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Abstract: El Niño is an important quasi-cyclical climate phenomenon that can have a significant
impact on ecosystems and societies. Due to the chaotic nature of the atmosphere and ocean systems,
traditional methods (such as statistical methods) are difficult to provide accurate El Niño index
predictions. The latest research shows that Ensemble Empirical Mode Decomposition (EEMD) is
suitable for analyzing non-linear and non-stationary signal sequences, Convolutional Neural Network
(CNN) is good at local feature extraction, and Recurrent Neural Network (RNN) can capture the overall
information of the sequence. As a special RNN, Long Short-Term Memory (LSTM) has significant
advantages in processing and predicting long, complex time series. In this paper, to predict the El
Niño index more accurately, we propose a new hybrid neural network model, EEMD-CNN-LSTM,
which combines EEMD, CNN, and LSTM. In this hybrid model, the original El Niño index sequence
is first decomposed into several Intrinsic Mode Functions (IMFs) using the EEMD method. Next,
we filter the IMFs by setting a threshold, and we use the filtered IMFs to reconstruct the new El
Niño data. The reconstructed time series then serves as input data for CNN and LSTM. The above
data preprocessing method, which first decomposes the time series and then reconstructs the time
series, uses the idea of symmetry. With this symmetric operation, we extract valid information about
the time series and then make predictions based on the reconstructed time series. To evaluate the
performance of the EEMD-CNN-LSTM model, the proposed model is compared with four methods
including the traditional statistical model, machine learning model, and other deep neural network
models. The experimental results show that the prediction results of EEMD-CNN-LSTM are not only
more accurate but also more stable and reliable than the general neural network model.

Keywords: El Niño index; deep learning; prediction; Long Short-Term Memory Neural Network;
Convolutional Neural Network; Ensemble Empirical Mode Decomposition

1. Introduction

El Niño is not only a prominent feature of large-scale sea–air interaction in the Pacific Ocean but
also one of the strongest interannual climate signals in the global climate system [1]. The study found
that although El Niño occurs primarily in the Eastern Pacific, its effects are not limited to regional
climates, but also cause widespread weather and climate anomalies on a global scale [2–4]. Therefore,
accurate prediction of El Niño is important for global climate anomaly prediction.

Meteorologists and oceanographers around the world attach great importance to the study of
the laws and mechanisms of the El Niño phenomenon and strive to provide a reliable theoretical
basis for predicting climate disasters [5–8]. At present, El Niño forecasts are mainly divided into
two categories [9–11]: dynamic models and statistical models. The dynamic model is based on the
physical laws of the formation and development of El Niño. The physical processes related to El
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Niño are modeled and numerically simulated, and the prediction results are obtained by the forward
integration method. Since the 1980s, many agencies have developed many El Niño forecasting models.
For instance, Latif et al. [8] attempted to explain the mechanism of climate variability generation in
the Northern Hemisphere and proposed a coupled model of atmosphere and ocean in the Northern
Hemisphere. However, there are still many shortcomings in the results of dynamic model predictions,
such as obstacles in spring forecasting, error accumulation, significant differences in prediction results
of different models, and large demand for computing resources. On the other hand, the prediction of
El Niño based on statistical methods has also achieved many excellent results. Research shows that
using regression methods, support vector machines, empirical modal decomposition, and other data
mining-based methods can also make short-term predictions of El Niño events. However, because El
Niño events are complex nonlinear physical processes, many statistical models have limited modeling
capabilities for El Niño nonlinear effects.

With the increase of greenhouse gases and global warming, the tropical Pacific climate background
state may change in the future, and El Niño affected by the background state will inevitably present
more complicated changes [12,13]. This will have a huge impact on the prediction of El Niño and
related climate anomalies. Facing more and more uncertainties, existing statistical models and dynamic
models may deteriorate or even fail.

The El Niño index is important data for studying El Niño events [14–16]. The various El
Niño indices are typical time-series data, which are quasi-periodic in nature. Thus, we can use
time series prediction models to predict the El Niño index. Statistical time series models [17–19]
such as Linear Regression (LR), Autoregression (AR), Autoregressive Integrated Moving Average
(ARIMA), etc., have many shortcomings despite better results in some areas. These methods aim
to analyze the intrinsic relationship of time series and thus predict future time series. If the object
of study is a complex, highly nonlinear time series, general statistical models will have difficulty
extracting the complex information contained in the data. Recently, several methods based on climate
networks have shown good results in predicting the occurrence of the El Niño phenomenon [20–22].
Furthermore, Meng et al. proposed a new method, System Sample Entropy, which can effectively
overcome the spring predictability barrier by measuring the complexity of the system [23]. In recent
years, deep learning has achieved great success in the fields of image recognition, object detection,
and natural language processing, and more and more scholars are applying deep learning to earth
science research. For example, using a neural network model, Tangang et al. [24] completed
seasonal predictions of sea surface temperature anomaly in the Nino 3.4 region with good results.
Nooteboom et al. [25] proposed a new approach that combines classical Autoregressive Integrated
Moving Average (ARIMA) with machine learning methods. They found that for forecasts up to
6 months in advance, the model predicted better results compared to the CFSv2 ensemble prediction
by the National Centers for Environmental Prediction (NCEP). Shijin Yuan et al. [26] made simple
modifications to the long short-term memory and applied it to the North Atlantic Oscillation (NAO)
index prediction. Mcdermott et al. [27] performed realistic nonlinear spatiotemporal predictions and
Lorenz simulations with improved Recurrent Neural Network (RNN) with good results. Kim et al. [28]
took ConvLSTM [29,30] which is a variant of LSTM to predict rainfall, and the experimental results
were significantly better than other statistical methods. According to a large number of studies,
neural networks are found to be a viable method for climate and weather prediction, and their
performance is mostly superior to traditional statistical models [26,31,32].

In addition, it was found that signal processing methods can effectively improve the performance
of time series prediction models. For example, Akylas C. Stratigakos et al. [33] combined LSTMwith
Singular Spectrum Analysis (SSA) to improve the accuracy of day-ahead hourly load prediction.
Wang et al. [34] proposed a hybrid model combining the ARIMA model with Ensemble Empirical
Mode Decomposition (EEMD) to better predict hydrologic time series. In an electric load forecasting
study, Neethu Mohan [35] developed a new data-driven strategy, which employs a Dynamic Mode
Decomposition (DMD) method, and the experimental results show that the forecasting results are
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significantly improved with the introduction of DMD. Jordan Mann’s research [36] shows that DMD,
as a method of non-linear dynamical systems, is also an effective mathematical tool for studying
dynamic market changes and stock market forecasting.

In this paper, we suggest an efficient deep neural network model, EEMD-CNN-LSTM, based on
CNN-LSTM with Ensemble Empirical Mode Decomposition (EEMD). First, the El Niño index data is
pre-processed by EEMD; in this way, the noise is filtered. Next, a new reconstructed time series is used
to train the model. Finally, we present a forecast based on the CNN-LSTM for the El Niño index and
address the shortcomings of the one-step forecast.

The paper is structured as follows: Section 2 defines the EEMD-CNN-LSTM model. Section 3
gives the parameter settings and three error criteria for the experiment. Section 4 presents the results
of the experiment. The results of the experiment are discussed in Section 5. Section 6 summarizes
the article.

2. Proposed Method

2.1. Problem Formulation

Time series generated by nonlinear dynamical systems [37–39] display features that cannot be
modeled by linear processes: time-varying variance, higher-moment structures, asymmetric cycles,
thresholds, and breaks. Different widely used ENSO indices inherit all these features [40]. The observed
characteristics of ENSO are irregular and quasi-periodic, which may be caused by nonlinear dynamics
or random forcing [41–43]. Although there are multiple El Niño indices, in this study, we selected the
Nino 3.4 index for the study, and in future studies, we will also analyze other indices. Suppose that
we have access to the El Niño index series: {x1, x2, . . . , xt}, where xi represents the El Niño index value
at the i− th time point. Based on historical information, a good forecasting model can make accurate
predictions about the value xt+1 of future moments. In this study, the basic idea of El Niño index
prediction is consistent with the general time series prediction approach, which uses historical data to
predict future states. The historical data were first decomposed using the EEMD method, and then
the new time series were obtained using the reconstruction method. CNN was used for feature
extraction and the CNN results were put into the LSTM for training to predict the future El Niño index.
The overall algorithm flow is shown in Figure 1.
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2.2. Ensemble Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a signal analysis method proposed by Huang in 1998 [44].
It decomposes a complex sequence into several different scales of the Intrinsic Mode Function (IMF)
and a residual component to obtain a smooth sequence. EMD avoids the selection of small wave
base functions and is widely used in non-smooth signal processing. EMD is very good at handling
non-stationary and non-linear time series. In contrast to other time–space analysis methods, such as
wavelet decomposition, EMD is also not physics-based. However, the results of EMD decomposition
can reflect much of the essential information contained in the original time series. In particular,
the method is very effective for analyzing non-linear and non-stationary signals in nature, such as
the Southern Oscillation Index (SOI), Nino 3.4 index, etc. [45]. However, there is a mode mixing
phenomenon in the EMD method; therefore, Wu and Huang proposed the Ensemble Empirical Mode
Decomposition (EEMD) algorithm [46]. The EEMD algorithm first adds white noise to the original
time series and then uses the EMD method to decompose the new signal. All modes are averaged to
get the final results. The specific steps of the EEMD algorithm are as follows:

Step 1: White noise ψ(t) satisfying a normal distribution is added to the time series X(t):

X(t) = X(t) +ψ(t) (1)

Step 2: The new time series is decomposed using the EMD algorithm to find all IMF components
ci(t) and one residual component r(t).

X(t)→
k∑

i=1
ci(t) + r(t) (2)

Step 3: Repeat steps 1 and 2, adding a new white noise sequence each time.
Step 4: The decomposition results are averaged, and the average is used as the final IMF component

of sequence X(t):

IMFi(t) = 1
N

N∑
n=1

ci,n(t), (i = 1, 2, . . . , K, n = 1, 2, . . . , N) (3)

Based on the residuals and a series of IMFs, the energy value of each IMF was calculated as follows:

EIMFi =
1
N

N∑
n=1

c2
i,n(t) (4)

We get Esum by summing all EIMFi , i.e., Esum = 1
K

∑K
i=1 EIMFi , (i = 1, 2, . . . , K). The threshold δi is

defined as the ratio of the energy value of the IMF ci,n to all energy.

δi =
EIMFi
Esum

(5)

Here, we set the threshold value η. When δi is greater than η, it indicates that the IMFi component
corresponding to δi has an important role and cannot be ignored in signal reconstruction. Therefore,
we select several IMFi that satisfy δi > η to reconstruct the new time series. These selected IMFi have
more valid information, while the IMFi that does not meet the conditions is noise. Finally, we get the
new reconstructed time series.

In addition, the amplitude of added noise and the ensemble number are two key parameters that
affect EMMD performance. The choice of these two parameters will affect the mode decomposition
results, which will affect δi. In this study, the amplitude and ensemble numbers mentioned above are
set to 0.04 and 100, respectively, based on the results of previous studies [47–49] and the characteristics
of the Nino 3.4 index time series.
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2.3. Long Short-Term Memory Neural Network

Since traditional neural networks cannot remember information, they cannot effectively use
the historical information contained in the time series. Compared to traditional neural networks,
the Recurrent Neural Network can remember information because the current output depends on
previous calculations. In traditional neural networks, all inputs are independent of each other; however,
in RNN, all inputs are interrelated. Due to its advantages in processing sequence information, RNN is
widely used in text classification, machine translation, speech recognition, etc. [50]. The structure of
the RNN can be seen in Figure 2.
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In Figure 2, we can see the decomposition structure of a Recurrent Neural Network, and it can be
found that each moment’s information can be passed to the next moment. Xt is the input value for
moment t. The formula for the current state is: ht = f (ht−1, xt). As can be seen from Figure 2, the input
value X0 is first provided to the RNN, and then the output h0 can be obtained, which together with X1

serves as the next input. Similarly, h1 will serve as the next input along with X2, and so on. In this way,
the RNN can continuously memorize the context during the training process. However, when dealing
with long time series, RNNs suffer from problems such as gradient disappearance. LSTM is designed
to tackle these problems.

LSTM has evolved on the basis of RNN and has achieved desirable results in many areas. LSTM is
especially ideal for addressing the problem of time series forecasting, as it has a versatile potential to
manage critical events with longer periods and time series delays.

LSTM effectively overcomes the vanishing gradients problem of the RNN model by retaining
useful information and discarding useless information. The structure of the LSTM can be seen in
Figure 3. The LSTM mainly consists of the memory cell and three gates, including the input gate,
forget gate, and output gate. These three gates take on the task of updating, maintaining, and deleting
information contained in cell status. The LSTM employs the recurrence to represent the input data
{x1, x2, . . . , xn}:

ht = f (ht−1, xt) . (6)

where xt represents the input data at time t, and ht−1 and ht represent the hidden states computed at
time t−1 and t, respectively.

The calculation process of the LSTM network [51,52] is described as follows:

(1) According to Equation (7), the input ht−1 and xt are processed to determine whether to forget the
data acquired at the previous moment based on the results of the calculation.

(2) According to Equation (8), the information to be stored in the cell state is calculated. At the same
time, according to Equation (9), the input gate is used to determine which input data can be
collected in the cell.

(3) Based on Equation (10), the results of steps 1 and 2 are processed to filter out the useless data and
absorb the useful ones.

(4) Based on the output gate, this step determines the results of the model. Specifically, according to
Equations (11) and (12), the output gate determines whether the latest cell output can be
passed forward.
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(5) Then repeat the above steps continuously. Finally, the parameters in the LSTM are obtained by
maximizing the similarity between the target data and the LSTM output.

ft = σ
(
W f · [ht−1, xt] + b f

)
(7)

C̃t = tan h(WC · [ht−1, xt] + bC) (8)

it = σ(Wi · [ht−1, xt] + bi) (9)

Ct = ft �Ct−1 + it � C̃t (10)

ot = σ(Wo · [ht−1, xt] + bo) (11)

ht = ot � tan h(Ct) (12)

where the notations ft, it, and ot represent forget gate, input gate, and output gate, respectively.
C̃t determines the new information that will be stored in the cell state. Ct and Ct−1 represent the
cell status value of time t and last time frame cell status value, respectively. The notation � denotes
the Hadamard product. Based on appropriate parameter settings, the output value ht is calculated
based on Ct−1 and C̃t values according to Equations (10) and (12). Here, xt is the input vector at
time t. The bo, b f , bC, and bi are bias vectors. σ is the logistic sigmoid function, and tanh is the
hyperbolic tangent activation function. The sigmoid function σ(•) gives an output between 0 and
1, and the tanh function tanh(·) gives weight to the value being passed according to its importance.
All weights, including Wo, Wi, W f , and WC, are updated using the Back-Propagation Through Time
(BPTT) algorithm [53] based on the difference between the output value and the true value.Symmetry 2020, 12, x FOR PEER REVIEW 6 of 19 
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2.4. Temporal Convolutional Neural Network

Spatiotemporal data analysis is an emerging area of research due to the development and
application of new computational techniques that enable the analysis of large spatiotemporal
databases [54,55]. Spatiotemporal data analysis methods can improve the utilization of our data,
and this type of analysis method has been greatly developed in recent years [56,57]. Some applications
of spatiotemporal analysis include cases in agriculture, oceanography, meteorology, biology, etc.
Convolutional Neural Network (CNN) is a very effective method for spatiotemporal data analysis.
The CNN is a feedforward neural network that evolved from the Multilayer Neural Network (MLNN).
Unlike the traditional MLNN, CNN enables parameter sharing and sparsity. Specifically, since the
traditional MLNN uses a full-connection strategy, each output neuron generates connections to each
input neuron. For example, if there are m inputs and n outputs, the weight matrix will have m × n
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elements. Whereas CNN uses a convolutional kernel of size k × k to reduce the size of the weight
matrix from m × n to k × n. In addition, since the convolutional kernel is shared by all inputs,
only a weight matrix of size k × n is learned during the training process. The training efficiency of
parameter optimization is significantly improved, and CNN can train neural networks with more
hidden layers at the same computational complexity. Thus, CNN can train deeper neural networks
and effectively extract useful information from training data, greatly improving the quality of the
model. Convolutional neural networks have achieved great success in image recognition and image
classification, and today, it is used in many fields [58,59].

In order to better extract useful information from the univariate time series, a temporal
convolutional neural network is proposed on the basis of traditional CNN. The traditional convolutional
neural networks use a k × k convolutional kernel, but the temporal convolutional neural networks
use a kernel size of k × 1. The parameter k is kernel size and it is indeed an important parameter
of the temporal convolutional neural network to tune. The kernel size determines the length of the
time series for each read, and then the convolution operation extracts the information contained in the
reading of time series. Readings may not be accurate enough for larger kernel size, but it is possible to
get an overview of the overall time-series information. We set up a comparison experiment to pick the
right kernel size, and different kernel sizes were chosen for the experiment, including kernel sizes from
3 to 10. The results show that proper kernel size does lead to better accuracy, and it was found that
kernels with a kernel size of 6 can achieve better results. Therefore, we set the value of the kernel size to
6. A kernel is a matrix of weights that are multiplied with the input to extract relevant features. In 2D
convolutions, the kernel matrix is a two-dimensional matrix. In temporal convolutions, the kernel
matrix is a one-dimensional matrix. First, suppose the input sequence fits function w(t) : {1, · · · , l} → R .
Besides, the convolutional kernel function is f (t) : {1, · · · , k} → R , which is a vector of length k and it
is constantly updated during the training. It should be noted that the variables of these functions are
discrete moments, and their definition domains are discontinuous. Specifically, w(t) is the time series
of the input, and the convolutional kernel function f(t) is a vector of parameters that are adapted by the
learning algorithm. Specifically, if the step size is q, then the one-dimensional convolutional mapping
between the input and kernel h(t) :

{
1, · · · , (l− k)/q + 1

}
→ R can be expressed as follows:

h(y) = Σk
t=1 f (t) ·w(y · q− t + k− q + 1) (13)

Temporal CNN preprocesses the data by one-dimensional convolutional operations to extend
the original univariate time series into a multidimensional feature data set (Figure 4). The expanded
feature data set at this point is more suitable for prediction using LSTM [60].
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2.5. CNN-LSTM Forecasting Framework

First, in the data pre-processing phase, the temporal CNN is used to extract important information
from the input data. The key point is the use of convolution to reconstruct univariate input data into
multidimensional data for reorganization. In order to maximize the retention of extracted features,
we omitted the merge operation.

Next, in the second phase, the features extracted in the first phase using temporal CNN were
entered into the LSTM model as training data. A large number of studies have shown that training
models are prone to overfitting when training data is limited [61]. The model generally takes the form
of an overly complex model to explain the features and patterns in the data under study. Since we
only have data with a length of forty years, the training model is prone to overfitting during training.
Therefore, in this study, we use dropout to prevent overfitting. During the training, a set of dropout
rates was selected for comparison. The training was conducted with a dropout rate of 0.01, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, and it was found that the training was better when the dropout rate was equal to 0.2.
Therefore, the dropout rate is chosen as 0.2. In order to optimize the weights of all LSTM units, it is
necessary to calculate the difference between the predicted result and the true value and obtain the loss
value. Weight optimization of deep neural networks is key to the training process. Different gradient
descent algorithms such as Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation
(Adam) were used to optimize the experiment.

2.6. A Multi-Step El Niño Index Forecasting Strategy

For the prediction of climate indices, the results of short predictions are of little significance and
therefore require multi-step long time-series predictions. Although the raw El Niño data has a step
size of 1 day, it can be reconstituted into different data sets with step sizes of n days, 2*n days,..., k*n
days. In the study, we focus on data sets with n = 10. Newly predicted indices are used as historical
data in the forecasting process, and new forecasts are continually made to predict the El Niño index for
the next 10 days, 20 days... to 10 k days.

3. Experiment Design and Evaluation Methods

3.1. Dataset and Preprocessing

The dataset was the El Niño index (Nino 3.4 index) data, which were supplied by the Royal
Netherlands Meteorological Institute (KNMI) [62]. In this study, we used daily data from 1 September
1980, to 29 February 2020. The dataset contains 14,061 samples, and we use the first 12,176 samples as
the training set and the remaining data as the test set. For both the training set and the testing set,
we first process the data using the EEMD method, then process the reconstructed data using the CNN,
and finally input the CNN results into the LSTM. Table 1 shows descriptive statistics for this dataset.
The original El Niño index series in the experiment is shown in Figure 5.

Table 1. Descriptive statistics for the training and test sets of the Nino 3.4 index, giving the maximum,
minimum, and average values of the set.

Data Num Min Max Mean

training 12,176 −2.467572 2.732362 0.010560
testing 1885 −1.763447 3.287668 0.089556
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The original time series needs to be normalized before it can be entered into the model.
The normalization method we chose was min–max normalization, which is one of the most frequently
used normalization methods. For each feature, the minimum value of that feature is converted to 0,
the maximum value is converted to 1, and all other values are converted to non-negative decimals
between 0 and 1. This is a pre-processing method that performs a linear transformation of the raw
data. The specific formula is as follows:

x̃ = x−xmin
xmax−xmin

(14)

where xmax and xmin are the maximum and minimum values of the original sequence, respectively.
After the prediction is completed, the predicted value needs to be anti-normalized to get the true value.
The specific conversion function is as follows:

x = x̃× (xmax − xmin) + xmin (15)

3.2. Parameters Details

A reasonable threshold parameter needs to be selected for time series noise reduction using the
EEMD method. In order to obtain the optimal threshold, multiple sets of experiments were conducted
for analysis, and the results are shown in Table 2, where MAE is Mean Absolute Error, RMSE is Root
Mean Squared Error, and EV is Explained Variance. We find that the threshold value η = 0.04 for
white Gaussian noise is optimal. By comparison, it can be found that if the threshold η is too small,
it introduces useless IMFs that are not conducive to signal reconstruction. If the threshold value η is
greater than 0.04, then the IMF reflecting the original time series is discarded.
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Table 2. Errors in results for different values of η.

η MAE RMSE EV

0.01 0.3173 0.2627 0.9124
0.02 0.2419 0.2046 0.9512
0.03 0.2275 0.1659 0.9645
0.04 0.2083 0.1415 0.9727
0.05 0.2217 0.1794 0.9651
0.1 0.4538 0.3257 0.8796

0.15 0.6514 0.5647 0.6275

Our implementation was based on the Tensorflow framework [63]. To prevent the problem
of gradient explosion during training, we made the model training more robust by reducing the
learning rate and increasing the number of batches. The process of model training is to minimize
the loss function, so after defining the loss function, setting up a suitable optimizer to solve the
parameter optimization problem is very important for experimental results. There is a great number of
optimization algorithms to choose from in current deep learning libraries, such as Stochastic Gradient
Descent (SGD) and Root Mean Square Prop (RMSProp). The ideal optimizer can not only get the best
model as fast as possible with the training samples but also prevent overfitting. In order to choose the
best optimizer, we have carried out comparative experiments, which compared the Mean Squared Error
(MSE) loss of different optimizers when training the EEMD-CNN-LSTM model. From comparative
experiments, we found that the Adam method is the best. Adam has been widely used as an effective
stochastic optimization method. Therefore, Adam optimizer is used in the process of training the
model, which can converge to good results faster. The Rectified Linear Unit (ReLU) does not have any
backpropagation error compared to the sigmoid function. And for larger neural networks, it is faster
to build models based on ReLU. Therefore, when selecting the activation function in the experiment,
we chose ReLU as the activation function. In this study, the input of CNN-LSTM is 100 × 1 data.
There is a variable consisting of a 100-day time series. The data passes through the convolution layer
and then through the LSTM. For each convolution layer, the number of filters was set to 256, the kernel
size was set to 6 × 1, and the stride number was set to 1. Moreover, we applied dropout to the LSTM
and set the dropout rate to 0.2 to prevent overfitting.

3.3. Evaluation of Experiments

In this experiment, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE) were selected to evaluate the error. The corresponding formulas
are given as follows:

RMSE =
√

1
N ×

∑
i
(x̂i − xi)

2
(16)

MAE = 1
N ×

∑
i
|x̂i − xi| (17)

MAPE =
ΣN

i=1

∣∣∣∣ x̂i−xi
xi

∣∣∣∣×100

N
(18)

where xi and x̂i are the true value and the prediction at time i, respectively. N represents the total
number of samples tested. MAE, MAPE, and RMSE can reflect forecast performance, with small values
indicating good forecast results.

For the traditional statistical models, such as the Autoregressive Integrated Moving Average
model (ARIMA), the training process is done based on fixed mathematical formulas, and if the training
data set does not change, then the model of the training does not change either, resulting in the
same predicted results. Besides, we performed multiple forecast tests using LSTM, CNN-LSTM,
and EEMD-CNN-LSTM to analyze the stability of the model’s forecast results. Finally, we evaluated
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the predictive performance of these models by analyzing the changes in RMSE and correlation skills
over time.

4. Experiments Result and Analysis

First, the EEMD method is used to eliminate the noise of the original El Niño index time series.
The amplitude and ensemble number of the added noise are 0.04 and 100, respectively. Figure 6 shows
the IMFs and residual of the EEMD decomposition, as well as the original and reconstructed sequences.
The Nino 3.4 index in Figure 6 is day by day, and we used the EEMD method to process the time series
on the entire interval. From Figure 6, it can be seen that the fluctuation frequency decreases gradually
from IMF1 to IMF10. According to Equations (4) and (5), the energy values of IMFs are calculated.
Next, IMFs with energy values greater than a threshold are selected to reconstruct the time series.
The left side of the first row of Figure 6 shows the reconstructed Nino 3.4 index time series (purple
line), the right side of the first row shows the original Nino 3.4 index time series (blue line), and the
rest are IMFs and residual. In Figure 6, the reconstructed time series is smoother. To critically analyze
the effect of the EEMD method, we calculated the variance of the time series before and after using the
EEMD method. We finally obtained a variance of 0.9104 for the original time series and 0.8712 for the
reconstructed time series, indicating that the EEMD method can effectively filter out high-frequency
signal interference and thus provide good historical data for prediction.
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We then used the newly reconstructed data to train the hybrid neural network model. The time
interval between the raw data is one day. However, during the training and prediction process, we took
the real data from the last 100 days as input and output the predicted results for the next 10 days,
and the predicted results were still daily. During the forecasting process, we take the forecast results
as historical data and continue to forecast forward, so we can get forecasts that are months to a year
in length. To test the effectiveness of this model, we compared it with four other prediction models,
including the Autoregressive Integrated Moving Average model (ARIMA), Support Vector Regression
(SVR), LSTM model, and CNN-LSTM model. To analyze the performance of different models, a line
chart is drawn to visualize the forecast results of different models. Specifically, Figure 7 shows the
12 month forecast results and true values for 2017. The time interval for the forecast results in Figure 7
is 10 days. As can be seen from the figure, the predicted values of the EEMD-CNN-LSTM model are
closer to the real values. For other models, especially traditional statistical models, they have large
errors, while the EEMD-CNN-LSTM model has a similar trend to the true time series and has small
prediction errors.
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Figure 7. The prediction results of different models.

In order to study the performance of the proposed method, a rigorous quantitative analysis of
the predicted and actual results was performed. We conducted a quantitative analysis of the 2017
forecast results. The error statistics show that the EEMD-CNN-LSTM model has significant advantages.
To more visually demonstrate the differences between the different models and the superiority of
the proposed methods, we have drawn histograms to show the predicted results. The MAE, RMSE,
and MAPE values for the different prediction models are shown in Figure 8.
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Based on the specific statistical results and Figure 8, we get the following results: the MAPE value
of EEMD-CNN-LSTM presented in this paper is 12.20%, while those of ARIMA, SVR, LSTM and
CNN-LSTM are 24.63%, 23.07%, 19.15%, and 13.17%, respectively. Besides, the RMSE values of ARIMA,
SVR, LSTM, CNN-LSTM, and the proposed method are 0.35, 0.31, 0.27, 0.24, and 0.21, respectively.
The MAE value for the EEMD-CNN-LSTM model is 0.33, which is also smaller than that obtained by
ARIMA, SVR, LSTM, and CNN-LSTM, which are 0.48, 0.44, 0.39, and 0.37, respectively.

Finally, we also performed a robust comparative analysis of the three LSTM models. Figure 9
shows the RMSE distribution of the predicted results for EEMD-CNN-LSTM, CNN-LSTM, and LSTM.
As shown in Figure 9, the median, maximum, and minimum values of the RMSEs for the different
models correspond to the red lines and the top and bottom rows of the box. From Figure 9, it is found
that EEMD-CNN-LSTM has the lowest RMSE and reliable stability for time series prediction.
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In order to study how the forecast skill changes with prediction time, we analyzed the temporal
correlation between the forecast results and the actual data for all seasons combined [64–66]. We found
that the temporal correlation changes significantly with lead time. The analysis process is based on the
test data set for the period 2015 to 2020. The correlation between model forecasts and observations
reflects the different abilities of the prediction models. Figure 10 shows different model correlation
skills that change over lead time. In the beginning, the correlation skills of the models appear roughly
comparable. However, the forecast skill of the Nino 3.4 index in the Artificial Neural Network models
is systematically superior to statistical models at lead times longer than three months. From the results
of the analysis, it can be concluded that the neural network-based prediction model has good results
and the hybrid model is better than the single LSTM model. The above results show that the neural
network-based hybrid model has good application prospects for El Niño index prediction. However,
our present study is limited to the prediction of the Nino 3.4 index, and our next work will be to predict
the more complex El Niño index and the time series of sea surface temperature (SST) anomalies in
two-dimensional space and analyze their forecast skills.

In addition, we examined the RMSE for different models to assess performance in terms of both
discrimination and calibration. Figure 11 shows RMSEs which change over lead time for all seasons
combined. As shown in Figure 11, the EEMD-CNN-LSTM model has the lowest RMSE over its range
of lead times. We also found that for lead times greater than 3 months, the RMSE was significantly
higher for non-neural network models than for neural network models. By comparing the correlation
skill with Root Mean Square Error (RMSE), we found that the model with lower RMSE tended to
have a higher correlation. The above results show that our proposed EEMD-CNN-LSTM model has
significant advantages in predicting the Nino 3.4 index.
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5. Discussions

The prediction of the El Niño phenomenon has always suffered from high volatility and uncertainty.
In this study, we construct a hybrid deep learning method that combines ensemble empirical mode
decomposition, temporal convolutional neural network, and LSTM to predict the El Niño index and
compare it with the conventional method. From the above experimental results, it can be discussed that:

(1) Based on the above experimental results, we find that the model using LSTM was significantly
better than ARIMA and SVR. This suggests that LSTM has a significant advantage over
conventional methods in time series prediction, especially for the prediction of climate indices
with chaotic properties.

(2) Compared with the single LSTM, the CNN-LSTM model has better prediction accuracy. The reason
for the difference in prediction accuracy should be CNN. CNN can extract features of complex
time series, thus effectively improving the performance of El Niño index predictions. Besides,
the performance and robustness of the El Niño index predictions are effectively improved due to
the EEMD method, which eliminates noise interference in complex nonlinear time series. However,
it should also be noted that we were using the EEMD method to filter out the high-frequency
noise on the training set and the test set, respectively. This may cause inconsistencies in the
degree of filtering between the test set and the training set, affecting the prediction of the model
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and causing the training model to perform poorly on the test set. In future work, we will further
investigate the use of the EEMD method and parameter optimization.

(3) It is well known that the El Niño index is more random and unstable than other climate indices.
However, the method proposed in this study has achieved good results in predicting the El
Niño index, so the model can also be used to predict other climate indices, such as the Southern
Oscillation Index, East Asian summer monsoon index, etc. In addition, it should not be overlooked
that the El Niño event, as a special phenomenon in the Earth system, is inextricably linked to
other climate events; hence, in the future, we will train models with data from other climate
events in order to obtain better prediction models.

(4) In this study, we focus on the 10 day forecast of the Nino 3.4 index. However, the forecast
was not limited to 10 days, as the new forecast results were used as historical data during the
forecasting process to continue the forecast forward, culminating in a year of Nino 3.4 index
forecasts. In this study, for 2017, the Nino 3.4 index prediction yielded good results, and we will
test the effectiveness of our model against other El Niño indices and more time in future studies.
On the other hand, the predictability time is a very important parameter in the El Niño predictions.
In fact, the spring predictability barrier is the great challenge of El Niño predictions. The methods
presented in this study have not been studied on the issue of the spring predictability barrier,
and in the future, we will adjust the forecast timing to study this issue in depth.

(5) El Niño is a large-scale sea surface temperature (SST) anomaly phenomenon that is strongly
spatially correlated, and the study of El Niño cannot ignore spatial information [66]. In El Niño
predictions, the time scale information deficit can be addressed by using more spatial information.
Our present study demonstrates that EEMD and neural network-based deep learning methods
are effective in predicting indices, suggesting that they should also be useful in predicting other
physical quantities of El Niño. Next, we will make predictions about the time series of SST
anomalies, which is entirely possible because CNN can easily process the two-dimensional space
data. Therefore, the EEMD-CNN-LSTM proposed in our paper should yield good results in the
prediction of space SST anomalies.

(6) It should not be overlooked that we used the EEMD method for noise reduction on the test set
before making the forecast on the test set. As is known to all, any smoothing process such as
EEMD transfers future information to the past, i.e., the spread of information over the entire
interval. In this way, some part of the prediction improvement may be caused by the fact that the
information about the future is already in the input of the predicting operator. This strategy is
difficult to achieve when making real-time predictions because the future is completely unknown.

6. Conclusions

In order to predict the El Niño index more accurately, we propose a new hybrid neural network
model, EEMD-CNN-LSTM, which combines Ensemble Empirical Mode Decomposition (EEMD),
Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM). First, the original
El Niño index time series is decomposed into many Intrinsic Mode Functions (IMFs) and a residual
component using the EEMD method. Next, the reconstruction operation is performed to obtain the
new El Niño index time series. Then, the new time series is used to train the hybrid neural network
model, and future El Niño indices are predicted using the trained model. The experimental results
show that the proposed EEMD-CNN-LSTM model has a significant advantage over the other models
in this paper. We can draw the following conclusions: (a) Generally, compared to traditional statistical
methods, LSTM is better suited for predicting highly complex nonlinear time series. In the experiments
of El Niño index prediction, using the LSTM model can obtain higher prediction accuracy. (b) Besides,
The EEMD method helps to eliminate noise in complex non-linear time series, and CNN helps extract
effective information of time series, thereby effectively improving the accuracy and robustness of
El Niño index prediction. (c) The EEMD method, LSTM neural network, and CNN are reasonably
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integrated and provide new ideas for El Niño index prediction. In conclusion, the method proposed in
this paper is expected to provide a useful reference to the prediction of climate indices.
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