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Abstract: The main aim of the reported work is to solve the registration problem for recognition
purposes. We introduce two new evolutionary algorithms (EA) consisting of population-based search
methods, followed by or combined with a local search scheme. We used a variant of the Firefly
algorithm to conduct the population-based search, while the local exploration was implemented by
the Two-Membered Evolutionary Strategy (2M-ES). Both algorithms use fitness function based on
mutual information (MI) to direct the exploration toward an appropriate candidate solution. A good
similarity measure is the one that enables us to predict well, and with the symmetric MI we tie
similarity between two objects A and B directly to how well A predicts B, and vice versa. Since
the search landscape of normalized mutual information proved more amenable for evolutionary
computation algorithms than simple MI, we use normalized mutual information (NMI) defined
as symmetric uncertainty. The proposed algorithms are tested against the well-known Principal
Axes Transformation technique (PAT), a standard evolutionary strategy and a version of the Firefly
algorithm developed to align images. The accuracy and the efficiency of the proposed algorithms are
experimentally confirmed by our tests, both methods being excellently fitted to registering images.

Keywords: image recognition; image registration; evolutionary strategy; Firefly algorithm; memetic
algorithms; symmetric uncertainty

1. Introduction

Image registration is one of the well-known techniques belonging to the computer vision field [1–3].
In the last few years, nature-inspired algorithms and metaheuristics have been used to address the
image registration problem, becoming a solid alternative to direct optimization methods. Even though
image registration using the nature-inspired algorithms represents a niche in the research, a variety of
evolutionary algorithm techniques has been proposed, starting from the most used, Genetic Algorithm,
and moving to the newest, Coral Reefs Optimization [4–11].

The aim of the research work presented in this paper is to accurately register binary images
using evolutionary search techniques. The considered perturbation is of rigid type. The proposed
metaheuristics use symmetric uncertainty, designed to maximize the similarity between the computed
variants of the sensed image and the target one. The aim is to develop a population-based evolutionary
optimization model, in which the individuals evolve toward the chromosome corresponding to the
given target image. Note that our approaches can register both gray-scale and colored images after a
pre-processing step designed to compute the boundaries.

The rest of the paper is organized as follows. A brief review of the literature regarding the state
of the art in the field of metaheuristics for image registration is provided in Section 2. In Section 3,
the 2M-ES local search implemented for the rigid perturbation model is briefly outlined. The use of
the Firefly algorithm—developed based on the updating of two rules introduced in [12]—to register
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binary images is presented in Section 4. Note that the versions of the Firefly algorithm proposed in [12]
proved extremely accurate, but very time consuming. In order to reduce the computational effort
without decreasing the accuracy, we developed two new methods, provided in Sections 5 and 6.

A two-stage hybrid technique, that involves a population-based Firefly search and a variant of
2M-ES as the local search algorithm, is introduced in Section 5. The hybrid algorithms consist of two
stages. In the first stage, a variant of Firefly technique [12] computes a “good” candidate solution,
i.e., a chromosome whose fitness is larger than a certain threshold value. The obtained individual is
considered as the initial solution of the 2M-ES method. Briefly, the Firefly search technique directs
the exploration in an appropriate direction, then the 2M-ES algorithm is used to compute an optimal
solution. In Section 6 of the paper, we introduce a memetic algorithm that embeds a version of the
Firefly algorithm and 2M-ES.

The accuracy and efficiency of the proposed algorithms are experimentally confirmed by our tests
outlined in Section 7. The conclusions of our study are provided in Section 8 of the paper.

2. Literature Review

Taking into account the main application of the methodology and the type of the optimization
problem, various straightforward and hybrid methods have been presented in the literature.

In [11], the bio-inspired meta-heuristic Coral Reef Optimization Algorithm with Substrate Layers
(CRO-SL) has been introduced. The algorithm is used to solve the real-coding image registration
problem focusing on both mono-modal and inter-modal scenarios, the perturbation model being of 3D
affine type. It has been experimentally established that CRO-LS is both robust and accurate.

The rigid transformation is studied in [13]. The authors proposed an evolutionary rigid body
docking algorithm to register medical images, where the ligands are the sensed images and proteins
are references. The aim is to minimize an energy function using genetic algorithms. The experiments
have been conducted on images belonging to the Retrospective Image Registration Evaluation project,
and the results are encouraging.

To enhance the feature selection in a static image-based facial expressions system, an evolutionary
algorithm combined with standard linear discriminant analysis was introduced in [14]. The proposed
method proved to be more efficient than convolutional neural network-based approaches, from the
point of view of both training time and features size.

In order to solve the problem of deformable image registration, the Gene-pool Optimal Mixing
Evolutionary Algorithm (GOMEA) has been applied by introducing a multi-objective real-valued
adaptation [15]. The authors introduced a real-valued adaptation of GOMEA by using a prescribed
dependency model to incrementally improve parts of solutions. The proposed method proved
well-suited to register medical images as CT scans and MRI scans, being also vey efficient from the
computational complexity point of view.

The problem of non-rigid multi-modal image registration is addressed in [16]. The authors
proposed a novel optimization method, combining the limited memory Broyden–Fletcher–Goldfarb–
Shanno with boundaries with cat swarm optimization. The algorithm uses an NMI fitness function
to address the problem of the free-form deformations model. Extensive experiments proved that the
method is quite accurate and tractable.

In [17], an improved artificial bee colony algorithm hybrid with a differential evolution for image
registration has been proposed. The algorithm uses the simple MI measure to evaluate the candidate
solutions. The reported results indicate accurate registration.

To solve the quality inspection for free-form surfaces, a design model-inspection method with
range image registration has been proposed in [18]. A series of 3D discrete points were used to align
images. The first stage of the method computes simplified cloud points, using the Hausdorff distance
technique with a new point descriptor. Then, a differential algorithm based-optimizer is applied to
evaluate the similarity between the designed model and the measurement model in a recursive manner.
The experimental results showed that the model is efficient and effective.



Symmetry 2020, 12, 881 3 of 16

Furthermore, numerous approaches for image reconstruction and modeling using metaheuristics,
such as the Bacterial Foraging Optimization Algorithm (BFOA) [19], the Adaptive Invasion–based Mode
and distributed Differential Algorithm (AIM-dDE) [20], the Histogram-based Fruit Fly Optimization
Algorithm (HFFO) [21], Asynchronous Migration and a Mechanism Multi-Population Recombination
(AsAMP) [22], have been reported in recent years. Some of the methodologies are based on single
or multiple evolutionary algorithms as a hybrid method, use different codding schemes of solutions
(real codding, binary codding, integer codding, etc.), use a parameter or matching approach, address
the single or multiple objective optimization, and use different types of images (2D or 3D).

3. 2M-ES Algorithm for Image Alignment and Recognition

The Evolutionary Strategies (ES) class is one of the most popular self-adaptive metaheuristics
designed to solve continuous parameter optimization problems [23]. The basic ES algorithm is 2M-ES,
a simple local search procedure developed based on the Gaussian mutation operator.

Given a current candidate solution x, the algorithm computes a new vector by adding to each
component of x Gaussian noise with zero mean and standard deviation σ. For each dimension, the step
size σ is updated using the Rechenberg rule [24].

The 2M-ES algorithm can be implemented to align a certain sensed image I to the target T,
as follows. Given the rigid model

I(x, y) = T
(
x1, y1

)
(1)(

x1

y1

)
=

(
a
b

)
+s·R·

(
x
y

)
(2)

where R =

(
cos θ − sin θ
sin θ cos θ

)
, the aim is to compute a vector (a, b, s, θ) and a function

fa,b,s,θ(x, y) =
1
s
·RT
·

[(
x
y

)
−

(
a
b

)]
(3)

such that I
(
(f(x, y))T

)
= T(x, y). The rigid transformation is characterized by the translation vector(

a
b

)
, the scale s and the rotation matrix R.

The genetic representation of a candidate solution is a four-size vector csol = (ac, bc, sc, θc).
For each chromosome c, its fitness value reflects the similarity between and Ic= I

(
fac,bc,sc,θc

)
in

terms of the symmetric uncertainty NMI [25],

fitness(c) =
2·MI(T, Ic)

MI(T, T) + MI(Ic, Ic)
=

2·MI(T, Ic)

H(T) + H(Ic)
(4)

MI(T, Ic)= H(T)+H(Ic)−H(T, Ic) (5)

where H(·) is the Shannon entropy, and H(·, ·) is the joint entropy.
Obviously, the maximum value of the fitness function is 1 and it is reached when Ic = T.
Note that, since the search landscape of NMI proved more appropriate for evolutionary

computation algorithms than simple MI, symmetric uncertainty is very well-suited to measure
the similarity between two images.

The 2M-ES algorithm is described below (Algorithm 1). The inputs are: Max, the upper bound of
the number of iterations; σini, the initial value of σ-parameter; ϑ and ν, the Rechenberg rule parameters;
the threshold τ ∈ (0, 1); the pair (I = sensed image, T = target image).
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Algorithm 1. 2M-ES Algorithm for Image Registration

1. Inputs: σini,ϑ,ν, τ, Max, I, T
2. t ← 0
3. Randomly generate an initial point x
4. xc ← x ; σ ← σini ; it ← 0 ; p← 0
5. while t < Maxandfitness(xc) < τ do
6. Compute y = xc+z, z randomly generated N(0, σ)
7. if fitness(xc) < fitness(y)
8. xc ← y
9. p← p + 1
10. end if
11. it← it + 1
12. if it = ν

13. Apply the Rechenberg rule σ ←


σ
ϑ , p

ν> 0.2
σ·ϑ, p

ν< 0.2
σ, p

ν= 0.2
14. it← 0 ; p← 0;
15. end if
16. t← t + 1
17. end while
18. Output: Ixc

4. Image Registration Using the Firefly Algorithm

The Firefly algorithm (FA) is a swarm intelligence algorithm inspired by the flashing patterns of
fireflies and the phenomenon of bioluminescent communication, successfully used to solve various
parameter-optimization problems [26–28]. It was developed based on three rules, briefly described
in the following. First, it is assumed that all individuals are unisex, each firefly being attracted to
all other fireflies. Secondly, the attractiveness associated to a firefly refers to its brightness. Finally,
it is assumed that the attractiveness between fireflies is directly influenced by the brightness and the
distance. In terms of metaheuristics, the light intensity is proportional to the value of the objective
function, and it represents the fitness value of the considered individual.

The attractiveness of a certain firefly denoted by j seen by another firefly i is expressed by

βj(r)= βj(0)·e
−γr2

(6)

where xj is the current position of j, xi is the current position of i, r = xj−xi is the Euclidian distance
between j and i, βj(0) is the brightness of j at r = 0, and γ represents the light absorption coefficient.
Note that, in the standard Firefly algorithm, βj(0) does not depend on the individual j. We denote by
β0 the attractiveness at the distance 0 [26].

Each firefly i is attracted by a brighter firefly j, updating its corresponding position as follows,

xi(t + 1)= xi(t)+β0·e
−γr2

ij
(
xj(t)−xi(t)

)
+α·ε (7)

where β0·e
−γr2

ij
(
xj(t)−xi(t)

)
is the attraction to the light intensity, α controls the randomness and ε is

randomly drawn from U(0, 1).
In the standard FA, the firefly i changes its position according to (7) if the attractiveness produced

by xi(t + 1) is higher than the attractiveness of the old position xi(t). Usually, the termination criterion
of the FA is given by the iterations number. In a case where the optimal value of the brightness function
is known, the FA search is also over when the best individual is good enough, i.e., its fitness is close
to MAXF.
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The population diversity in the Firefly algorithm is essentially influenced by the randomization
term α·ε in (7). In most cases, the parameter α is static or decreases linearly in time, each firefly from a
certain generation having the same randomness degree. The value of the parameter α should rapidly
decrease through the first generations, to explore new search space. During the final iterations, in order
to maintain the direction of search, the parameter should slightly vary.

In the following, we briefly describe the variant of the Firefly algorithm used for solving the
binary image registration task introduced in [12].

Each firefly is encoded as a D-dimensional real-valued sequence, representing the transformation
parameters (a, b, s, θ). In our work D = 4, an individual i being defined in terms of its position by
xi = (ai, bi, si, θi), corresponding to the degradation model (2). The brightness, fitness(xi), of the firefly,
identified by xi = (ai, bi, si, θi), is computed in terms of (4).

We considered the fixed-size model, where each population has n fireflies, X = {x 1, x2, x3, . . . xn},

xi= (x i(1), xi(2), . . . , xi(D)) (8)

xi(k) ∈ [lb(k), hb(k)], k = 1, . . . , D (9)

Consequently, the search space is given by

S =
D∏

k=1

[lb(k), hb(k)] (10)

The initial population, X0, is randomly generated according to

xi(k) = (hb(k)−lb(k))·d + lb(k) (11)

where d is a draw from uniform distribution U(0, 1).
We denote by c a constant scale factor, and let ε be a number drawn from U(0, 1). The updating

rule introduced in [12] is defined based on the fitness of the attractor and the variable ranges, as follows,

xi(k)= xi(k)+βij(k)·
(
xj(k)−xi(k)

)
+

hb(k)−lb(k)
max

k
(hb(k)−lb(k))

·ε·c· exp
(
1− fitness

(
xj

))
(12)

α2 =
hb(k)−lb(k)

max
k

(hb(k)−lb(k))
· exp

(
1− fitness

(
xj

))
·c (13)

To deal with unfeasible candidate solutions, the following border reflection mechanism is installed

If xi(k)> hb(k), then xi(k)= U(val, hb(k))

Else
If xi(k)< lb(k), then xi(k)= U(lb(k), val)

where
val = c1·lb(k) + (1− c1)·hb(k) (14)

c1 ε (0, 1) and U(val, hb(k)) represents a draw from uniform distribution. Taking into account the
results reported in [12], the following proposed approaches that use FA are developed based on the
updating rule (12).

5. Two-Stage Hybrid Algorithm for Image Recognition

In order to obtain improved image recognition algorithms, we present a two-stage hybrid
algorithm that combines the Firefly-based algorithm described in Section 3 with the standard 2M-ES
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local search method. The algorithm first uses a variant of the Firefly algorithm to obtain a promising
candidate solution, best, then applies the local search algorithm, 2M-ES, to reach an optimal solution,
bestc.

Since the fine tune of solutions obtained by the heuristic population-based methods usually implies
high execution times, the main purpose is to obtain a tractable recognition method. More efficient
methods, incorporating systematic searches of the neighborhood of good solutions, can be derived by
adding a local search mechanism [24].

Our hybrid approach uses the variant of FA described in Section 3 to compute a promising
candidate solution that is going to be improved via 2M-ES. Note that a firefly i is defined in terms
of its position by xi = (ai, bi, si, θi). The position xi corresponds to the rigid degradation model (2).
The brightness of the firefly identified by xi = (ai, bi, si, θi), fitness(xi), is computed in terms of (4).
The FA component of the hybrid technique is defined by the following parameters: n represents
the population size, NMax represents the maximum number of generations, γ represents the light
absorption, β0 is the attractiveness at the distance 0, τ represents the desired quality (τ ≤ 1), I is the
sensed image and T is the target image. The proposed two-stage hybrid technique is provided below
(Algorithm 2).

Algorithm 2. Two-Stage Hybrid Firefly Algorithm

1. Inputs: n, NMax,β0,γ, τ,σ1ini,ϑ,ν, τ1, Max, I, T
2. APPLY FA
3. t← 0
4. Randomly generate an initial population Pt= {x 1, x2, x3, . . . xn}

5. Compute fitness(xi), the light intensity of each xi ∈ Pt

6. Compute best: fitness(best) = max
x∈Pt

fitness(x)

7. while t < NMaxandfitness(best) < τdo
8. for i = 1 . . .n
9. for j = 1 . . .n
10. if fitness(xi) < fitness

(
xj
)

11. Compute xnew by moving firefly xi toward firefly xj (12)
12. For xnew use the border reflection mechanism (14)
13. Compute the brightness of xnew, fitness(xnew)

14. Replace xi with xnew in Pt

15. end if
16. end for
17. end for
18. Compute bestc: fitness(bestc) = max

x∈Pt
fitness(x)

19. if fitness(bestc) > fitness(best)
20. best = bestc

21. end if
22. t← t + 1
23. end while
24. APPLY 2M-ES PROCEDURE
25. Compute bestc : 2M-ES(best,σ1 ini,ϑ ,ν, τ1, Max, I, T)
26. Output:Ibestc

6. The Memetic Approaches of Image Registration

The memetic algorithms (MA) are optimization methods in which the evolutionary process is
enhanced with deterministic, heuristics or other local search techniques, which reduce the probability
of premature convergence. In the memetic approaches, during the evolution process, the information
transmission is improved by incorporating local, exact or heuristic methods [29].
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In order to reduce the worst-case run times, one has to use a local search method with an updating
rule that differs from population-based search techniques variation operator. From the intuitive point
of view, in MA variation operators, mutation in particular, generate points lying in various basins
of attractions with respect to the local point operator. The diversification is done either using large
mutation rates or, even better, by applying mutation operators with a different neighborhood structure.

The standard MA scheme is described below (Algorithm 3) [24].

Algorithm 3. Generic Memetic Algorithm

1. Initialize population
2. Evaluate each candidate
3. while Not Termination Condition do
4. Select parents
5. Recombine parents to obtain offspring
6. Mutate offspring
7. Evaluate offspring
8. Improve offspring via local search
9. Select the next generation
10. end while

Usually, the initial population can be generated using a mixed variant of randomly drawn
individuals and a local search procedure. This way, the initial population contains not only randomly
generated individuals, but also some sub-optimal solutions. Further, procedures underlying mass
mutation and selective initialization could be applied to initialize a population. [24,29,30].

The proposed MA combines the variants of the Firefly algorithm described in Section 3 with the
2M-ES local search. Consequently, the neighborhood characteristics of the updating rules depend
on the particular local topology, and also on the considered algorithm that operates at a certain
moment of the evolution time. The resulting algorithm uses different variation operators, with various
neighborhood structures.

We developed the memetic approach, taking into consideration that the number of parents is
significantly smaller that the offspring population size. If a variant of the Firefly algorithm with µ
individuals is used, the number of updated positions of fireflies could be around µ2. Therefore, due to
excessive computational effort, the local search procedure cannot be applied to each child/updated
individual. Moreover, in order to avoid the premature convergence and to preserve the diversity of
the population, the local search is applied on a small subset of children [24]. We also used the local
search optimization to improve the current best firefly solution, if and only if it is less bright than
the global best solution. We applied the 2M-ES search procedure for λs offspring randomly selected,
where λs � λ. In our work we considered λs =

µ
s , s > 2.

The memetic algorithm, based on the proposed variant of FA and the 2M-ES local search,
is described as follows (Algorithm 4). The parameters of the resulting algorithm are similar to those
used to present Algorithm 2.
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Algorithm 4. Memetic Firefly Algorithm

1. Inputs: n, NMax,β0,γ, τ, s,σ1ini,ϑ,ν, τ1, Max, I, T
2. t← 0
3. Randomly generate an initial population Pt= {x 1, x2, x3, . . . xn}

4. for i = 1 . . .n/s
5. Randomly select x ∈ Pt

6. Compute xnew: 2M− ES(x,σ1 ini,ϑ ,ν, τ1, Max, I, T)
7. Replace x with xnew in Pt

8. end for
9. Evaluate each xi ∈ Pt

10. Compute best : fitness(best) = max
x∈Pt

fitness(x)

11. whilet < NMaxandfitness(best) < τ do
12. fori = 1 . . .n
13. forj = 1 . . .n
14. if fitness(xi) < fitness

(
xj
)

15. Compute xnew by moving firefly xi toward firefly xj using (12)
16. For xnew use the border reflection mechanism (14)
17. Evaluate xnew

18. Replace xi with xnew in Pt

19. end if
20. end for
21. end for
22. Compute bestc: fitness(bestc) = max

x∈Pt
fitness(x)

23. if fitness(best c) ≤ fitness(best)
24. for i = 1 . . .n/s
25. Randomly select x ∈ Pt

26. Compute xnew: 2M− ES(x,σ1 ini,ϑ ,ν, τ1, Max, I, T)
27. Replace x with xnew in Pt

28. end for
29. Compute bestc: fitness(bestc) = max

x∈Pt
fitness(x)

30. if fitness(bestc) > fitness(best)
31. best = bestc

32. end if
33. end if
34. t← t + 1
35. end while
36. Output: Ibest

7. Experimental Results

In order to experimentally evaluate the accuracy and the efficiency of the proposed algorithms,
a series of experiments were performed on different binary images representing signatures. The tests
were conducted on simulated data. We used 16 pairs (sensed image, target image), with each observed
image representing a certain rigid perturbation of the original one. The proposed registration methods
have been applied 500 times for each pair of images, in order to derive significant conclusions. Note
that we used the perturbation model (2) with various translations, scale factors and rotation matrices.

Further, we have conducted a comparative analysis to evaluate the performance of the proposed
algorithms against the well-known Principal Axes Transformation (PAT) registration method, a standard
ES population-based approach [31] and a variant of the Firefly algorithm reported in [12].

Obviously, one of the most challenging tasks was to derive tractable algorithms, given the
complexity of the fitness function and the fact that the searching space is of continuous type.
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The chromosome evaluation was performed using only contour pixels, the procedure being outlined
in [31].

We evaluated the accuracy of the evolutionary-based algorithms introduced in this paper through
the success rate and the Signal-to-Noise-Ratio (SNR) measure. The success rate of an algorithm A,
SR(A), is given by [31].

SR(A) =
NSuccess(A)

NRun(A)
·100% (15)

where NRun(A) is the number of algorithm executions and NSuccess(A) stands for the number of
successful runs. A successful run is defined by a solution whose quality is above a certain threshold
value. In our work, the threshold was set to 0.89. For each pair of images (S,T), the SNR value is
given by:

SNR(T, S)= 10 ∗ log10


∑M

x=1
∑N

y=1(S(x, y))2∑M
x=1

∑N
y=1(T(x, y)−S(x, y))2

 (16)

where (M, N) is the image size.
For each pair of images, we recorded the mean value, the maximum value and the minimum value

of the best fitness, the SNR measure and the run time value, respectively. In this study, we express the
complexity of a certain algorithm using the mean value of the execution time recorded for each test,
no matter if it was a successful run or not. The tests were conducted on the following configuration:
Processor—Intel Core I7-7700k 3.6 GHZ, Memory—8 GB DDR4 2400 MHZ, Storage—1TB HDD 7200
RPM SATA 3.

Note that, in order to come to meaningful conclusions concerning the accuracy of the proposed
methods, we split the test data into two classes of images, TI1 and TI2. TI1 consists of images correctly
recognize by a standard ES algorithm [31], while the rest of the images belong to TI2.

The results of the standard ES algorithm presented in [31] are provided in Tables 1 and 2.

Table 1. The Efficiency of the Standard ES-Based Method.

Input SR Run Time
Mean Value

Run Time
Min Value

Run Time
Max Value

TI1 100% 15.29 4.30 34.34
TI2 98% 26.21 5.54 95.85

Table 2. The Accuracy of the Standard ES-Based Method.

Input SR
FITNESS

SNR
Mean Value

FITNESS
SNR

Min Value

FITNESS
SNR

Max Value

TI1 100% 0.92
26.44

0.89
25.02

0.969
31.16

TI2 98% 0.903
26.21

0.054
10.034

0.927
27.587

In Tables 3 and 4 are displayed the results of the Firefly algorithm version reported in [12]:

Table 3. The Efficiency of the Firefly-Based Method.

Input SR Run Time
Mean Value

Run Time
Min Value

Run Time
Max Value

TI1 100% 14.5914 1.7948 25
TI2 100% 16.7172 2.1061 41.7394
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Table 4. The Accuracy of the Firefly-Based Method.

Input SR
FITNESS

SNR
Mean Value

FITNESS
SNR

Min Value

FITNESS
SNR

Max Value

TI1 100% 0.9063
26.2854

0.89
24.6903

0.969
31.1685

TI2 100% 0.9055
26.1922

0.89
21.9707

0.963
30.8899

The run times obtained when the Two-Stage Hybrid Firefly algorithm was applied to each pair
(sensed image, target image) belonging to TI1 and TI2, respectively, are reported in Tables 5 and 6.
Note that TI1 =

{
P1,1, P1,2, . . . , P1,8

}
and TI2 =

{
P2,1, P2,2, . . . , P2,8

}
. The values of the accuracy measures

are presented in Tables 7 and 8.
We used the following parameter settings. The population size in the first stage is n = 20.

The attractiveness at the distance 0 is β0= 1, while the light absorption coefficient is γ = 1.
The termination criteria parameters are τ = 0.7 and NMax = 200. In the second stage, the parameters
are as follows: ν = 0.87, the initial dispersions vector is σ1ini= [1, 1, 0 .01, 0 .01], ϑ= 50, Max = 3000
and τ1 = 0.89.

For each class of images, we summarized the performances of the Two-Stage Firefly 2M-ES Hybrid
Algorithm in Tables 9 and 10. Note that the accuracy of this algorithm is experimentally proved to be
similar to that corresponding to the Firefly algorithm [12], and better than the accuracy recorded for
the standard ES-based method [31]. Moreover, the efficiency measured in run times is significantly
improved by this method. In the case of the first class of images, TI1, the run times are significantly
decreased, from 14.59 s and 15.29 s, respectively, to 5.27 s, while the computation effort carried out by
the proposed hybridization algorithm in the case of images belonging to TI2 decreased from 16.71 s
and 26.21 s, respectively, to 6.63 s.

Table 5. The Efficiency of the Two-Stage Firefly 2M-ES Hybrid Algorithm for TI1.

Input SR Run Time
Mean Value

Run Time
Min Value

Run Time
Max Value

P1,1 100% 4.3325 0.4764 10.2576
P1,2 100% 5.1893 0.625 11.0681
P1,3 100% 3.3141 0.4046 8.2807
P1,4 100% 5.8114 0.734 13.2551
P1,5 100% 5.7321 0.9164 12.7348
P1,6 100% 6.5153 0.864 14.0022
P1,7 100% 5.6918 1.0151 12.5463
P1,8 100% 5.6389 0.5895 11.9978

Table 6. The Efficiency of the Two-Stage Firefly 2M-ES Hybrid Algorithm for TI2.

Input SR Run Time
Mean Value

Run Time
Min Value

Run Time
Max Value

P2,1 100% 8.5842 0.8736 17.5454
P2,2 99.8% 7.5911 1.0809 15.0537
P2,3 100% 5.4495 0.6411 11.4637
P2,4 99.8% 4.1837 0.7385 30.6742
P2,5 100% 6.2053 1.3296 11.9818
P2,6 100% 4.9761 0.7192 11.4633
P2,7 100% 4.7902 0.8598 11.3452
P2,8 100% 11.3124 1.5711 24.5833
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Table 7. The Efficiency of the Two-Stage Firefly 2M-ES Hybrid Algorithm for TI1.

Input SR
FITNESS

SNR
Mean Value

FITNESS
SNR

Min Value

FITNESS
SNR

Max Value

P1,1 100% 0.9113
25.931 0.89 0.9665

P1,2 100% 0.9109
26.2857 0.89 0.9687

P1,3 100% 0.904
27.5375 0.8901 0.9304

P1,4 100% 0.9039
25.8263 0.89 0.9293

P1,5 100% 0.9045
25.8614 0.89 0.9316

P1,6 100% 0.9044
26.1817 0.89 0.9366

P1,7 100% 0.9052
25.6632 0.89 0.9365

P1,8 100% 0.9013
26.5873 0.89 0.9271

Table 8. The Efficiency of the Two-Stage Firefly 2M-ES Hybrid Algorithm for TI2.

Input SR
FITNESS

SNR
Mean Value

FITNESS
SNR

Min Value

FITNESS
SNR

Max Value

P2,1 100% 0.9133
26.5621 0.89 0.9669

P2,2 99.8% 0.9021
26.06244 0.7673 0.9289

P2,3 100% 0.9036
26.22287 0.89 0.9313

P2,4 99.8% 0.9048
27.23462 0.1789 0.943

P2,5 100% 0.9031
26.26862 0.89 0.929

P2,6 100% 0.9051
26.97139 0.8901 0.9338

P2,7 100% 0.9043
27.28921 0.8901 0.9441

P2,8 100% 0.9011
22.55602 0.89 0.9236

Table 9. The Efficiency of the Two-Stage Firefly 2M-ES Hybrid Algorithm.

Input SR Run Time
Mean Value

Run Time
Min Value

Run Time
Max Value

TI1 100% 5.278 0.404 14.002
TI2 99.95% 6.636 0.6411 30.674

Table 10. The Accuracy of the Two-Stage Firefly 2M-ES Hybrid Algorithm.

Input SR
FITNESS

SNR
Mean Value

FITNESS
SNR

Min Value

FITNESS
SNR

Max Value

TI1 100% 0.9057
26.23431

0.89
24.444

96.8796
31.523

TI2 99.95% 0.90472
26.1459

0.1789
13.6355

96.697
31.042
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We implemented the proposed Memetic Firefly algorithm with the following parameter values.
The population size is n = 20. The attractiveness at the distance 0 is β0= 1, while the light absorption
coefficient is γ = 1. The termination criteria parameters are τ = 0.89 and NMax = 200. The initial
population is randomly generated, and 30% of its individuals are improved via 2M-ES. During the
evolution process, the local search is used only when the best new individual, represented by the
position of an updated firefly, is below the quality of the current best candidate solution. In such a case,
we randomly optimize 20% of the new individuals by applying the 2M-ES procedure. The values of
parameters in the 2M-ES procedure are set as follows: ν = 0.87, Max = 300, σini = [1.0, 1.0, 0.01, 0.01].
The mutation size is updated every 40 iterations.

The run times of the Firefly 2M-ES Memetic Algorithm are shown in Tables 11 and 12, while the
recorded values of the fitness function and SNR are displayed in Tables 13 and 14. To compare
the obtained results against the standard ES-based method [31] and the Firefly algorithm in [12],
we summarized the runtime and accuracy values in Tables 15 and 16. Note that the accuracy of this
algorithm is almost 100% for both classes of images, while the computation effort is significantly
decreased as compared to both the standard ES-based method and the considered version of the
Firefly algorithm.

The results obtained when the PAT method was applied are less accurate, the mean value of the
NMI defined by (4) being below 0.8 in most of the cases. Further, the mean value of SNR is around 23,
lower than the values corresponding to the proposed methods.

Table 11. The Performances of the Firefly 2M-ES Memetic Algorithm for TI1.

Input SR Run Time
Mean Value

Run Time
Min Value

Run Time
Max Value

P1,1 100% 7.2073 3.0007 19.1900
P1,2 100% 7.7114 2.9078 24.4584
P1,3 100% 6.0070 2.1924 19.0050
P1,4 100% 8.1369 2.9153 27.0790
P1,5 100% 8.3016 3.1708 25.9697
P1,6 100% 15.9387 2.4286 59.3580
P1,7 100% 9.9297 2.7894 34.0189
P1,8 100% 10.7730 2.9607 33.6675

Table 12. The Performances of the Firefly 2M-ES Memetic Algorithm for TI2.

Input SR Run Time
Mean Value

Run Time
Min Value

Run Time
Max Value

P2,1 100% 10.2538 2.7983 41.112
P2,2 100% 20.0726 2.9867 68.346
P2,3 100% 10.316 2.6688 32.1672
P2,4 99.8% 8.5464 2.6749 239.634
P2,5 100% 9.9095 2.9316 34.5194
P2,6 100% 8.4755 2.8107 34.1838
P2,7 100% 12.579 2.5451 40.4873
P2,8 100% 12.4921 4.1513 43.4075
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Table 13. The Accuracy of the Firefly 2M-ES Memetic Algorithm for TI1.

Input SR
FITNESS

SNR
Mean Value

FITNESS
SNR

Min Value

FITNESS
SNR

Max Value

P1,1 100% 0.9114
25.93298 0.89 0.9631

P1,2 100% 0.9125
26.395 0.8902 0.968

P1,3 100% 0.9042
27.55638 0.8901 0.9291

P1,4 100% 0.904
25.838 0.89 0.9332

P1,5 100% 0.9035
25.813 0.89 0.9318

P1,6 100% 0.9032
26.12029 0.89 0.9324

P1,7 100% 0.9051
25.67207 0.89 0.9395

P1,8 100% 0.9012
26.58445 0.89 0.9249

Table 14. The Accuracy of the Firefly 2M-ES Memetic Algorithm for TI1.

Input SR
FITNESS

SNR
Mean Value

FITNESS
SNR

Min Value

FITNESS
SNR

Max Value

P2,1 100% 0.9122
26.48436 0.89 0.97

P2,2 100% 0.9015
26.0435 0.8902 0.9264

P2,3 100% 0.9039
26.25327 0.89 0.9296

P2,4 99.8% 0.9055
27.20916 0.8809 0.9455

P2,5 100% 0.903
26.25712 0.89 0.9296

P2,6 100% 0.9062
27.02602 0.89 0.9354

P2,7 100% 0.9048
27.31797 0.89 0.9426

P2,8 100% 0.9
22.54077 0.89 0.9225

Table 15. The Performances of the Firefly 2M-ES Memetic Algorithm.

Input SR Run Time
Mean Value

Run Time
Min Value

Run Time
Max Value

TI1 100% 9.2507 2.1924 59.358
TI2 99.9975% 11.5806 2.5451 239.634

Table 16. The Accuracy of the Firefly 2M-ES Memetic Algorithm.

Input SR
FITNESS

SNR
Mean Value

FITNESS
SNR

Min Value

FITNESS
SNR

Max Value

TI1 100% 0.90569
26.2390

0.89
24.513

0.9680
31.3535

TI2 99.9975% 0.90474
26.14152

0.8809
21.87044

0.97001
31.3641
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8. Conclusions

The main aim of the reported work is to solve the registration problem for recognition purposes.
We proposed two new methods, a two-stage hybrid algorithm and a memetic technique, respectively
consisting of the Firefly population-based search method followed by or combined with a local
search scheme.

We investigated the potential of using a version of the Firefly algorithm to conduct the
population-based search, while the local exploration was performed using the Two-Membered
Evolutionary Strategy. The proposed strategies use the mutual information similarity measure, defined
in terms of symmetric uncertainty, to evaluate the quality of the candidate solutions. The fitness
function computation scheme is designed to obtain tractable algorithms.

A long series of tests, designed to establish the performances of the proposed methods versus
other commonly used classes of techniques for image registration in cases of rigid perturbation model,
have been conducted. It was experimentally proved that the proposed methods outperform PAT
registration, from both accuracy and efficiency points of view. Our tests also pointed out that the
introduced techniques are very accurate, and significantly faster than both the ES-based optimization
method reported in [31] and the version of the Firefly algorithm [12].

The results indicated that the new methods are excellently fitted to register binary images,
their corresponding accuracy being almost 100%. Further, the obtained algorithms are very efficient in
terms of the recorded run times.

The experimentally established conclusions are very promising, entailing future research toward
more general perturbation models, not necessarily corresponding to registration problems. Moreover,
the registration process in cases of more complex images could be designed using similar approaches.
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