

sin α

)
= 0.

Here r(ρ, λ) is an analytical function in the neighborhood of origin, and r(ρ, λ) = o(ρ5). Then the desired
implicit parametrization of small solution is following

x = ρ
cos(t− α)√

π
+O(ρ2),

λ = − 3
2π

ρ2 +O(ρ3),

where α ∈ (−∞, ∞) as ρ→ 0. After transition to explicit parametrization we can get two α-parametric small
solutions (which are real for λ < 0)

x± = ±
√
−2λ

3
cos(t− α) + o(|λ|1/2) (29)

which are real valued as λ→ − 0. We can see that equation has two α-parametric branches of small 2π–periodic
solutions defined for λ < 0. For α = 0

x± ≈ ±
√
−2λ

3
cos(t). (30)

Remark 2. The iteration scheme (27) from Section 4 can be employed for the latter Equation (28).

Let us build the solution corresponding the asymptotic asymptotic expansion (29) for α = 0. The
sequence un is defined as pair

un := (εϕ + εyn, λn) (31)

which converges to branch u+ = (x+, λ) as n→ +∞. Here

λn = −λn−1〈yn−1, ϕ〉 − ε〈(yn−1 + ϕ)2, ϕ〉, (32)

yn = λn−1yn−1 + λnφ + (yn−1 + ϕ)2ε, (33)

y0 = 0, λ0 = 0. For sake of simplicity only positive branch u+ is discussed here. Since the latter
iteration scheme (31)–(33) has no singularity point for ε = 0 then sequence un converges ε–uniformly.
The Simpson’s rule for step h = π/10, is employed for method (31)–(33), number of iterations
N is selected as ||un − un−1|| < 10−5. Table 1 demonstrates calculations results for single branch
u+(t) = (x+(t), λ) in points t = {0, π/2, π}.

Table 1. Results for Example 5.

N ε λ x+(0) x+(π/2) x+(π)

6 10−3 −0.2197× 10−6 0.5652× 10−3 2× 10−9 −0.5632× 10−3

5 10−2 −0.2194× 10−6 0.5737× 10−3 2× 10−9 −0.5751× 10−3

5 10−1 −2.1331× 10−3 56.5654× 10−3 0 −56.6065× 10−3
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Following the main term (30) of asymptotic expansion (29) for small λ we have x+(π/2) = 0.
This matches with the calculated values listed in 5th column of the Table 1. From Table 1 we can
obviously conclude that iteration process (31)–(33) allows to define the solution (x+(t), λ) with
sufficient accuracy because it matches with asymptotic expansion (29), moreover, it enjoys the uniform
concergence with respect to ε. As foontine, let us outline that proposed method can be used also to find
α-parametric solutions for fixed α 6= 0.

6. Conclusions

In this article we derived the necessary and sufficient conditions (Theorems 1–3) on the
parameters for which a nontrivial solutions to the problem appears. Algorithms for constructing
solutions are considered in the remaining theorems. Thus, the article gives algorithms for
constructing asymptotic solutions and conditions for the convergence of special authorial methods of
successive approximations.

The article also includes an overview of the results of the authors, and some of the results
presented were only announced or published without proof in previous articles. In order to make
the new methods accessible to a wider audience, all theorems are illustrated by solving substantial
concrete examples, and an integral equation is presented that simulates one problem from wave theory.

Results of this paper enable applications of the existence theorems for bifurcation points
of nonlinear BVP problems and make it possible to construct an appropriate solutions.
Our method has been also applied for solution of degenerate operator-differential and
integral equations [14,15,18,20,26,32].

Problem of optimal uniformization parameters selection needs to take into account an insight of
the problems and it is not yet solved in algebraic form. The formulation and proof of the nonlocal
theorems of existence of branching solutions in nonstandart models remains an important problem.
For solution of these problems the Trenogin’s nonlocal theorems from [5,6] can be employed.

When developing methods of successive approximations and the corresponding numerical
schemes, an important problem is to ensure uniform convergence with respect to the bifurcation
parameter of convergence in the maximum possible neighborhood of the branch points of solutions.
Particularly difficult is the solution to this problem in cases where the branches of solutions depend
on free parameters related to the symmetry of the problem. Here, most of the research focuses on
numerical experiments in the vicinity of bifurcation points, the calculation results were unstable, which
made their interpretation difficult. In this situation, in the vicinity of the branch point, it is effective to
solve many substantial problems by applying regularization methods in the sense of Tikhonov using
the efficient analytical methods based on ideas of the Lyapunov-Schmidt method [8,9,20].

In our opinion, the proof of theorems on the existence of bifurcation points in modeling biological
and biochemical processes has become especially relevant in connection with the growth of infectious
diseases in the global world. In order to attack such global challenges it is necessary to involve
both advanced machine learning methods and qualitative theory of nonlinear dynamical systems,
asymptotics of solutions of kinetic equations in the vicinity of bifurcation points and to study the
stability of new branches of solutions. In solving such complex problems in biology and medicine,
it will be useful to efficiently employ the accumulated experience of bifurcation analysis in models of
hydrodynamics, elasticity theory, and mathematical physics.
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