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Abstract: This paper proposes a separation model adopting gated nested U-Net (GNU-Net)
architecture, which is essentially a deeply supervised symmetric encoder–decoder network that
can generate full-resolution feature maps. Through a series of nested skip pathways, it can reduce
the semantic gap between the feature maps of encoder and decoder subnetworks. In the GNU-Net
architecture, only the backbone not including nested part is applied with gated linear units (GLUs)
instead of conventional convolutional networks. The outputs of GNU-Net are further fed into a
time-frequency (T-F) mask layer to generate two masks of singing voice and accompaniment. Then,
those two estimated masks along with the magnitude and phase spectra of mixture can be transformed
into time-domain signals. We explored two types of T-F mask layer, discriminative training network
and difference mask layer. The experiment results show the latter to be better. We evaluated our
proposed model by comparing with three models, and also with ideal T-F masks. The results
demonstrate that our proposed model outperforms compared models, and it’s performance comes
near to ideal ratio mask (IRM). More importantly, our proposed model can output separated singing
voice and accompaniment simultaneously, while the three compared models can only separate one
source with trained model.

Keywords: winging voice separation; nested U-Net; gated linear units; CNN; monaural
source separation

1. Introduction

Singing voice separation attempts to isolate singing voice (also called vocal line) from a
song. In recent years, this problem has attracted increasing attention with the demand for singer
identification [1–3], automatic lyrics recognition [4,5] and alignment [6], singing pitch estimation [7],
singing style visualization [8], and so on. Meanwhile, isolating pure accompaniment from a song also
has great applications such as leading instrument detection [9] and drum source separation [10].
Although these tasks seem effortless to humans, it turns out to be very difficult for machines,
especially when the singing voice is accompanied by musical instruments. However, such a
requirement can be satisfied if successful separations of singing voice and accompaniment are used as
preprocessing.

A popular song often has two major acoustic components that are singing voice and background
accompaniment. Due to the harmony of a popular song, the singing voice and accompaniment
are strongly correlated in both time and frequency [11], thus separating singing voice from a song
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in single channel is a challenging task. Several approaches have been proposed for singing voice
separation. Po-sen Huang et al. [12] proposed using robust principal component analysis for singing
voice separation from music accompaniment. Hu and Liu proposed a system based on Non-negative
Matrix Factorization (NMF) to separate singing voice from monaural music for singer identification [2].
It indeed helps to improve the performance of singer identification. However, the performance of
singing voice separation still need to be boosted especially when the energy of accompaniment in a
recording is larger than that of the singing voice.

With the development of deep learning, most recent methods based on deep learning show
better performance [11,13]. Po-Sen Huang et al. explored using deep recurrent neural networks
(RNN) for singing voice separation from monaural recordings [14]. Moreover, they proposed the joint
optimization of mask functions and deep RNN, exploring a discriminative training criterion for neural
networks to further enhance the separation performance [15]. Fan et al. proposed a monaural singing
voice separation model using generative adversarial network (GAN) with a T-F masking function [16].
Generator G inputs a mixture spectra and generates realistic singing voice and accompaniment spectra,
while discriminator D distinguishes the clean spectra from those generated spectra, which can be
transformed into time-domain signals using the inverse short-time Fourier transform (ISTFT) with
phase information. He et al. [17] also used the adversarial mechanism to improve the separation effect
of monaural singing voice separation networks. The GAN’s discriminator was introduced to measure
the correlation between the latent variables of the vocals and music generated by the variational
autoencoder probability encoder. Stoller et al. proposed a semisupervised approach, also using GAN
on multitrack data for singing voice extraction [18].

The above supervised source separation approaches are all conducted in the time-frequency
(T-F) domain [13–19]. These approaches reconstruct the target source signal in the time domain from
the frequency domain using the phase of mixture by inverse short time Fourier transform (ISTFT).
This paper also focuses on being conducted in the T-F domain.

Gating mechanisms were first proposed by Dauphin et al. for language modeling [20] in 2017.
Since then, gating mechanism—also termed as gated linear units (GLUs)—has been broadly applied
to the speech process field. Tan and Wang [21] extended the convolutional recurrent network and
incorporated gated linear units (GLUs) for complex spectral mapping, which aims to estimate the real
and imaginary spectrograms of clean speech from noisy speech for monaural speech enhancement.
The convolutional neural network (CNN) model additionally incorporating gating mechanisms was
proposed for speech enhancement [22], speech separation [23], and audio classification [24].

Various methods based on U-Net architecture have sprung up in various fields since the U-Net
model was first proposed for biological cells segmentation by Ronneberger et al. [25]. Jansson et al.
adopted U-Net architecture for the task of singing voice separation [26]. Stoller et al. investigated
end-to-end audio source separation and introduced further architectural improvements on U-Net
architecture [27]. They proposed Wave U-net, an adaptation of U-Net to the one-dimensional time
domain. In addition, for image segmentation, Zhou et al. [28] made further improvements on the
model structure and proposed a nested U-Net architecture model which was used for medical image
segmentation and achieved better results.

Motivated by the success of the U-Net-based architecture model and gating mechanism as
mentioned above, we further develop the nested U-Net (NU-Net) architecture by applying gated
linear units on backbone, not including the nested part, to replace the conventional convolution
network. We term the separation model based on NU-Net with gated linear units as gated nested
U-Net (GNU-Net). The outputs of GNU-Net are further fed into a mask layer to generate two masks
of singing voice and accompaniment. So, our proposed model can output singing voice and pure
accompaniment simultaneously. We also explored two mask layers, discriminative training network
(DTN) and difference mask layer (DML). The experimental results show that, on the whole, the latter
is better.
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The rest of this paper is organized as follows. We introduce the proposed separation model in
Section 2. Section 3 presents the experimental setting. Section 4 presents the results for monaural
singing voice and accompaniment separation. We then make our conclusions in Section 5.

2. Gated Nested U-Net Separation Model

We use a fully convolutional neural network that is comprised of a series of convolutional and
deconvolutional layers. We first describe the proposed GNU-Net separation model and then detail the
gated nested U-Net architecture and two kinds of mask layers.

2.1. Proposed GNU-Net Separation Model

Figure 1 shows the framework of proposed singing voice and accompaniment separation model.
The mixed time-domain signals are converted into magnitude and phase spectra using short-time
Fourier transformation (STFT). The magnitude spectra are fed into a gated nested U-Net with gated
linear units, then the outputs are further fed into a mask layer to produce two masks of singing
voice and accompaniment. These two estimated T-F masks are respectively applied to the magnitude
spectrum of mixture to get two predicted spectra, which can be transformed into time-domain signals
using inverse short-time Fourier transform (ISTFT) with phase information of mixture. Note that
the dashed line arrow over the mask layer with dashed line box denotes that this data flow (mixture
magnitude spectra) exists only in the training phase. While the full line arrow over the notation
of multiply denotes that this data flow (mixture magnitude and phase spectra) exists only in the
validation and test phases.
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Figure 1. Proposed Separation Model.

As it can be seen in Figure 1, the nested U-Net architecture with dashed line box takes as input the
magnitude spectrum of mixture and outputs a 2-dimensional (2-D) feature map (shown in green block)
by a series of convolution and deconvolution layers. Those convolution layers and deconvolution layers
accomplish the tasks of encoder and decoder respectively. Through the redesigned skip pathways
(shown as dotted arrow), the encoder and decoder subnetworks are connected. The dotted box
denotes the concatenation operation. The concatenated feature maps are taken as input to perform
the deconvolution operation which outputs upsampled feature maps. The skip-connections have
been shown to help recovering the full resolution at the network output, where the downsampling
operation is performed in the encoder subnetwork and the upsampling operation in the decoder
subnetwork.We denote the number of layers of encoder subnetwork as the number of levels of nested
U-Net, for example, the nested U-Net in Figure 1 is a 3-level nested N-net, since there are a total of
three downsampling operations in the encoder subnetwork.
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The outputs of nested U-Net are fed into a mask layer to generate two masks of singing voice
and accompaniment. Then, those two masks are applied with mixture spectrum by doing the dot
product, respectively, to obtain two estimated source spectra. Through ISTFT operation with the phase
of mixture, we can obtain the estimated singing voice and accompaniment time-domain waveform.

2.2. Gated Nested U-Net Architecture

The nested U-Net architecture in Figure 1 can be illustrated in detail through Figure 2, which is an
illustration of a 6-level nested U-Net and clearly exhibits the details of operation and skip-connection.
The triangularlike pink shadow area denotes nested encoder–decoder, which distinguishes nested
U-Net from U-Net. In U-Net architecture for singing voice separation [26], the feature maps of the
last convolution layer undergo deconvolution operation the same number of times as convolution.
Before each deconvolution operation, it should take a concatenation operation between the outputs of
previous deconvolution layers and of the same level convolution layer. This paper also adopts the
same concatenation operation.
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Figure 2. Illustration of 6-level nested U-Net architecture with gated linear units (GLUs) applied only
on backbone. Dashed line columns denote the backbone of gated nested U-Net (GNU-Net), and the
light-pink triangle denotes the nested part. Cubes denote the output of each layer or concatenation
operation, except for X0,0 which denotes the input.

Cubes in Figure 2 denote the outputs of each layer or concatenation operation, except for X0,0,
which denotes the input. The numbers below the cubes represent the dimension where (A, B, C)
denotes the data has A channels and each feature map has the frequency dimension of B and time
dimension of C. X0,0 and X0,6 are the mixture spectrum and output of GNU-net, respectively, the latter
would be fed into mask layer to generate the masks. The other cubes are

{Xi,j, i ∈ {1, 2, 3, 4, 5, 6}, j ∈ {0, 1, 2, 3, 4, 5}, i + j ≤ 6}, (1)

where i indexes the downsampling layer along the encoder and also the row index in nested U-Net
architecture, and j indexes the upsampling layer along the decoder. Downsampling is the process



Symmetry 2020, 12, 1051 5 of 15

of encoding performed through a convolution operation while upsampling the process of decoding
through deconvolution operation.

{Xi,0, i ∈ {1, 2, 3, 4, 5, 6}} (2)

are the outputs of convolution layers.

{Xi,j, j 6= 0, 2 ≤ i + j ≤ 6} (3)

are stacks of outputs of convolution and deconvolution layers. They are computed as follows:

Xi,j =


H(Xi−1,j), j = 0, 1 ≤ i ≤ 6

[
Xi,j−1,U (Xi+1,j−1)

]
, j 6= 0, 2 ≤ i + j ≤ 6,

(4)

where functionH(·) is convolution operation followed by leaky rectified linear units (Relu) activation
function and then a batch normalization process, and U (·) denotes deconvolution operation followed
by Relu activation and batch normalization process. [·] denotes the concatenation operation, which is
denoted by the dotted box in Figures 1 and 2. Specifically, X3,3 = [X3,2,U (X4,2)], X3,2 = [X3,1,U (X4,1)],
X3,3, and X3,2 would undergo a deconvolution process to output a fraction of X2,4 and X2,3. Due to the
symmetry of encoding and decoding, Xi,0 and {U (Xi+1,j), i + j ≤ 5} own the same size.

In conclusion, in Equation (4), the upper-half formulates the encoding process and the outputs
of convolution layer; while the lower-half formulates the decoding process and the outputs of
concatenation operation. Note that the skip-connection in nested U-Net is designed to concatenate
two boxes but not to sum directly, as for image segmentation in U-Net [25].

Owing to the nested skip pathways, nested U-Net could generates full-resolution feature maps
at multiple semantic levels, {X0,j, j ∈ {1, 2, 3, 4, 5}} (This part is not exit in Figure 2). However,
for medical image segmentation, Zhou et al. [28] added a combination of binary cross-entropy and
dice coefficient as the loss function to each of the full-resolution feature maps. According to the results
of our experiment, X0,6 contains abundant information that is quite qualified for the subsequent mask
estimation of each sources. So, our proposed GNU-Net does not include the deconvolution layers used
to generate full-resolution feature maps, {X0,j, j ∈ {1, 2, 3, 4, 5}}.

2.3. Gated Linear Unit

The gating mechanism controls the information flow throughout the network, which potentially
allows for modeling more sophisticated interactions [21]. The gated mechanism was first proposed
for recurrent neural networks (RNNs) [29] and further developed for CNN [20]. Oord et al. [30] have
shown the effectiveness of the LSTM-style gating, which be dubbed gated tahn unit (GTU):

tanh(X ∗W1 + b1)� σ(X ∗W1 + b1) = tanh(V1)� σ(V2), (5)

where V1 = X ∗W1 + b1 and V2 = X ∗W2 + b2. W’s and b’s denote kernels and biases, respectively.
σ represents sigmoid function, and �means dot product. The gradient of GTUs is

∇[tanh(V1)� σ(V2)] = tanh′(V1)∇V1 � σ(V2) + σ′(V2)∇V2 � tanh(V1). (6)

The gradient gradually vanishes as the network depth increases because of the downscaling
factors tanh′(x) and σ′(x). To tackle this problem, Dauphin et al. [20] introduced the gated linear
unit (GLU):

(X ∗W1 + b1)� σ(X ∗W2 + b2) = V1 � σ(V2). (7)
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The gradient of the GLUs,

∇[V1 � σ(V2)] = ∇V1 � σ(V2) + σ′(V2)∇V2 �V1, (8)

has a path ∇v1 � σ(v2) without downscaling for the activated gating units in σ(v2). This can be
regarded as a multiplicative skip-connection which helps gradients flow through the layers.

A convolutional GLU block (denoted as “ConvGLU”) is illustrated in Figure 3a. A deconvolutional
GLU block (denoted as “DeconvGLU”) is analogous, except that the convolutional layers are replaced
by deconvolutional layers, as shown in Figure 3b.

 !"#

 !"# $

 !"#%&'

(a)ConvGLU

 !"#$%

 !"#$% &

 !"#$%'()

(b)DeconvGLU

Figure 3. Diagrams of a convolutional GLU block and a deconvolutional GLU block, where σ denotes
a sigmoid function.

In our proposed GNU-Net model, only the backbone of GNU-Net (two dashed line columns
shown in Figure 2) is applied with GLUs, not including nested subnetworks. We use convolution
GLU block (black arrow show in Figure 2) and deconvolution GLU block (red arrow show in Figure 2)
instead of convolution layer and deconvolution layer in the backbone part. Figure 2 clearly exhibits
the details of concatenation operation, skip-connection, and GLU blocks. The triangularlike shadow
area same as nested part. So, we rewrite Equation (4) as follows:

Xi,j =



HGLU(Xi−1,j), j = 0, 1 ≤ i ≤ 6

[
Xi,j−1,U (Xi+1,j−1)

]
, j 6= 0, 2 ≤ i + j < 6

[
Xi,j−1,UGLU(Xi+1,j−1)

]
, 1 ≤ i, j ≤ 6, i + j = 6 ,

(9)

where function HGLU(·) and UGLU(·) are convolution GLU block and deconvolution GLU block,
respectively. They are all followed by leaky Relu activation function and then a batch normalization
process. U (·) denotes conventional deconvolution operation also followed by Relu activation and
batch normalization process. Take the same examples as Section 2.2, where X3,3 = [X3,2,UGLU(X4,2)],
X3,2 = [X3,1,U (X4,1)].

2.4. Mask Layer

Ronneberger [25] chose to train two distinctive separation models for two sources exploiting
U-Net model. Our goal is to separate singing voice and accompaniment from a mixture simultaneously;
so, instead of learning one of the sources as the target, we propose to simultaneously model all the
sources. The output of GNU-Net, X0,6, is fed into a mask layer to generate two masks of singing
voice and accompaniment. In this paper, we explore two kinds of mask layer, discriminative training
network and difference output layer.

A. Discriminative Training Network (DTN)
Discriminative training network was proposed to jointly train the network with T-F mask function

by Po-Sen Huang et al. [15]. In our proposed separation model, the output of GNU-Net, X0,6, is fed
into two linear layers, each followed with a Relu activation operation. These two linear layers output
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magnitude predictions of two sources, ŷ1t and ŷ2t, as shown in Figure 4a. Here, we also add an extra
layer to the output of the linear layers as

ỹ1t =
ŷ1t

ŷ1t + ŷ2t
� zt, ỹ2t =

ŷ2t

ŷ1t + ŷ2t
� zt, (10)

where the addition, division, and � (Hadamard product) operators are elementwise operations.
zt denotes magnitude spectra of the mixture signals. ỹ1t and ỹ2t are two estimated magnitudes of
sources y1t and y2t through a soft mask function, t = 1, 2, 3, ...., T, where T is the frame length of an
input sequence.
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(a)Discriminative Training Network (DTN)
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(b)Difference Mask Layer (DML)

Figure 4. Two kinds of mask layer.

Equation (10) enforces the constraint that the sum of prediction results is equal to the original
mixture. This implies a soft T-F mask function

m1t =
ŷ1t

ŷ1t + ŷ2t
, m2t =

ŷ2t

ŷ1t + ŷ2t
. (11)

Here, two predictions ŷ1t and ŷ2t should be positive because of Relu activation function.
Equation (11) implies that m1t + m2t = 1. In this way, we integrate the constraints into the network and
optimize the network with the masking functions jointly. Although this extra layer is a deterministic
layer, the network weights are optimized for the error metric of Equation (11). Thus, it also can
be considered that the discriminative training network outputs two masks of singing voice and
accompaniment, as shown in Figure 4a.

To reduce the interference from other sources, we adopt the discriminative network training
criterion with a simple and useful form [14,15]:

JDIS =
1
2

T

∑
t=1

(||y1t − ỹ1t||2 + ||y2t − ỹ2t||2

−γ||y1t − ỹ2t||2 − γ||y2t − ỹ1t||2). (12)

The first half of Equation (12) is general mean squared error (MSE), which directly optimizes the
reconstruction objective, adding the extra term −γ||y1t − ỹ2t||2 − γ||y2t − ỹ1t||2 further penalizes
the interference from the other source. For our experimental results, we generally achieved
higher source-to-interference ratio (SIR) and source-to-distortion ratio (SDR) while slightly lower
source-to-artifacts ratio (SAR). We think that an appropriate value of γ would further improve the
performance.
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B. Difference Mask Layer (DML)
To speed-up learning and improve performance, difference output layer was proposed by

Stoller et al. [27]. Similarly, we adopt a difference mask layer (DML) to constrain the mask Mjt
for source j at time t. If a mixture includes K sources, then enforce ΣK

j=1Mjt = 1 that only K − 1
convolutional filters with a size of 1 are applied to the last feature map of the network, followed by a
sigmoid nonlinearity function to estimate the first K− 1 mask of source signals. The last mask is then
simply computed as

MKt = 1− ΣK−1
j=1 Mjt. (13)

In our singing voice and accompaniment separation tasks, there are just two sources, so K = 2. So,
as shown in Figure 4b, the output X0,6 and the mixture spectrum input X0,0 are concatenated, forming a
feature map with dimensions 2× 512× 128. Through a convolutional network with the filter size of
2× 1× 1 followed with a Sigmoid activation operation, the difference mask layer outputs a mask of
source 1 with the dimensions 1× 512× 128. M2t, computed by Equation (13), can be obtained as the
mask of source 2 simultaneously.

3. Experiments

3.1. Dataset and Preprocessing

The iKala dataset has been used as a standardized evaluation for the annual Music Information
Retrieval Evaluation (MIREX) campaign for several years, so there are many existing results that can
be used for comparison. The iKala dataset [31] includes 352 30-second song clips with a sample rate of
44,100 Hz. These clips are recorded from Chinese popular songs performed by professional singers.
Only 252 song clips are released as a public subset for evaluation. Each song clip is a stereo recording,
with one channel for singing voice and the other for accompaniment. We first downsample the input
audio to the same sampling frequency of 8192 Hz as per U-Net model [25], then extract the magnitude
spectrum using a 1024-point STFT with 75% overlap. All sample clips are cut into roughly 11 s so
that the number of time frame of each patch can be set with 128 (a power of 2 times). The magnitude
spectrograms are normalized by x → log(1 + x). (See Supplementary Materials).

3.2. Evaluation Metrics

To measure the quality of estimated time-domain signal v̂ with respect to the original signal v,
the source-to-interference ratio (SIR), source-to-artifacts ratio (SAR), and source-to-distortion ratio
(SDR) [32] provided in the commonly used BSS EVAL toolbox. The source-to-distortion ratio (SDR) is
computed as follows:

SDR(v̂, v) = 10log10

[
< v̂, v >2 >

‖v̂‖2‖v‖2− < v̂, v >2

]
. (14)

Normalized SDR (NSDR) is the improvement of SDR from the original mixture x to the separated
singing voice v̂, and is commonly used to measure the separation performance for each mixture [12,26]:

NSDR(v̂, v, x) = SDR(v̂, v)− SDR(x, v), (15)

where v̂ is the estimated source signal, v is the reference source signal, and x is the mixed signal.

3.3. Experiment Configurations

The networks are trained on 11-second-long segments. Mean squared error (MSE) is exploited
as loss function. ADAM [33] is used as optimizer. The learning rate is set to 10−5 with decay rates
β1 = 0.9. Batch size is 4. Stride size of 2 is used in the convolutional encoder. γ of discriminative
training network in Equation (12) is set to 0.05.



Symmetry 2020, 12, 1051 9 of 15

The detailed description of GNU-Net is shown in Table 1. The column Shape represents the
dimension of outputs (cubes in Figure 2). The column Operation represents the different neural
network operations. Fc equals 16. ConvGLU-2D (A), Deconv-2D (A), and DeconvGLU-2D (A) denote
the operations; and A is the output channels of each operation. The filter size is 5× 5. Concat(A, B)
denotes the concatenation operation of A and B. i in the row Encoder block refers to the number of
downsampling process. j = 0, 1 ≤ i ≤ L. Note that the Decoder blocks are applied in reverse order,
so that j is from level L to 1, j 6= 0, 2 ≤ i + j < L. In nested part, 1 ≤ i, j ≤ L, i + j = L in backbone part.
As it is shown in Figure 2, L = 6.

Table 1. Schematic diagram of the proposed GNU-Net architecture.

Block Operation Shape

Input X0,0 = (1,512,128)

Encoder
i = 1,...,L ConvGLU2D(Fc × 2i−1) XL,0 = (512,8,2)

Decoder
i = L,...,1

Nested Part
Concat[Xi,j−1,U (Xi+1,j−1)]

X1,L−1 = (96,256,64)
Deconv2D(Fc × 2i)

Backbone Part
Concat[Xi,j−1,UGLU(Xi+1,j−1)]

DeconvGLU2D(Fc × 2i−1)

Output DeconvGLU2D(1) X0,L = (1,512,128)

ConvGLU-2D (A) denotes the convolutional GLU operation with stride of 2 followed with
leaky rectified linear units (ReLU) activation, obtaining that leakiness is 0.2. Deconv-2D (A) and
DeconvGLU-2D (A) denote the conventional–deconvolutional and deconvolutional GLU operations,
respectively. The deconvolutional operations are both followed with a batch normalization operation
and leaky ReLU activation with leakiness of 0.2. Note in decoder block, before the deconvolutional
operation we should concatenate the output of the last deconvolutional operation and the previous
output in the same level.

Our implementation is similar to that of U-Net [26]. Each encoder layer consists of a convolution
layer with stride of 2 instead of pooling process [26]. In the decoder, ReLU is used as activation function.
Dropout of 50% is only applied to the first three nested deconvolution layers, U (X6,0),[U (X5,0),U (X5,1)],
[U (X4,0),U (X4,1),U (X4,2)].

For the difference mask layer in Section 2.4, the output of last DeconvGLU operation, X0,6, and the
input mixture spectrum, X0,0, are concatenated and further fed into a 2-D conventional convolution
layer with a stride of 1and kernel size of 2× 1× 1 followed with a Sigmoid activation, as shown in
Figure 4b.

3.4. Comparison with Ideal Time-Frequency Masks

Following the common configurations in [34,35], the ideal time-frequency masks were calculated
using STFT with a 32-ms window size and 8-ms hop size with a Hanning window. The ideal masks
include the ideal binary mask (IBM), ideal ratio mask (IRM), and Wiener filterlike mask (WFM),
which are defined for source i as

IBMi( f , t) =

{
1, |Si( f , t)| > |Sj 6=i( f , t)|
0, otherwise,

(16)

IRMi( f , t) =
|Si( f , t)|

ΣC
j=1|Sj( f , t)|

, (17)
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WFMi( f , t) =
|Si( f , t)|2

ΣC
j=1|Sj( f , t)|2

, (18)

where Si( f , t) ∈ CF×T are the complex-valued spectrograms of clean sources i = 1, ..., C.

4. Results

Firstly, the proposed GNU-Net model and two kinds of mask layer were verified by the separation
performance, and the effect of the nested U-Net was assessed by comparing with U-Net [26]. Then,
a comparison of various networks levels was made on model parameter and system performance to
select a proper network level. Finally, the performance of GNU-Net separation model was compared
with three models and ideal T-F masks on the iKala dataset.

4.1. Optimizing the Network Model

The performance of GNU-Net separation model was evaluated on iKala dataset. Table 2 shows
the performance scores of various models with 6-level nested U-Net and 6-level U-Net [26]. In the first
row, the results of singing voice and accompaniment are based on two U-Net separation models, as the
U-Net [26] model can output only one source signal, while our proposed model can output estimated
singing voice and accompaniment simultaneously. NU-Net denotes nested U-Net without introducing
GLUs. The contents of Table 2 are exhibited in another form in Figure 5, which can help to intuitively
distinguish various models by the means and variances of various evaluation metrics. From Table 2
and Figure 5, we can conclude the following statements:

Table 2. Comparison between various network models and mask layer on iKala dataset.

Singing Voice Accompaniment

NSDR SIR SAR NSDR SIR SAR

U-Net [26] 11.09 23.96 17.72 14.44 21.83 14.12
NU-Net+DTN 12.24 24.68 17.03 15.31 22.35 13.29
NU-Net+DML 12.36 24.54 17.62 15.39 22.31 14.03

GNU-Net+DTN 13.12 25.37 17.37 15.93 24.10 13.87
GNU-Net+DML 13.24 25.24 17.85 15.98 24.02 14.42

Singing Voice Accompaniment
6

8

10

12

14

16

18

20

22

N
SD
R

 U-Net
 NU-Net+DTN
 NU-Net+DML
 GNU-Net+DTN
 GNU-Net+DML

(a) NSDR

Singing Voice Accompaniment
16

18

20

22

24

26

28

30

SI
R

(b) SIR

Singing Voice Accompaniment
10

12

14

16

18

20

22

SA
R

(c) SAR

Figure 5. Three evaluation metrics of estimated singing voice and accompaniment by various
network models.
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(i) Nested U-Net architecture outperforms U-Net architecture, this results verifies that
the nested decoder subnetworks can remedy the information loss caused by previous
downsampling operations.

(ii) Introducing gated mechanisms can noticeably improve system performance.
(iii) As mask layer, difference mask layer (DML) is superior to discriminative training network

(DTN).
(iv) On the whole, the NSDR scores of accompaniment outperform that of singing voice. This may

be because in the most general case, the intensity of the accompaniment is greater than that of
the singing voice, and accompaniment has more continuous components over time.

Figure 6 shows the magnitude spectra comparison between the estimated sources and original
sources. From the estimated magnitude spectra of estimated singing voice, we can noticeably
distinguish that our proposed models outperform U-Net model.
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Figure 6. (a) The mixture magnitude spectrogram of a clip in iKala dataset; (b,c) the ground truth
spectra of clean singing voice and pure accompaniment; (d–f) the magnitude spectra of estimated
singing voice by U-Net model and our proposed two models; (g–i) The magnitude spectra of estimated
accompaniment by U-Net model and our proposed two models (model1, NU-Net+DML; model2,
GNU-Net+DML). Accom denotes accompaniment.

Some experiments were performed for selection of the depth of network. Table 3 shows the model
size and system performances of U-Net [26] architecture and our proposed method (NU-Net and
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GNU-Net) with the mask layer of difference mask layer (DML). The numbers of parameters in different
methods are based on our implementations. The results of U-Net [26] by our implementation is
basically the same as their reported results. The GNU-Net model has the biggest model size compared
with U-Net and NU-Net at the same network level and have the best separation performance on NSDR,
SIR, and SAR. Compromise the system performance and complexity, 6-level network was selected to
adopt for the GNU-Net separation model.

Table 3. Comparison of model size and evaluation results.

Model Levels Model
Size

Singing Voice Accompaniment

NSDR SIR SAR NSDR SIR SAR

U-Net
4 0.61M 9.71 22.72 15.15 13.22 17.78 12.22
5 2.45M 10.37 23.25 16.87 14.96 21.24 13.53
6 9.82M 11.09 23.96 17.72 15.31 21.83 14.12

NU-Net+DML
4 0.72M 9.78 22.68 15.23 13.23 17.69 12.33
5 3.00M 11.98 23.34 16.82 15.04 21.21 13.40
6 12.07M 12.36 24.54 17.62 15.39 22.31 14.03

GNU-Net+DML
4 1.32M 10.28 22.14 15.88 13.37 22.82 12.46
5 5.47M 12.91 24.47 17.05 15.64 23.73 13.90
6 22.21M 13.24 25.24 17.85 15.98 24.02 14.42

4.2. Comparison of Proposed Method with Previous Methods

Finally, the proposed models were also compared to the RPCA [12] and Chimera [36] models,
which produced the highest evaluation scores in the 2016 MIREX Source Separation campaign. Table 4
shows the means of evaluation metrics using iKala dataset. The results of first row of RPCA are
from their reported paper. The second row shows the results reported in Reference [26], the results
are run by the Chimera web server using the improved Chimera network [36]. NU-Net+DML and
GNU-Net+DML denote our proposed methods, which separate singing voice and accompaniment
simultaneously, while Chimera and U-Net separate singing voice and accompaniment using two distinct
trained separation models. We can see from Table 4 that the separation performance of our proposed
GNU-Net with the mask layer of DML approaches the results of IBM, especially the NSDR of separated
singing voice. Our proposed separation model even surpasses IBM in SAR metric for both singing
voice and accompaniment.

Table 4. Comparison of proposed methods (NU-Net+DML and GNU-Net+DML) and previous
methods using iKala dataset.

SingingVoice Accompaniment

NSDR SIR SAR NSDR SIR SAR

RPCA [12] 6.32 8.14 12.53 0.75 3.23 7.00
Chimera [36] 8.75 21.30 15.64 11.63 20.48 11.54

U-Net [26] 11.09 23.96 17.72 14.44 21.83 14.12

NU-Net+DML 12.36 24.54 17.62 15.39 22.31 13.03
GNU-Net+DML 13.24 25.24 17.85 15.98 24.02 14.42

IBM 14.06 29.00 16.80 16.56 32.78 14.18
IRM 15.25 26.45 18.34 17.48 22.18 16.02

WFM 15.66 28.57 18.55 18.23 29.18 16.00

5. Conclusions

We propose a separation model based on GNU-Net architecture. The outputs of GNU-Net are
further fed into a T-F mask layer to generate two masks of singing voice and accompaniment. Then,
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those masks along with the magnitude and phase spectra of mixture are transformed into time-domain
waveform. We explored two types of T-F mask layer, discriminative training network (DTN) and
difference mask layer (DML). The experimental results demonstrate the following:

(i) The nested U-Net architecture outperforms U-Net architecture.
(ii) Introducing gated mechanisms can improve system performance.

(iii) DML is superior to DTN.
(iv) Our proposed GNU-Net separation model outperforms three compared models on three

evaluation metrics—NSDR, SIR, and SAR.
(v) Our proposed GNU-Net approaches IBM on NSDR metric and even outperforms IBM on SAR.

More importantly, our proposed model can output the two sources of singing voice and
accompaniment simultaneously.

Meanwhile, we have observed that if the prelude or interlude are a little longer, or the energy of
accompaniment is much larger than that of singing voice, the system does not perform well. This is
what we would focus on and strive to resolve in the future work.
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