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Abstract: Cloud detection is an important and difficult task in the pre-processing of satellite remote
sensing data. The results of traditional cloud detection methods are often unsatisfactory in complex
environments or the presence of various noise disturbances. With the rapid development of artificial
intelligence technology, deep learning methods have achieved great success in many fields such as
image processing, speech recognition, autonomous driving, etc. This study proposes a deep learning
model suitable for cloud detection, Cloud-AttU, which is based on a U-Net network and incorporates
an attention mechanism. The Cloud-AttU model adopts the symmetric Encoder-Decoder structure,
which achieves the fusion of high-level features and low-level features through the skip-connection
operation, making the output results contain richer multi-scale information. This symmetrical network
structure is concise and stable, significantly enhancing the effect of image segmentation. Based on
the characteristics of cloud detection, the model is improved by introducing an attention mechanism
that allows model to learn more effective features and distinguish between cloud and non-cloud
pixels more accurately. The experimental results show that the method proposed in this paper
has a significant accuracy advantage over the traditional cloud detection method. The proposed
method is also able to achieve great results in the presence of snow/ice disturbance and other bright
non-cloud objects, with strong resistance to disturbance. The Cloud-AttU model proposed in this
study has achieved excellent results in the cloud detection tasks, indicating that this symmetric
network architecture has great potential for application in satellite image processing and deserves
further research.

Keywords: cloud detection; remote sensing images; U-Net architecture; attention mechanism;
deep learning; convolutional neural network

1. Introduction

With the development of remote sensing technology, a large number of high-resolution satellite
data have been obtained, which can be applied to land cover monitoring, marine pollution monitoring,
crop yield assessment, and other fields [1–4]. However, the presence of clouds, especially very
thick ones, can contaminate captured satellite images and cause interference in the observation and
identification of ground objects [5–7]. As a result, clouds create a lot of difficulties for tasks such as
target identification, trajectory tracking, etc. On the other hand, clouds are the most uncertain factor
in Earth’s climate system. It is estimated that clouds cover about 67% of the Earth’s surface [8,9].
Clouds can affect the energy and water cycles of global ecosystems at multiple scales by influencing
solar irradiation transmission and precipitation, and thus have a significant impact on climate change
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on Earth [10]. At the same time, cloud observations and forecasts are important for the management of
the power sector, as cloud coverage affects the use of solar energy [11]. Therefore, cloud detection is
of great research significance, both in various remote sensing applications and in fields such as earth
science research.

Over the years, many cloud detection methods [12–14] have been proposed for satellite remote
sensing data. Among the many methods, the threshold method is a relatively well-established
cloud detection method. It accomplishes cloud detection task based on the radiative difference
between cloud and non-cloud pixels. For example, the function of mask (Fmask) [15–17] is a
typical threshold-based cloud detection method that uses a decision tree to mark each pixel as cloud
or non-cloud. In each branch of the decision tree, decisions are given according to a threshold
function. In practice, threshold-based methods are often not used in isolation and often rely on
multi-spectral and multi-method combinations, such as adding other information (e.g., surface
temperature, etc.) or combining other techniques (e.g., superpixel segmentation [18] and texture
analysis [19], etc.) to improve the detection accuracy of threshold methods. Most of these methods are
specific to specific bands of remote sensing data, and the selection of thresholds is often difficult and
time-consuming. Although various threshold methods have achieved some success in their respective
applications, most methods are not generalizable and require constant adjustment and optimization of
the threshold selection.

In recent years, deep learning has made great breakthroughs in the field of computer vision [20–22],
with remarkable results in areas such as face recognition, object detection and medical image analysis.
Inspired by deep learning algorithms, many scholars have developed several approaches to cloud
detection using deep learning. Convolutional neural network (CNN) is a widely used deep learning
method that has unique advantages in the field of image processing. Shi et al. [5] utilized superpixel
segmentation and deep Convolutional Neural Networks (CNNs) to mine the deep features of cloud.
The experimental results show that their proposed model works well for both thin and thick clouds,
and has good stability in complex scenarios. Chen et al. [23] implemented a multilevel cloud detection
task for high-resolution remote sensing images based on Multiple Convolutional Neural Network
s(MCNNs). Specifically, MCNNs architecture is used to extract multiscale information from each
superpixel, next superpixels are classified as thin clouds, thick clouds, cloud shadows, and non-clouds.
The results show that the proposed method has an excellent performance in the task of detecting
multilevel cloud detection. Segal-Rozenhaimer et al. [24] proposed a novel domain adaptation
CNN-based method, which utilizes the spectral and spatial information inherent in remote satellite
imagery to extract the depth invariant features for cloud detection. The method can be better adapted to
different satellite platforms in the prediction step without the need to train separately for each platform,
improving the robustness of predictions from multiple remote sensing platforms. Ozkan [25] et al.
proposed an efficient neural network model based on a deep pyramid network. In the task of cloud
detection, the model can obtain very good classification results from a set of noisy labeled RGB color
remote sensing images with accuracy up to pixel level. Francis [26] et al. proposed a CloudFCN model
for cloud detection tasks based on the Fully Convolutional Network architecture. The experimental
results show that this model works well in cloud detection, illustrating the great potential of the Fully
Convolutional Network architecture for applications in satellite remote sensing data. These studies all
show that deep learning methods have great advantages in satellite remote sensing data processing,
and cloud detection methods that introduce convolutional neural networks are often superior to
traditional cloud detection methods. U-Net [27–29] is a very effective image segmentation method
that has a remarkable performance in many image segmentation tasks, especially medical image
segmentation tasks. Many studies have found that models based on the U-Net architecture also
show excellent performance in satellite remote sensing image segmentation [30–32]. For instance,
Jeppesen [33] et al. propose a cloud detection algorithm (RS-Net) based on the U-net architecture and
use it to detect clouds in satellite images. From the experimental results, it was found that the RS-Net
performed better than the conventional method. Wieland et al. [34] presented an improved U-Net
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convolutional neural network for the task of multi-sensor cloud and cloud shadow segmentation.
Their experimental results show that the model achieves great results on multiple satellite sensors
with excellent generalization performance. Besides, adding shortwave-infrared bands can improve
the accuracy of the semantic segmentation task of cloud and cloud shadow. In cloud detection tasks,
the number and distribution of clouds tend to present very complex randomness. In order to achieve
accurate cloud detection, attention should be focused on the areas with clouds during the cloud
detection process. In the field of medical image classification, the object detection, etc., attention
mechanism is a very effective method [35–38] that can allocate more processing resources to the target.
Attention mechanism originates from human beings visual cognitive science. When reading text or
looking at objects, humans tend to pay more attention to detailed information about the target and
suppress other useless information. Similarly, the basic idea of the attention mechanism is that the
model learns to focus on important information and ignore the unimportant information. Some studies
have shown that attention mechanisms can improve classification effects [39–42]. Therefore, attentional
mechanisms in computer vision should be introduced into the construction of cloud detection models.
In this study, the Cloud-AttU model is proposed on the basis of U-Net, which introduces the attention
mechanism. In the experiment, it was found that the results of cloud detection were significantly
improved as the attention mechanism guided the model to learn more cloud-related features to
detect clouds.

The structure of this paper is as follows: the U-Net architecture, the attention mechanism, and the
Cloud-AttU model proposed in this paper are described in Section 2. Subsequently, the experiment
design and results are given in Section 3. The results of the experiment are discussed in Section 4.
Finally, Section 5 summarizes the work of this paper and lists the work to be continued in the future.

2. Methodology

To better implement cloud detection, this study applies the attention mechanism to the U-Net
network. This improvement allows the model to better focus on areas with clouds and ignore areas
without clouds during the cloud detection process, ultimately improving the accuracy of cloud
detection. In the following, we describe the U-Net architecture, the attention mechanism, and the
Cloud-AttU method proposed in our study, respectively.

2.1. U-Net Architecture

U-Net [27] was developed on the basis of the Fully Convolutional Network architecture [43] and
was first applied to biomedical image segmentation in 2015. U-Net uses a symmetric encoder-decoder
structure, which is one of the most popular methods for semantic medical image segmentation.
The diagram of the basic U-Net architecture is shown in Figure 1. The left half of Figure 1 is the
encoding path and the right half is the decoding path. Specifically, each block in the encoding
path of the U-Net contains two convolutional layers and a max-pooling layer. At each step of the
downsampling, the number of feature channels is doubled. In addition, the effect of max-pooling makes
the size of the feature map smaller. Each block in the decoding path of U-Net contains the up-sampling,
the fusion operation, as well as two convolutional layers. As shown in Figure 1, the skip-connection
transfers information from the encoding path to the decoding path, thereby improving the ability of
the U-Net to segment the image. Finally, for the multi-channel feature maps, a 1 × 1 convolution is
used to obtain segmentation results.
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Figure 1. U-Net architecture diagram modified from the original study [27]. Green/yellow boxes
indicate multi-channel feature maps; red arrows indicate 3 × 3 convolution for feature extraction;
cyan arrows indicate skip-connection for feature fusion; downward orange arrows indicate max pooling
for dimension reduction; upward orange arrows indicate up-sampling for dimension recovery.

2.2. Proposed Network Architecture

In this section, we describe in detail the proposed Cloud-AttU model for cloud detection tasks.
The proposed architecture is obtained by modifying the original U-Net model, and the new model
introduces the attention mechanism. The overall structure of Cloud-AttU model is shown in Figure 2,
and like the original U-Net model, Cloud-AttU consists of two main paths: the contracting path that
encodes the entire input image, and the extending path enables the feature maps to return to its original
size by gradually step-wise up-sampling. Each step of the encoder consists of a structural dropout
convolutional block and a 2 × 2 max pooling operation. As shown in Figure 2, each convolutional
layer is followed by a DropBlock, a batch normalization (BN) layer, and a rectified linear unit (ReLU).
The max pooling operation is then applied for down-sampling with a stride size of 2. At each
down-sampling step, the number of feature channels is doubled. Each step of the decoder consists of a
2 × 2 transposition convolution operation which completes up-sampling, a concatenation operation
with the matching feature map of the encoder, and then followed by a structural dropout convolutional
block. Finally, the 1 × 1 convolution and Sigmoid activation functions are utilized to yield the final
segmentation map.

In our proposed Cloud-AttU model, the encoder shares information about its feature map with
the decoder by skipping connections. By the skip connections from the lower to the higher layers,
the model has more information to carry out its tasks. However, too much invalid or interfering
information can affect the performance of the model. The attention module enables the network to
learn the useful parts of the input image and what important features it should focus on to accomplish
its task. We weight the feature maps using an attentional gate [44] to emphasize relevant features
and ignore invalid features. In attention gates, the attention coefficient αi highlights signal in the
target region and weakens background signal. Thus attention gates do not need to cut the region of
interest directly in the network but achieve suppression of information from irrelevant background
regions. The architecture of attention gate which we used is shown in Figure 3. As shown in Figure 3,
the attention gate has two inputs: the feature maps (g) in the decoder and the feature maps ( f ) in the
encoder. The feature maps (g) are employed as gated signals to augment the learning of the feature
maps ( f ). In summary, this gating feature (g) makes it possible to extract more useful features from the
encoded features ( f ), while ignoring invalid features. The two inputs are merged pixel-by-pixel after
convolutional operations (Wg, W f ) and Batch Normalization (bg, b f ), respectively. The results obtained
in the previous step are then activated using the Rectified Linear Unit (ReLU, σ1(x) = max(0, x)).
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For the new results, we perform the convolutional operations (Wθ) and Batch Normalization (bθ) on
them. Next we use the sigmoid activation function σ2(x) = 1

1+e(−x) to train the parameters in the gate
and get the attention coefficient (α). Finally, the output of the attention gate is gained by multiplying
the encoder feature by the attention coefficient (α). The feature selection process in the attention gate
can be expressed by the following formula:

F = σ1

[(
WT

f × f + b f

)
+
(

WT
g × g + bg

)]
(1)

α = σ2

(
WT

θ × F + bθ

)
(2)

output = f × α (3)

For image segmentation, the overall performance of the segmentation model is affected both by
the architecture of the network and the loss function [45]. If the loss function is used differently during
training, then the training model obtained may differ significantly. Especially in the case of high-class
imbalance problems. Therefore, choosing a suitable loss function becomes more challenging. In many
cases, only a small fraction of the pixels in satellite remote sensing images are clouds, where the ratio
of cloud pixels to background pixels varies widely. If the loss function chosen does not adequately take
into account the properties of cloud pixels, the model is prone to judge the background region as a
cloud pixel during learning, resulting in incorrect pixel segmentation of the image. In the Cloud-AttU
network, we choose the cross entropy loss function to train the model and optimize the loss function
by Adam algorithm [46,47], and good results have been obtained. In future studies, we will choose
other loss functions for further research and optimize the current loss function. The mathematical
expression for the cross entropy loss function is defined as follows:

J(y, ŷ) = − 1
n

n

∑
i=1

yi log ŷi + (1 − yi) log (1 − ŷi) (4)

where n represents the number of pixels in each image, yi represents the ground truth and ŷi is the
prediction result.

Figure 2. The structure of the Cloud-AttU model. All the orange/white boxes correspond to multi-channel
feature maps. The Cloud-AttU is equipped with skip connections to adaptively rescale feature maps in
the encoding path with weights learned from the correlation of feature maps in the decoding path.
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Figure 3. The diagram of attention gate in Cloud-AttU.

3. Experiments and Results

3.1. Datasets and Preparation

To train and test the proposed model, we have used a dataset derived from Landsat 8 satellite
data. Landsat 8 is a satellite in the Landsat series launched by the National Aeronautics and Space
Administration (NASA) on 11 February 2013, and has a finer band division than the previous
Landsat satellites. Landsat 8 satellite has two optical sensors, operational land imager (OLI) and
the thermal infrared sensor (TIRS). The data from Landsat 8 satellite provides data support for remote
sensing applications in various fields. This study uses Landsat 8 Operational Land Imager (OLI)
data, which contains nine spectral bands. Specifically, the spatial resolution for bands 1 to 7 and 9
is 30 m, while the resolution for band 8 is 15 m. The information for all bands of the operational
land imager (OLI) on the Landsat 8 is shown in Table 1. In this study, four of these bands, Band 2 to
Band 5, were utilized as they belong to the common bands provided by most remote sensing satellites,
such as Sentinel-2, FY-4, GF-4, etc. The dataset used in this study is called the Landsat-Cloud dataset,
which was originally created by Mohajerani et al. [48,49] from the Landsat 8 OLI scenes. The dataset
contains 38 scenes, of which 18 are for training and 20 for testing. The ground truths of these scenes
were extracted by manual methods. A normal spectral band of the Landsat 8 scenes is very large,
about 9000 × 9000 pixels. It is very difficult to train a fully convolutional network directly with such a
large input, as this leads to a large number of parameters and a large number of convolutional layers.
This cannot be achieved in practice. To overcome this problem, large input images need to be cropped
into multiple smaller patches. Therefore, each spectral band was cut into 384 × 384 non-overlapping
segments. The total number of patches for the training set and test set was 8400 and 9201, respectively.
In data pre-processing, we refer to various data augmentation methods including horizontal flipping,
random rotation, and random scale scaling, etc. In this study, we have applied geometric translations
to randomly augment the input patches.
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Table 1. Landsat 8 OLI spectral bands.

Spectral Band Wavelength (Micrometers) Resolution (Meters)

Band 1—Coastal 0.433–0.453 30
Band 2—Blue 0.450–0.515 30

Band 3—Green 0.525–0.600 30
Band 4—Red 0.630–0.680 30

Band 5—Near Infrared (NIR) 0.845–0.885 30
Band 6—Short Wavelength Infrared (SWIR) 1 1.560–1.660 30
Band 7—Short Wavelength Infrared (SWIR) 2 2.100–2.300 30

Band 8—Panchromatic 0.500–0.680 15
Band 9—Cirrus 1.360–1.390 30

3.2. Training Methodology

In this study, all experiments were programmed and implemented on Ubuntu 16.04 using the
PyTorch framework and trained using the NVIDIA GTX 1080 Ti GPU. Pycharm is used as the software
environment of the experiment.

In the experiment, we used images of 384 × 384 pixels in size in the Landsat-Cloud dataset as
input to the neural network. We set the training batch size as 4 and the maximum training epochs as
50. We use the Adam optimizer for optimization, with a learning rate of 0.01 for the first 40 epochs
and 0.005 for the last 10 epochs. In the experiment, we set the initialization of the weights of the
network to a uniform random distribution between [−1, 1]. Besides,we applied random rotation
(0◦, 90◦, 180◦, 270◦) as a data augmentation method before each training epoch.

3.3. Evaluation Metrics

In the experiment, when a cloud mask of a complete Landsat 8 scene was completed, it was
compared to the corresponding Ground Truths (GT). The cloud mask obtained divides each pixel
into either cloud or non-cloud categories. The performance of the model proposed in this paper was
measured quantitatively by assessing the Jaccard Index, Precision, Recall, Specificity, and Overall
Accuracy. The mathematical definition of these metrics is as follows:

Jaccard Index = TP
TP+FN+FP (5)

Precision = TP
TP+FP (6)

Recall = TP
TP+FN (7)

Specificity = TN
TN+FP (8)

Overall Accuracy = TP+TN
TP+TN+FP+FN (9)

where FP, FN, TN, and TP, represent the total number of false positive, false negative, true negative,
and true positive pixels, respectively. Since the Jaccard index is related to both recall and precision,
it can measure the similarity between the two sets of images. Therefore, the Jaccard index is widely
used to measure the performance of image segmentation algorithms [49,50].

3.4. Experimental Results

The designed neural network model was trained on the training dataset, and the unseen test
scenes were predicted using the model obtained from the training. We evaluate the performance
of the model through multiple sets of experiments. Figure 4 shows the cloud detection results for
different kinds of test scenes. The first row of Figure 4 shows the RGB images, the second row shows
the ground truths, and the third row shows the proposed model predictions. As can be seen from
Figure 4, our proposed method can detect clouds regardless of whether the background is bright or
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dark, and the segmentation results obtained are very close to the real cloud distribution. Furthermore,
we find that the method proposed in this paper is also able to distinguish clouds from snow/ice
and obtain segmentation results that are very close to the real scenes. These results prove that the
combination of the U-Net architecture and the attention mechanism is effective and that this new
neural network architecture performs well in cloud detection tasks.

Figure 4. Cloud detection results of different scenes over Landsat-Cloud dataset [48]. The first row
shows the RGB images (top), the second row shows the ground truths (middle) and the third row
shows the predictions of Cloud-AttU model (bottom). The yellow in the figure indicates that cloud
exists and the purple indicates that no cloud exists.

To further validate the proposed neural network architecture, we compare the proposed cloud
detection architecture with FCN [51], Fmask [16], the original U-Net architecture and Cloud-Net [48].
Table 2 shows the experimental results of the different methods on the Landsat-Cloud dataset.
As shown in Table 2, the Jaccard index of Cloud-AttU is 4.5% higher than the Jaccard index of FCN and
3.8% higher than the Jaccard index of Fmask. Fmask is the most widely used cloud detection method
at present, with an overall accuracy rate of 94.26%. As can be seen from the table, the performance of
our proposed model also exceeds that of Fmask. We can find that the Cloud-AttU method proposed
in this study is also superior to the advanced U-Net and Cloud-Net method, suggesting that our
incorporation of attention mechanisms into the U-net architecture for cloud detection is very effective.
Since we train the model on the same training set and test it on the same test set, the experimental
results of this study can prove the obvious superiority of our proposed architecture.

Table 2. Comparison of performance of different methods on Landsat-Cloud dataset.

Model Jaccard index (%) Precision (%) Recall (%) Specificity (%) Overall Accuracy (%)

FCN [51] 84.90 95.17 87.65 97.10 94.91
Fmask [16] 85.45 89.26 96.57 94.07 94.26

Unet 86.06 95.14 89.73 97.45 95.80
Cloud-Net [48] 87.25 96.60 90.04 98.03 96.13

Cloud-AttU 88.72 97.16 91.30 98.24 97.05

From the above experimental results, it can be concluded that the Cloud-AttU network and
Cloud-Net network have significant advantages compared to other methods. To visually analyze
the performance of our proposed method, Figure 5 compares the cloud detection results of the
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Cloud-AttU network and the Cloud-Net network. As shown in Figure 5, both methods yield good
detection results in a general land context, and the results of Cloud-AttU are superior to those of
Cloud-Net. In addition, in cases where there are ice and snow interference on land, the Cloud-Net
model is susceptible to ice and snow interference, and Cloud-AttU is more resistant to interference.
As shown in the third row of Figure 5, the Cloud-AttU network can identify ice and snow without
misclassifying it as clouds, while the Cloud-Net network misclassifies ice and snow on the ground as
clouds. From the experimental results, it can be concluded that the Cloud-AttU model proposed in
this study has excellent cloud detection capability and strong anti-interference capability in complex
ground background.

Figure 5. Cloud detection results of different scenes over Landsat-Cloud dataset [48]. The first column
is the RGB image (left), the second column is the ground truth (center left), the third column is the
predictions of Cloud-Net model (center right) and the fourth column is the predictions of Cloud-AttU
model (right). The yellow in the figure indicates that cloud exists and the purple indicates that no
cloud exists.

From the above experimental results, it can be concluded that cloud detection is susceptible to
interference from factors such as ice and snow. In Figure 5, it is shown that the Cloud-AttU model
proposed in this paper has obvious advantages over Cloud-Net. To further analyze the performance
of the Cloud-AttU model under snow/ice disturbance, we have conducted several experiments on
cloud detection in ice and snow environments. At the same time, the same experiments have been
conducted using the Cloud-Net model. The results of the two sets of experiments have been compared
and analyzed. Figure 6 shows a portion of the experimental results, where the first column is the RGB
images. As shown in Figure 6, the snow/ice scenes that cause the interferences have been marked
using the red boxes, which are useful to analyze the performance of two cloud detection methods
in detail. As can be seen in Figure 6, the Cloud-AttU model can distinguish clouds from snow/ice
in complex backgrounds. However, Cloud-Net has poor ability to distinguish between cloud and
snow/ice and usually treats snow/ice as clouds in many cases. From the experimental results, it can be
concluded that the Cloud-AttU model proposed in this paper has excellent cloud detection capability
to resist interference from factors such as ice and snow in complex environments. Therefore, this model
has great potential and deserves further optimization for early application to real business.
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Figure 6. Cloud detection results under the influence of snow and ice ground over Landsat-Cloud
dataset [48], the first column is RGB image (left), the second column is ground truth (middle left),
the third column is the prediction of the Cloud-Net model (center right), and the fourth column is the
prediction of the Cloud-AttU model (right). The yellow in the figure indicates the presence of clouds
and the purple indicates the absence of clouds.

Not only can snow/ice interfere with cloud detection, but other factors such as surface rivers,
bright surfaces, and lakes can also interfere with cloud detection. Therefore, to analyze the model’s
ability to discriminate against other confounding factors, we added validation cases for further
analysis. Figure 7 shows the cloud detection results under the interference of factors such as surface
rivers and bright surfaces. It can be seen from the figure that under the interference of these factors,
the Cloud-AttU model proposed in this study still has a good effect. From the experimental results,
it can be concluded that the model proposed in this study is highly resistant to multiple types
of interferers, with great application prospects and worthy of further study. At the same time,
the consumption of computer resources during the training process is also a key issue to consider,
where the time required to complete the training of the neural network model is a very important
parameter. In this study, we need about 7.2 h to complete the training. Besides, the size of our saved
training model is about 430 M. In this study, due to our primary focus on the combination of attention
mechanism and U-Net architecture, insufficient attention was paid to training techniques, resulting in
training less efficient. Therefore, our future work will focus more on training acceleration issues
to improve training efficiency. For example, we plan to reduce training time and improve training
efficiency by reducing training data and introducing appropriate regularization methods. We aim to
apply the model to real business by continuously optimizing the model structure and training methods.
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Figure 7. Cloud detection results under the influence of other factors over Landsat-Cloud dataset [48],
the first column is RGB image (left), the second column is ground truth (middle left), the third column
is the prediction of the Cloud-Net model (center right), and the fourth column is the prediction of the
Cloud-AttU model (right). The yellow in the figure indicates the presence of clouds and the purple
indicates the absence of clouds.

4. Discussions

In this study, we add attention mechanism to the U-Net network, adjust the network architecture
according to the characteristics of the satellite data, choose the appropriate Loss function for
optimization, and finally obtain a neural network model suitable for cloud detection of satellite
data. We compared the model with other well-established models and the following discussions are
obtained from the above experimental results.

(1) From the experimental results, we can find that the U-Net network, the Cloud-Net network
and Cloud-AttU network based on the U-Net architecture are significantly better than Fmask.
The U-Net network adopts the symmetric Encoder-Decoder structure, which achieves the fusion
of high-level features and low-level features through the skip-connection operation, making
the output results contain richer multi-scale information. This symmetrical network structure
is concise and stable, significantly enhancing the effect of image segmentation. The results of
this study demonstrate the good performance of the U-Net architecture in cloud detection tasks,
indicating that this symmetrical network architecture, which fuses multi-scale information,
has great potential for applications in satellite image processing and deserves further research.

(2) From the experimental results, it was found that U-Net with the attention mechanism can achieve
better cloud detection results than the original U-Net. This performance boost should benefit
from the attention gate. In the attention module, the output is obtained by multiplying the
feature map by the attention coefficient in the attention gate. The attention coefficients tend to get
larger values in the clouded region and smaller values in the cloudless region. This mechanism
makes the value of the cloudless region of the feature map smaller and the value of the target
region of the feature map larger, thus improving the performance of cloud detection.

(3) From the experimental results, it can be concluded that Cloud-AttU with the attention
mechanism has a stronger cloud detection capability compared to Cloud-Net and single U-Net.
Cloud-AttU can better resist the interference of snow and ice, and has a stronger identification
ability. It is well known that satellite remote sensing data are susceptible to interference from
various noises, so data processing methods that are resistant to interference are highly desirable
for satellite data. Attentional mechanisms have a clear advantage in recognizing and resisting
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noise interference, and thus hold great potential and research promise in numerous areas of
satellite data processing.

5. Conclusions

Cloud detection is an important step in the pre-processing of satellite remote sensing data,
and accurate cloud detection results are of great significance to improve the utilization of satellite
data. With the development of artificial intelligence technology, deep learning methods have made
great breakthroughs in the fields of image processing and computer vision. In this study, we propose
an effective cloud detection method, Cloud-AttU neural network model, drawing on deep learning
methods. It is a new neural network model based on the U-net architecture with the attention gate.
In the process of designing the model, we modified and optimized the network structure considering
the advantages of the U-net architecture in computer vision and the characteristics of the cloud in
remote sensing data. At the same time, the attention gate improves the learning of target regions
associated with the segmentation task while suppressing regions that were not associated with the task.
Therefore, the attention gate is integrated into the proposed model to enhance the efficiency of semantic
information dissemination by skipping connections. We have conducted a series of experiments using
the Landsat 8 data and confirmed that the Cloud-AttU model that introduces the attention mechanism
works well in the cloud detection task, and its performance is significantly better than other previous
methods. The Cloud-AttU model proposed in this paper can still achieve excellent cloud detection
results when there is interference information such as ice and snow. Given the success in cloud
detection, the architecture proposed in this paper can also be applied to other areas of remote sensing
imagery with appropriate modifications. In future studies, we will further optimize the proposed
model and apply it to other satellite remote sensing data such as GF-4, FY-4A satellites.
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CNN convolutional neural network
FCN full convolution network
AG attention gate
FMask Function of mask
BN Batch Normalization
ReLU Rectified Linear Unit
NASA National Aeronautics and Space Administration
OLI operational land imager
TIRS Thermal Infrared Sensor
GF4 GaoFen-4
FY-4 FengYun-4
MCNNs Multiple Convolutional Neural Networks
Adam Adaptive Moment Optimization
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