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Abstract: The purpose of this study is to produce a landslide susceptibility map of Southeastern
Helong City, Jilin Province, Northeastern China. According to the geological hazard survey (1:50,000)
project of Helong city, a total of 83 landslides were mapped in the study area. The slope unit, which
is classified based on the curvature watershed method, is selected as the mapping unit. Based on
field investigations and previous studies, three groups of influencing Factors—Lithological factors,
topographic factors, and geological environment factors (including ten influencing factors)—are
selected as the influencing factors. Artificial neural networks (ANN’s) and support vector machines
(SVM’s) are introduced to build the landslide susceptibility model. Five-fold cross-validation,
the receiver operating characteristic curve, and statistical parameters are used to optimize model.
The results show that the SVM model is the optimal model. The landslide susceptibility maps produced
using the SVM model are classified into five grades—very high, high, moderate, low, and very
low—and the areas of the five grades were 127.43, 151.60, 198.77, 491.19, and 506.91 km2, respectively.
The very high and high susceptibility areas included 79.52% of the total landslides, demonstrating that
the landslide susceptibility map produced in this paper is reasonable. Consequently, this study can
serve as a guide for landslide prevention and for future land planning in the southeast of Helong city.

Keywords: landslide susceptibility mapping; artificial neural networks; support vector machines;
five-fold cross-validation; receiver operating characteristic curve; statistical parameters

1. Introduction

Landslides are one of the most common geological disasters in the mountainous areas of
China [1–3]. In recent years, the Chinese economy has developed steadily and rapidly, and has
become the second largest economy in the world. With such rapid development of the economy, many
previously inaccessible areas have carried out corresponding infrastructure construction and various
engineering activities in succession. Therefore, it is necessary to evaluate the risk of natural disasters
such as landslides in these areas. Landslide susceptibility mapping is the basis of landslide hazard
and risk assessment [4]. The purpose of landslide susceptibility mapping is to answer the question
“what is the geological background of landslides and where are the areas which are most prone to
them?” [2]. Based on the review of relevant papers, it was found that landslide susceptibility mapping
mainly includes the following [5,6]: (a) landslide inventory data acquisition; (b) mapping unit selection;
(c) influencing factor selection; (d) establishment of the evaluation model; and (e) production of
the landslide susceptibility map.

Landslide inventory data is the basis of landslide susceptibility mapping. The early acquisition of
landslide inventory data mainly depends on field geological disaster surveys. With the development
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of remote sensing technology, landslide interpretation based on remote sensing technology has become
one of the most popular tools to quickly acquire landslide inventory data [7,8]. Remote sensing
techniques commonly used in landslide interpretation mainly include (a) visible optical remote
sensing and (b) InSAR (Interferometric Synthetic Aperture Radar) remote sensing. The key to
remote sensing interpretation of landslides based on visible optics is to interpret the landslide based
on the special topographic and geomorphic features of the landslide in the remote sensing image.
However, this method is greatly affected by the spatial resolution of remote sensing data and is
unable to identify the surface deformation characteristics (i.e., the potential and slow deformation
of the landslide); thus, it has certain limitations. However, landslide interpretation based on InSAR
technology can effectively identify the surface deformation and identify the potential landslides
that are under deformation [9], which makes up for the limitations of visible optical remote sensing
interpretation. The combination of these two methods has become a common method for landslide
interpretation. As for mapping units, they are the basic units in landslide susceptibility mapping [10].
At present, the commonly used mapping units are the grid unit, watershed unit, slope unit, region unit,
and uniform condition unit [4]. Among these, the grid unit is the most widely used but, due to its lack
of connection with the topography and other geological information, the slope unit [11,12] has become
more and more respected by relevant scholars. The selection of influencing factors is one of the key
issues in the study of landslide susceptibility mapping [13]. The choice of influencing factors used
in the evaluation will affect the final mapping results. The selection of influencing factors mostly relies
on field investigation, cause analysis, expert experience, and related research of landslides; the factors
with the highest correlation with the occurrence of landslides in the study area are typically selected
as the influencing factors to evaluate the susceptibility to landslides [2]. At present, many scholars also
use methods of automatic forward selection of parameters that weight and evaluate the effectiveness
of each influencing factor and make use only of the “best” ones [14,15]. The evaluation models
applied to landslide susceptibility mapping are mainly divided into qualitative and quantitative
evaluation [6,16]. Qualitative evaluation is mainly based on the knowledge and experience of relevant
experts, where the susceptibility to geological hazards such as landslides is determined by means of
grading and weighting [17,18]. Quantitative evaluation methods include statistics, machine learning,
deep mining, and other methods [6]. With the rapid improvement of calculation ability, an increasing
number of quantitative evaluation methods have been applied to landslide susceptibility mapping.
In addition, evaluation methods of the performance of landslide susceptibility models have also been
developed rapidly [16,19]. Finally, the landslide susceptibility map can be produced according to
the established model.

According to the basic steps of landslide susceptibility mapping, this paper carries out a relative
evaluation of the southeast of Helong City, Jilin Province, northeastern China. Firstly, according
to the geological hazard survey (1:50,000) project, 83 landslides were mapped in the study. Then,
the slope unit classified by the curvature watershed method was applied as the mapping unit, which
can identify the horizontal surface and the inclined surface. Moreover, the area of the slope unit is
more concentrated, the shapes mostly range between isosceles triangles and squares, and there are
few elongated units. Next, ten influencing factors were selected. Artificial neural networks (ANN)
and support vector machines (SVM) were introduced to build the landslide susceptibility model.
Five-fold cross-validation, the receiver operating characteristic curve (ROC), and statistical parameters
were used to optimize the model. Finally, the landslide susceptibility map was divided into five classes.
This study can serve as a guide for landslide prevention and for future land planning in the southeast
of Helong city.

2. Study Area

The study area is in the Chongshan and Nanping counties of the southeast Helong city,
Jinlin province, China, along the Tumen river. The study area is marked by valleys and rugged
topography, and covers an area of 1476 km2 (Figure 1a–c). More than 90% of the total area of
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the study area consists of mountainous areas. In the study area, the maximum elevation is 1450 m,
and the minimum elevation is 350 m. The southern part of the study area is the Chinese and Korean
quasi-platform, and the northern part is the Jihei fold system in the Tianshan-Xingan geosyncline fold
area, which are bounded by the deep and large fault of Gudong River. The study area belongs to
the temperate monsoon sub-humid climate zone. Based on rainfall data collected from 1960 to 2012,
the maximum daily rainfall of the study area is 164.8 mm. The perennial average temperature is 5.6 ◦C.
The vegetation coverage in the study area is relatively high. The seismic intensity of the study area has
a degree of VI on the modified Mercalli index. At present, no earthquake-induced landslides have
been detected in the study area. According to the field investigation, the landslides in the study area
are mainly distributed along the Tumen River. According to a geological map (downloaded using
the 91 Weitu software, with a scale of 1:500,000) (Figure 1d), it can be seen that the mainly exposed strata
in the study area are Quaternary (Q), Neogene (N), Cretaceous (K), Jurassic (J), Middle Proterozoic (Pt),
and New Archean (Ar). The lithological information of the study area is listed in Table 1. There are
several reverse faults in the study area, which affect the regional stability. The Tumen river and its
tributaries flow through the study area, which has a significant impact on landslide risk.Symmetry 2020, 12, x FOR PEER REVIEW 4 of 24 
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Figure 1. Geographical position and landslide inventory of the study area. (a,b): geographical position
of the study area; (c) landslide inventory of the study area; (d) geological map of the study area;
(e,f) typical landslides of the study area.
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Table 1. Description of the Lithology.

System Code Lithology

Quaternary Q Alluvial–Diluvial, Gravel, Sub-Sandy Soil, Sub-Clay, and Basalt
Neogene N Sandstone, Conglomerate, and Siltstone with Basalt

Cretaceous K Sandstone, Conglomerate, Siltstone with Limestone, and Oil Limestone
Jurassic J Andesite and Tuff

Middle Proterozoic Pt Marble
New Archean Ar Black Cloud Amphibolic Granulite and Granulite

3. Methodology

Figure 2 shows the three main steps of this paper, namely (a) data preparation, (b) landslide
susceptibility modelling, and (c) validation and selection of the optimal models.
Symmetry 2020, 12, x FOR PEER REVIEW 5 of 24 

 

 
Figure 2. Flowchart of this study. 

3.1. The Mapping Unit 

Reasonable mapping units should be determined before landslide susceptibility mapping is 
carried out [20]. Whether the mapping unit is reasonable or not directly affects the accuracy of the 
final evaluation result. Slope units are often used to study landslide susceptibility mapping due to 
their close relationship with the topography. The dividing principle of slope units is to divide the 
research area into many small areas with different sizes by cutting along the ridge and valley lines 
[21]. At present, hydrologic analysis is the most used method for dividing slope units. However, this 
method cannot identify the boundary between the horizontal and the inclined surface and generates 
a large number of parallel river networks, which increases the difficulty of manual modification [21]. 
By comparing the slope unit division results of the curvature watershed method and the hydrologic 
analysis method, it was found that the slope unit divided based on the curvature watershed method 
has a uniform size, a regular shape, and small terrain variation inside, which is obviously better than 
the result based on the hydrological method. Therefore, we chose the curvature watershed method 
to divide the slope units in this study. Slope units are divided by valley and ridge lines, where there 
are abrupt changes in slope angle and slope aspect. Therefore, slope units can be divided according 
to the change of slope angle and slope aspect. Profile curvature and plan curvature are the derivatives 
of slope angle and slope aspect, respectively. Their maximum and minimum values can reflect abrupt 
changes of slope angle and slope aspect. Therefore, the curvature can be used to divide the slope 
units. The specific process of dividing slope units based on curvature is shown in Figure 3. It is mainly 
used to identify the boundary of concave terrain and convex terrain by the curvature and reverse 
curvature, respectively, to divide the slope units. The classification steps of the slope units can be 
divided into two parts: positive relief extraction and negative relief extraction. The original curvature 
was used to extract the positive relief, and the flip curvature was used to extract the negative relief, 
which can be obtained by multiplying the curvature by −1. Before calculating the curvature, to 
remove the influence of the roughness of the original Digital Elevation Model (DEM) on the curvature 
calculation results, focal statistics were made on the DEM with three pixels as the radius. After the 
flow direction and sink calculations, the positive and negative relief boundary can be obtained. The 
results of dividing slope units can be obtained by merging the positive and negative relief boundaries 
and manually modifying the unreasonable units. 

Statistical Analyzing Method Receiver Operating Characteristic Curve 

Validation and selection of the optimal models 

Data preparation 

Original data 
DEM 

Google images 
geological map  

Field surveying and 
repots 

 Influencing factors 

Slope unit map 

5-cross-validation 

Landslide susceptibility modeling 

ANN model SVM model 

Figure 2. Flowchart of this study.

3.1. The Mapping Unit

Reasonable mapping units should be determined before landslide susceptibility mapping is
carried out [20]. Whether the mapping unit is reasonable or not directly affects the accuracy of the final
evaluation result. Slope units are often used to study landslide susceptibility mapping due to their close
relationship with the topography. The dividing principle of slope units is to divide the research area
into many small areas with different sizes by cutting along the ridge and valley lines [21]. At present,
hydrologic analysis is the most used method for dividing slope units. However, this method cannot
identify the boundary between the horizontal and the inclined surface and generates a large number
of parallel river networks, which increases the difficulty of manual modification [21]. By comparing
the slope unit division results of the curvature watershed method and the hydrologic analysis method,
it was found that the slope unit divided based on the curvature watershed method has a uniform
size, a regular shape, and small terrain variation inside, which is obviously better than the result
based on the hydrological method. Therefore, we chose the curvature watershed method to divide
the slope units in this study. Slope units are divided by valley and ridge lines, where there are
abrupt changes in slope angle and slope aspect. Therefore, slope units can be divided according to
the change of slope angle and slope aspect. Profile curvature and plan curvature are the derivatives of
slope angle and slope aspect, respectively. Their maximum and minimum values can reflect abrupt
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changes of slope angle and slope aspect. Therefore, the curvature can be used to divide the slope units.
The specific process of dividing slope units based on curvature is shown in Figure 3. It is mainly used
to identify the boundary of concave terrain and convex terrain by the curvature and reverse curvature,
respectively, to divide the slope units. The classification steps of the slope units can be divided into
two parts: positive relief extraction and negative relief extraction. The original curvature was used to
extract the positive relief, and the flip curvature was used to extract the negative relief, which can be
obtained by multiplying the curvature by −1. Before calculating the curvature, to remove the influence
of the roughness of the original Digital Elevation Model (DEM) on the curvature calculation results,
focal statistics were made on the DEM with three pixels as the radius. After the flow direction and sink
calculations, the positive and negative relief boundary can be obtained. The results of dividing slope
units can be obtained by merging the positive and negative relief boundaries and manually modifying
the unreasonable units.Symmetry 2020, 12, x FOR PEER REVIEW 6 of 24 
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3.2. Landslide Inventory

Landslide inventory data is the basis of landslide susceptibility mapping. In order to grasp
the spatial distribution characteristic information and develop a mechanism of landslide hazards
in the study area, the Jilin team of the Geological Survey Center of China Industrial Building
Materials carried out the geological hazard survey (1:50,000) project of Helong city. The characteristic
geomorphological features of the landslides, such as the chair-like landform of the landslide, a color
difference between the landslide and the surrounding environment, and a change of vegetation before
and after the landslide, can be clearly identified in a remote sensing image. Thus, the project team
preliminarily identified 112 landslides in the study area using the visible optical remote sensing
technology and Google images. Then, during the field geological survey, the remote sensing
interpretation results were reviewed, and 42 interpretation results were excluded (such as exposed
steep cliffs of bedrock and a waste rock dump in a quarry) and the uninterpreted landslides were
supplemented. Finally, a total of a total of 83 landslides were mapped in the study area (Figure 1c),
including soil and rock slope deformation, soil slide, and collapse. Figure 1e,f are examples of
the landslides. Table A1 shows the basic information for the landslides. According to Table A1,
the landslides in the study area are mostly rock landslides, which are mainly developed in crystalline
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rocks. These landslides are mainly controlled by the rock mass structural plane, and a small number
of landslides are controlled by the contact surface between the overburden layer and the rock mass.
The scale of landslide is mainly small and medium size. The failure mode of the landslides is mainly
pull-type and toppling-type.

3.3. Influencing Factors

The occurrence of a landslide is a complicated process. Therefore, the factors influencing
the occurrence of a landslide are also varied. Pourghasemi and Rossi [13] reviewed a total of 220 related
papers and found that the factors with the highest application frequency in landslide susceptibility
mapping were slope angle, lithology, slope aspect, land use, distance to river, elevation, distance to
faults, curvature, distance to road, and soil type, among others. The selection of influencing factors
for the landslide susceptibility mapping in the study area should be based on the understanding of
the characteristics of the landslide and the geological environment. Therefore, the relationship between
the landslide and the geological environment in the study area was analyzed as follows.

3.3.1. Relationship between Geological Environment and Landslides

Relationship between Topographic Features and Landslides

The topography is the basic condition of a landslide and determines the formation and development
of landslide to a great extent. For example, convex and bedding slopes are prone to landslides. Based
on field investigation and analysis, it was found that most landslides in the study area occurred in hills
and low mountains with an elevation range of 200–1000 m and a slope angle more than 30◦ (Figure 4).
Furthermore, the number of landslides increased with the increase of the slope angle. The number
of landslides in a convex slope was much larger than that in concave slope. The micro-landform of
the landslide site was a steep slope or steep coast (Table A1).
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Relationship between Lithological Features and Landslides

The lithology of landslides in the study area was mainly crystalline rocks, such as granite, diorite,
and other magmatic rocks (Table A1). The number of landslides in the crystalline rock in the study
area was the largest and was obviously higher than that in other geotechnical rock type distribution
areas. This is because the crystalline rock is usually strongly influenced by joints, cracks, and faults.
The presence of these structural planes greatly reduces the shear strength of the rock mass, resulting
in the sliding of the upper rock mass or overlying loose rock.
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Relationship between Geologic Features and Landslides

The number of landslides in fault geological tectonic units was the largest in the study area. This is
mainly because the in-situ stress of the fracture is stronger than that of other parts, and its influence
range is larger and wider. The rock in these parts has deformations such as bending, squeezing,
and tearing, which reduces the structural mechanical properties of the rock mass.

Relationship between Rainfall Features and Landslides

According to statistics, the landslides that occurred in the study area were mostly caused by heavy
rainfall, and the two are positively correlated. Continuous heavy rainfall, particularly during the flood
season, results in a high incidence of landslides.

Relationship between Other Features and Landslides

Landslides occurred more frequently in areas with low vegetation coverage in the study area.
Landslides occurred extensively along the Tumen river, which is the main river in the study area.
Earthquakes are an important trigger of landslides. They damage the integrity of rock and soil mass
and make slopes prone to landslide. However, there is no historical record of landslides triggered by
earthquakes in the study area. Thus, seismic activity has had little effect on the occurrence of landslides
in the study area.

3.3.2. Selection of Influencing Factors

Based on the above analysis, and the statistical results of Pourghasemi and Rossi [13],
three groups of influencing factors were selected for this study: geologic factors, topographic factors,
and environment factors. The geologic factors only consist of geology, while there were five topographic
factors: elevation, slope angle, slope aspect, topographic relief, and curvature. Finally, there were
four environment factors: land use, rainfall, distance to river, and distance to faults. In this study,
all the influencing factor maps were extracted using the slope unit. Furthermore, the dominant category
of lithology, land use, was estimated as the influencing factor value of each slope unit, with the average
value used for the other factors.

3.3.3. Extraction of Influencing Factors

Geologic Factor

The study area is covered with six types of geologic formations, composed of different lithologies
pertaining to different geologic ages. The combination of these two characteristics is one of the most
important factors influencing the occurrence of landslides [22]. The shear strength, weathering
resistance, and crushing degree of different lithologies are greatly different [23]. In addition, the same
lithology with different structural planes will have different effects on the stability of the slope. A rock
mass with joint and fissure development is more prone to landslides than a complete rock mass.
A highly weathered rock mass is also less stable than a fresh rock mass. In this study, the geology
map was obtained based on a geological map with a scale of 1:500,000 (downloaded using 91 Weitu
software); the geology map of the study area is shown in Figure 5a.
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Topographic Factors

Elevation usually affects the depth of the water table aquifer [1,24]. In addition, the higher
the elevation, the less human activity takes place, which is also more conducive to the stability of
the slope. Regarding the slope angle, a change of slope angle changes the original stress state of
the slope [25]. Within a certain range of slope, the self-gravity stress and shear stress in the slope
generally increase with an increase of the slope angle, and the probability of slope instability increases
accordingly. The intensity of light exposure, the type and extent of vegetation cover, and the supply of
surface water vary greatly with differing slope aspect [2,26]. For example, the illumination time on a
sunny slope is much longer than that on a shady slope; therefore, the temperature difference between
day and night on a sunny slope is also larger than that on a shady slope and the dry–wet cycle is also
faster. In this case, the weathering strength of the rock mass on a sunny slope is larger than that on a
shady slope, which reduces the strength and stability of rock and soil mass on the sunny slope, in turn
increasing the probability of landslide [4]. The topographic Relief—The difference between the highest
and lowest Points—Can reflect the degree of relief in a specific area [4]. Curvature can reflect the shape
of a slope body. According to the shape characteristics, a slope can be divided into three forms: convex
slope, straight slope, and concave slope [27]. A DEM (Digital Elevation Model) with a resolution of
10 × 10 m was used to extract the five influencing factor maps through the slope unit using ArcGis
software. The five influencing factor maps are shown in Figures 5b–d and 6a,b.
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Environment Factors

Vegetation has a positive effect on the stability of a slope, which can enhance the resistance of
the slope surface to water erosion and influence rainfall infiltration. Rainfall has a significant impact
on slope risk. Rainwater infiltration will increase the gravity of rock and soil mass, reducing their
shear strength parameters, which will have an adverse effect on slope stability. The distance to river
factor has an important influence on the occurrence of landslides [28]. The downcut of a river increases
the slope angle along the river. To adapt to the rapid downcut, disasters such as landslides often occur
along the river, thus reducing the slope angle. The existence of faults leads to the development of
joints and fissures in the surrounding rock mass, which leads to fragmentation of the rock mass and a
reduction of weathering resistance [29]. Therefore, many geological hazards such as landslides often
develop around deep and large fissures. These four influencing factors are extracted through the slope
unit using ArcGis software. The five influencing factor maps are shown in Figure 6c,d and Figure 7a,b.
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3.4. Landslide Susceptibility Modeling

At present, an increasing number of models are being applied to the study of landslide susceptibility
mapping [30–33]. Each of these models has its advantages and disadvantages; combined with
the complexity of the factors affecting slope stability and the different geological environments
in different regions, it is impossible to apply one model to the study of landslide susceptibility in all
areas. Therefore, in the relevant evaluation of the study area, the evaluation model adopted should
be optimized to determine the most suitable landslide susceptibility evaluation model. Recently,
some machine learning approaches have been developed with the aim of evaluating the landslide
susceptibility [21]. Due to its strong learning ability, fast calculation speed, and strong fault tolerance,
the artificial neural network (ANN) model has become one of the most used machine learning methods
in landslide susceptibility mapping. By comparison, the support vector machine (SVM) model requires
fewer modeling data and is suitable for binary classification problems. Thus, the SVM model may be
more suitable for landslide susceptibility prediction with fewer data, such as in the case of this study.
Therefore, we selected the artificial neural network (ANN) and support vector machine (SVM) models
to optimize the evaluation model of landslide susceptibility in the study area.

3.4.1. Artificial Neural Network (ANN)

As a machine learning method, the artificial neural network model has been widely used
in the study of landslide susceptibility mapping [26,34,35]. The ANN model has the following
advantages [36]: (a) better non-linear mapping capability; (b) highly self-learning and adaptive;
(c) strong generalization ability; and (d) strong fault tolerance. Thus, the ANN model can simulate
the complex non-linear interactions between influencing factors and landslides through the interaction
between neurons. Moreover, in an ANN model it is not necessary to describe the interactions between
factors by complex mathematical formulae [37]. The fitting effect is relatively good, which is especially
suitable for the simulation of complex geological phenomena influenced by many factors and presents
advantages for the simulation of phenomena such as landslides, in which various factors interact
and have complex relationships. A complete artificial neural network model is usually composed of
an input layer, an output layer, and one or more hidden layers. Figure 8 shows a schematic diagram
of a simple artificial neural network model. Each layer contains several of the model’s basic units:
neurons. The data processing and storage of an artificial neural network are represented as the mutual
relationships and connections between neurons. Through training using samples, the ANN changes
the weights of its internal connections to minimize the error between the output value and the target
value, to achieve the purpose of accurate modeling. Each node in the input layer corresponds to a
predictive variable, while the node in the output layer corresponds to the target variable. A hidden
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layer is a regular layer connecting the input layer and output layer, and the number of the hidden
layers and the number of nodes in each layer determine the complexity of the network. The process
of forecasting with an ANN can be divided into a learning process and a prediction process [38].
The learning process, in which a large number of learning samples and the iterative function of
the network are used to train the network by optimizing the process via minimizing the network error,
includes the forward transmission of input information and the reverse transmission of error [34].
The prediction process is the process of substituting the unknown sample into the model after training.
According to the rules of the learning sample, the process finally obtains the output result of the sample
through the forward transmission of the input information [39].
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3.4.2. Support Vector Machine (SVM)

The support vector machine (SVM) model is also a machine learning model. Its theoretical basis is
statistical learning theory [40–43]. The SVM model has the following advantages [40,44]: (a) low data
volume requirement; (b) strong generalization ability; (c) strong optimization ability; (d) adaptability
to high-dimensional samples; and (e) strong learning ability and fast convergence. It can realize
the linear segmentation of data by transforming each evaluation index from low dimensional space to
high dimensional space. Thus, it can analyze and evaluate non-linear problems in low dimensional
space. Due to its low requirement in terms of data volume, it has also been widely used in the study of
landslide susceptibility mapping. The process of modeling for landslide susceptibility evaluation by
SVM is summarized as follows [40,44]:

Consider some linearly separable data points xi (i = 1, 2, . . . ,n) that fall into two different classes
yi =±1. The goal of SVM is to find a hyperplane in n-dimensional data space which can separate the two
classes of data based on the maximum interval. The hyperplane can be expressed mathematically
as follows:

L =
1
2
||w||2, (1)

which should satisfy the following constraint conditions:

yi((w·xi) + b) ≥ 1, (2)

where ||w|| is the norm of the normal vector of the hyperplane, b is a scalar, and represents the scalar
product. Based on the Lagrange multiplier, the cost function can be expressed as follows:

L =
1
2
||w||2 −

∑n

i = 1
λi(yi((w·xi) + b) − 1), (3)
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where λi is the Lagrange multiplier.
In the case of linear indivisibility, the constraint condition can introduce a slack variable ξi, which

can be expressed as follows:
yi((w·xi) + b) ≥ 1− ξi. (4)

Then, Equation (1) can be converted into the following form:

LL =
1
2
||w||2 −

1
vn

∑n

i = 1
ξi. (5)

In Equation (5), v in [0,1] is introduced to consider the case of misclassification. In addition,
the kernel function K (xi, yi) is introduced to explain the non-linear decision boundary problem in SVM.

3.5. Data for Landslide Susceptibility Modeling

When using an artificial neural network or support vector machine to establish a landslide
susceptibility model, the same amount of data is needed for landslide units and non-landslide units.
In this study, we determined the number of slope units with landslides according to the division results
of slope units in the study area and the landslide inventory map. An equal number of units were
randomly selected at a minimum distance of 800 m from these units, in order to avoid the effects of
landslides [37]. The five-fold cross-validation method [39,40] was used to validate the models and to
overcome the shortage of landslide data and the problem of model overfitting. All the ten influencing
factors were involved in landslide susceptibility model building.

3.6. Validation Method

3.6.1. Receiver Operating Characteristic Curve (ROC)

The receiver operating characteristic curve (ROC) [18,45] is a quantitative analysis method
to evaluate the prediction accuracy of the landslide susceptibility model. This method evaluates
the prediction accuracy of the model using the area under the curve (AUC). The AUC value lies
between 0 and 1, and the greater its value, the higher the prediction accuracy of the model.

3.6.2. Statistical Analysis Method

Statistical indices are also widely used for evaluating the prediction ability of landslide
susceptibility mapping models [21]. The most used statistical indices are the following:

Ac = (TP + TN)/(TP + TN + FP + FN), (6)

Sen = TP/(TP + FN), (7)

Sp = TN/(TN + FP), (8)

PPV = TP/(TP + FP), (9)

NPV = TN/(TN + FN) (10)

where Ac is the accuracy; Sen is the sensitivity; Sp is the specificity; PPV is the positive predictive value;
NPV is the negative positive value; TP is the true positive; TN is the true negative; FP is the false
positive; and FN is the false negative.

4. Results

4.1. Division Result of the Slope Units

In this paper, a DEM with a resolution of 10 × 10 m was adopted to the divided slope units of
the study area. In the process of division, we found that the size of slope units divided by the curvature
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watershed method was related to the DEM resolution. Therefore, the DEM resolution was converted
to 10 × 10 m, 30 × 30 m, 50 × 50 m, 80 × 80 m, 100 × 100 m, and 120 × 120 m for slope classification.
By comparing the slope unit classification results with Google images of the study area, it was found
that the slope unit classification result was the most consistent with the actual terrain with the DEM
with a resolution of 80 × 80 m. A total of 2956 slope units were obtained (Figure 9). The maximum area
of a slope unit was 18.45 × 105 m2 and the minimum area was 0.11 × 105 m2.
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4.2. Model Fitting Results

According to the landslide inventory map, there are 83 slope units containing the entire known
landslide body. Therefore, the 83 slope units that experienced landslides were used as the modeling
data. To meet the modeling requirements, the same number of non-landslide units (83) were randomly
selected at least 800 m away from the landslide units (Figure 9). To establish the ANN model,
the numbers of input, hidden, and output layers should be determined first. In this study, each of
the input, hidden, and output layers consisted of a single layer. Secondly, the number of neurons
in each layer was determined, with the number of neurons in the input layer the same as the number of
influencing factors. There were ten influencing factors used for modeling in this study, thus, the number
of neurons in the input layer was ten. The output layer was used to determine whether a landslide
occurs, so the number of neurons was two. The number of hidden layer neurons can be determined by
the following empirical formula [46]:

N =
√

A + B + k (11)

where N is the recommended value for the number of neurons in the hidden layer, A is the number
of neurons in the input layer, B is the number of neurons in the output layer, and k is an empirical
coefficient with value between 0 and 10. According to the empirical formula, the ideal number of
hidden layer neurons in the artificial neural network in this study ranged from 4 to 14. By using all
the data to establish the ANN model, the number of hidden layer neurons was optimized. It can be seen
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from Figure 10 that, when the number of hidden layer neurons is 6, the ANN model has the highest
prediction accuracy. Thus, the number of neurons in the hidden layer was finally selected as 6.Symmetry 2020, 12, x FOR PEER REVIEW 15 of 24 
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Figure 10. Area under the curve (AUC) values of model evaluation parameters when the hidden
neurons of ANN model varied.

For the ANN model, the learning rate, momentum, and training time were set as 0.3, 0.3,
and 500, respectively [34,37]. The choice of kernel function affects the prediction accuracy of SVM.
In this study, the radial basis function (RBF) was selected as the kernel function, which was influenced by
the regularization parameter (C) and the kernel parameter (g). C and g were set as 0.8 and 0.5 [34,47,48],
respectively. All the parameters were obtained based on the previous research experience and experiments
in the calculation process. The model fitting results are shown in Table 2.

Table 2. Performance of the Two Slope-Unit-Fitted Landslide Susceptibility Models (%).

Stage Method Statistical Index K = 1 K = 2 K = 3 K = 4 K = 5 Mean Standard Deviation

Training

ANN

AUC 88.20 91.10 90.30 84.70 88.70 88.60 2.48
AC 86.57 89.39 85.07 73.48 81.82 83.27 6.11
SE 91.53 90.63 83.10 72.46 82.81 84.11 7.68
SP 82.67 88.24 87.30 74.60 80.88 82.74 5.49
PP 80.60 87.88 88.06 75.76 80.30 82.52 5.33
NP 92.54 90.91 82.09 71.21 83.33 84.02 8.49

SVM

AUC 92.70 93.40 92.30 93.20 94.50 93.22 0.83
AC 87.31 89.39 86.57 88.64 90.91 88.56 1.71
SE 89.06 91.94 87.69 90.48 93.55 90.54 2.31
SP 85.71 87.14 85.51 86.96 88.57 86.78 1.24
PP 85.07 86.36 85.07 86.36 87.88 86.15 1.16
NP 89.55 92.42 88.06 90.91 93.94 90.98 2.31

Testing

ANN

AUC 83.20 87.00 82.10 88.20 82.10 84.52 2.88
AC 71.88 70.59 68.75 71.43 73.53 71.23 1.75
SE 73.33 81.82 65.00 66.67 72.22 71.81 6.62
SP 70.59 65.22 75.00 78.57 75.00 72.88 5.13
PP 68.75 52.94 81.25 82.35 76.47 72.35 12.10
NP 75.00 88.24 56.25 64.71 70.59 70.96 11.94

SVM

AUC 88.70 89.60 91.20 91.30 87.90 89.74 1.50
AC 81.25 88.24 84.38 85.29 82.35 84.30 2.72
SE 81.25 93.33 82.35 83.33 82.35 84.52 4.98
SP 81.25 84.21 86.67 87.50 82.35 84.40 2.69
PP 81.25 82.35 87.50 88.24 82.35 84.34 3.26
NP 81.25 94.12 81.25 82.35 82.35 84.26 5.54

Note: K is the number of cross validations.

4.3. Landslide Susceptibility Mapping Results

By comparing the five statistical parameters and AUC values of the two models, the SVM model
was determined to be the optimal model. Therefore, the SVM model was used in this study to produce
the landslide susceptibility map of the study area. The final model was established using the model
with high accuracy and AUC value in the process of five-fold cross-validation. The natural breaks
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method was used to divide the landslide susceptibility of the study area into five grades: Very low,
low, moderate, high, and very high. The landslide susceptibility map of the study area is shown
in Figure 11.
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Figure 11 and Table 3 show that the areas of the five susceptibility classes for the ANN model
(very high, high, moderate, low, and very low) were 146.24, 297.95, 423.33, 310.44, and 297.95 km2,
respectively. For landslide occurrence, the number of landslides in the five susceptibility classes were
43, 18, 10, 6, and 6, respectively. For the SVM model, the areas of the five susceptibility classes were
127.43, 151.60, 198.77, 491.19, and 506.91 km2, respectively. For landslide occurrence, the number of
landslides in the five susceptibility classes were 52, 14, 8, 4, and 5, respectively.

Table 3. Statistical Results of the Landslide Susceptibility Map.

Model Susceptibility Landslide Occurred Total Study Area
Count Ratio Area (km2) Ratio

ANN

Very Low 6 7.23% 297.95 20.19%
Low 6 7.23% 310.44 21.03%

Moderate 10 12.05% 423.33 28.68%
High 18 21.69% 297.95 20.19%

Very High 43 51.81% 146.24 9.91%

SVM

Very Low 5 6.02% 506.91 34.35%
Low 4 4.82% 491.19 33.28%

Moderate 8 9.64% 198.77 13.47%
High 14 16.87% 151.60 10.27%

Very High 52 62.65% 127.43 8.63%

5. Discussion

5.1. Slope Unit Classification Results

To evaluate the effect of dividing slope units, the area and shape indices of slope units were
statistically analyzed. The ramp unit was used to extract the various influences, so the area it covers
should be approximately the same size overall. The uniformity of slope unit area can be reflected
by the distribution of slope unit area. It can be seen, from Figure 12a, that the slope unit area was
concentrated between 4 and 8 × 105 m2, accounting for 44.2% for the total number of slope units.
If the slope unit is too flat, or there is an elongated unit, the uniformity inside the unit will be destroyed
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to a great extent. The shape index can be used to evaluate the shape of the slope unit. The shape index
of the slope units can be calculated using the following equation:

S = L̂2/4πA, (12)

where S is the shape index, L is the perimeter of the slope units, and A is the area of the slope units.
According to the definition of the shape index, the shape index of a circle is 1, that of a square is 1.27,
and that of an equilateral triangle is 1.59. Based on Figure 12b, the slope units with shape index below
1.59 accounted for 81.0%, which means that most of the slope units were between circle and equilateral
triangle shapes; however, there were a few elongated slope units. Thus, the effect of dividing slope
units was reasonable.
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Figure 12. Statistics of morphological characteristics of slope units. (a) Slope unit area distribution
diagram; (b) slope unit shape index distribution diagram.

In addition, in the process of dividing slope units, it was found that compared with the hydrologic
subdivision method, there is no large amount of parallel river network in the process of dividing slope
units by the curvature watershed method. Moreover, the number of unreasonable units generated is
much less than the hydrologic analysis method, so the later manual modification work is much less.

5.2. Comparison between ANN and SVM Model

Landslide susceptibility mapping is a popular research issue due to its non-linear characteristics.
Although many mathematical methods have been applied to landslide susceptibility mapping,
the prediction accuracy of these models is not very stable. Therefore, the same model cannot be applied
to all studies. As a result, one of the key problems in landslide susceptibility mapping is to find a
landslide susceptibility model which is suitable for a specific study area. In this study, the ANN
and SVM models were introduced to establish a landslide susceptibility model for the area southeast
of Helong city.

Through the training and testing of the two selected models, a confusion matrix was obtained,
and the corresponding statistical parameters of each model were calculated to evaluate their respective
advantages and disadvantages. From Table 2, the mean AUC values of ANN and SVM models differ
greatly: in the training stage they were 88.60% and 93.22%, respectively; in the testing stage they were
84.52% and 89.74%, respectively. The AUC values of the two models decreased in the testing stage
(by 4.08% for the ANN model and 3.48% for the SVM model), and that of the ANN model decreased
significantly. According to the mean AUC value, the SVM model was slightly better than the ANN
model (4.62% for the training stage, 5.22% for the testing stage). For the standard deviation of the AUC
value in the training stage, that of the ANN model was obviously larger than that of the SVM model
(2.48% for the ANN model, 0.83% for the SVM model). This indicated that the stability of the SVM
model was better than that of ANN model in the training stage. In the testing stage, for the ANN
model, the standard deviation of the AUC value (2.88%) increased slightly, and similarly for the SVM
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model (1.50%); however, the SVM model was more stable. From the mean AUC value alone, we believe
that the SVM model could be the best.

For the statistical parameters, in the training stage, the mean accuracies were 83.27% and 88.56%,
respectively, for the ANN model and the SVM model; in the testing stage, these were 71.23%
and 84.30%. The standard deviation of the accuracy, in the training stage, was 6.11% and 1.71%,
respectively, for the ANN model and the SVM model; in the testing stage, these were 1.75% and 2.72%.
In terms of accuracy, the SVM model performed better than the ANN model (5.29% for training stage,
13.07% for testing stage). In terms of stability (according to accuracy) in the training stage, the SVM
model was better than the ANN model (4.40%); however, in the testing stage, the ANN model was
better than the SVM model (0.97%). From the aspect of mean accuracy, the SVM model was superior to
the ANN model in both prediction accuracy and stability.

For the other four statistical parameters, the stability of the two models declined in the testing
stage. In particular, the stability of the positive predictive value and negative positive value of the ANN
model decreased greatly, which means the accuracy of the ANN model in predicting landslide units
and non-landslide units is very unstable. The mean values of the four statistical parameters of the two
models declined, but the ANN model showed a large drop (more than 10%). From the aspect of these
four statistical parameters, the SVM model could also be considered as the optimal model.

5.3. Comparison with Other Models

In the evaluation of related geological disasters in Helong city, we used the information content
method (ICM) and analytic hierarchy process (AHP) to evaluate the landslide susceptibility of the whole
of Helong city based on both the grid unit and slope unit; the results are shown in Table 4 First,
from the perspective of different mapping units, it can be seen that when ICM and AHP use grid units
and slope units, respectively, for the landslide susceptibility evaluation of Helong city, their prediction
accuracy is quite different. The prediction accuracy of the slope unit is obviously higher than that of
the grid unit. This shows that it is reasonable to use the slope unit as the mapping unit of landslide
susceptibility in this paper. Furthermore, the prediction accuracy of the two models established
in this paper is higher than that of ICM and AHP models. In particular, the prediction accuracy of
SVM model is the highest. This is because landslide susceptibility mapping is a dichotomous problem,
and the SVM model is better for making predictions in such problems.

Table 4. Modeling Fitting Results of the Study Area.

Mapping Units Method Prediction Accuracy (Mean)

Slope Units ANN
Training 89.72%

Validating 88.08%

Slope Units SVM
Training 90.72%

Validating 88.96%
Grid Units ICM - 83.42%
Grid Units AHP - 70.93%
Slope Units ICM - 87.11%
Slope Units AHP - 80.54%

5.4. Landslide Suceptibility Map analysis

The landslide susceptibility map should meet the following two requirements [37]:
(1) The landslide points should be distributed in the areas with high susceptibility as much

as possible. The purpose of this is to evaluate the accuracy of grading the sensitivity of landslides.
(2) In the landslide susceptibility map, the points predicted to be of high susceptibility should

account for as low a proportion as possible. The purpose of this is to reduce the redundancy of high
landslide susceptibility prediction and improve the hit ratio of susceptibility assessment.
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Table 3 shows that the very high and high susceptibility areas for SVM model had a combined
area of 279.03 km2, accounting for 18.90% of the total study area. Regarding the landslide occurrence,
the very high and high susceptibility areas had 66 landslides, accounting for 79.52% of the total
landslides. For the ANN model, the very high and high susceptibility areas had a combined area of
444.19 km2, accounting for 30.01% of the total study area. Regarding the landslide occurrence, the very
high and high susceptibility areas had 61 landslides, accounting for 70.49% of the total landslides.
This shows that the landslide susceptibility map produced by the SVM model in this paper is more
reasonable than that of the ANN model.

According to Figure 11, the very high, high, and moderate susceptibility areas were mainly
distributed along rivers. The reason for this is that the erosion caused by a river increases the slope
angle along the river. To adapt to the erosion of the river, landslides and other disasters often occur
along rivers, thus reducing the slope angle adjacent to the river. Furthermore, for slopes located close to
a river, the slope foot is soaked by the river water, which reduces the strength of the rock and soil mass
inside, thus leading to landslides. The low susceptibility area was mainly distributed in the northwest
of the study area. In this area, the vegetation coverage is high and human engineering activities are
weak; thus, the geological environment of this area is relatively stable, and landslides are less common.

6. Conclusions

In this study, we produced a landslide susceptibility map of the area to the southeast of Helong
city. A total of 83 landslides were mapped in the study area through remote sensing interpretation
and field investigation. The slope unit divided by the curvature watershed method was selected
as the mapping unit. Based on field investigations and previous studies, three groups of influencing
factors—lithological factors, topographic factors, and geological environment factors (a total of ten
influencing factors: lithology, elevation, slope angle, slope aspect, topographic relief, curvature,
land use, rainfall, distance to river, and distance to faults)—were selected to establish landslide
susceptibility models. The ANN and SVM methods were used to build the models. Five-fold
cross-validation, the ROC curve, and statistical parameters were used to optimize the models. Finally,
the landslide susceptibility map was classified into five classes—very high, high, moderate, low,
and very low.

According to the model fitting results, the SVM model was the optimal model for our purposes.
For the five classes—very high, high, moderate, low, and very low—the areas of the grades from the SVM
model were 127.43, 151.60, 198.77, 491.19, and 506.91 km2, respectively. For landslide occurrence,
the number of landslides in the five susceptibility classes were 52, 14, 8, 4, and 5, respectively; therefore,
the very high and high susceptibility areas included 79.52% of the total landslides. This indicates that
the landslide susceptibility map produced in this paper is reasonable.

In conclusion, the following inferences were obtained:
(1) Because the slope units are more closely related to the real topographic and geomorphic

features, the obtained landslide susceptibility map is more reasonable. Thus, it is suggested that
the slope unit should be used as the mapping unit in related work.

(2) The SVM model needs less data and is more suitable for binary classification, so it can be given
priority in the study of landslide susceptibility mapping.
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Appendix A

Table A1. Description of the Landslides.

No. Lithology Slope
Angle

Slope
Aspect

Slope
Height

Slope
Shape Microrelief Landslide

Scale
Failure
Mode

1 Granodiorite 60 198 6 Convex Steep Slope Small Pull-Type
2 Granodiorite 79 162 17 Convex Steep Coast Middle Pull-Type
3 Granodiorite 63 162 24 Convex Steep Coast Small Toppling

4 Monzonitic
Granite 65 50 20 Concave Steep Coast Middle Pull-Type

5 Monzonitic
Granite 71 45 11 Convex Steep Coast Small Pull-Type

6 Granodiorite 52 215 24 Convex Steep Slope Small Sliding
7 Granodiorite 57 110 15 Concave Steep Slope Middle Pull-Type

8 Monzonitic
Granite 69 148 17 Convex Steep Coast Small Pull-Type

9 Monzonitic
Granite 62 221 17 Convex Steep Coast Small Sliding

10 Dioritic
Porphyrite 52 275 12 Convex Steep Slope Small Pull-Type

11 Basalt 81 178 50 Convex Steep Coast Middle Toppling
12 Basalt 86 202 42 Convex Steep Coast Middle Pull-Type
13 Basalt 75 105 17 Convex Steep Coast Small Sliding
14 Basalt 58 128 23 Concave Steep Slope Middle Pull-Type
15 Basalt 87 178 32 Convex Steep Coast Middle Pull-Type
16 Basalt 82 130 20 Concave Steep Coast Middle Pull-Type
17 Basalt 68 178 18 Convex Steep Coast Small Sliding
18 Basalt 40 270 25 Straight Steep Slope Small Pull-Type
19 Basalt 84 253 12 Convex Steep Coast Small Pull-Type
20 Basalt 86 280 25 Convex Steep Coast Middle Pull-Type
21 Basalt 84 183 20 Convex Steep Coast Middle Pull-Type
22 Basalt 81 210 12 Concave Steep Coast Small Pull-Type
23 Granodiorite 71 193 23 Convex Steep Coast Small Pull-Type
24 Granodiorite 37 195 49 Convex Steep Slope Small Pull-Type
25 Granodiorite 40 196 43 Convex Steep Slope Small Toppling
26 Granodiorite 38 154 25 Concave Steep Slope Small Pull-Type
27 Granodiorite 42 268 9 Straight Steep Slope Middle Pull-Type
28 Granodiorite 55 254 8 Concave Steep Slope Small Pull-Type

29 Monzonitic
Granite 43 190 12 Straight Steep Slope Small Pull-Type

30 Granite 41 230 11 Convex Steep Slope Middle Pull-Type

31 Monzonitic
Granite 62 130 10 Convex Steep Coast Small Pull-Type

32 Basalt 87 250 12 Concave Steep Coast Small Pull-Type
33 Diorite 71 155 10 Convex Steep Coast Small Pull-Type
34 Granodiorite 42 136 8 Convex Steep Slope Small Pull-Type
35 Granodiorite 55 152 5 Convex Steep Slope Small Pull-Type
36 Basalt 50 135 14 Straight Steep Slope Small Pull-type
37 Granodiorite 71 90 9 Convex Steep Coast Small Toppling

38 Monzonitic
Granite 35 186 15 Convex Steep Slope Small Pull-Type

39 Monzonitic
Granite 36 135 30 Straight Steep Slope Small Pull-Type

40 Diorite 37 174 50 Straight Steep Slope Small Toppling
41 Granodiorite 48 148 16 Convex Steep Slope Small Pull-Type
42 Granodiorite 85 128 12 Convex Steep Coast Small Toppling
43 Granodiorite 77 224 15 Convex Steep Coast Small Toppling
44 Granodiorite 67 188 77 Convex Steep Coast Middle Sliding

45 Monzonitic
Granite 57 204 61 Concave Steep Slope Middle Staggered

Breaking

46 Monzonitic
Granite 81 228 25 Convex Steep Coast Middle Toppling

47 Monzonitic
Granite 72 250 52 Convex Steep Coast Middle Toppling

48 Monzonitic
Granite 72 185 31 Concave Steep Coast Middle Toppling

49 Monzonitic
Granite 76 190 142 Convex Steep Coast Middle Toppling

50 Monzonitic
Granite 74 120 13 Convex Steep Coast Small Toppling

51 Monzonitic
Granite 69 204 108 Convex Steep Coast Large Pull-Splitting
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Table A1. Cont.

No. Lithology Slope
Angle

Slope
Aspect

Slope
Height

Slope
Shape Microrelief Landslide

Scale
Failure
Mode

52 Diorite 78 172 160 Convex Steep Coast Large Toppling
53 Diorite 62 134 224 Convex Steep Coast Large Toppling
54 Granodiorite 68 24 23 Convex Steep Coast Middle Toppling
55 Granodiorite 65 150 136 Concave Steep Coast Large Sliding
56 Granodiorite 76 162 228 Convex Steep Coast Large Pull-Splitting

57 Monzonitic
Granite 70 155 151 Concave Steep Coast Large Staggered

Breaking

58 Monzonitic
Granite 51 155 32 Convex Steep Slope Small Toppling

59 Granodiorite 70 72 32 Straight Steep Coast Small Pull-Splitting
60 Basalt 72 125 46 Convex Steep Coast Middle Toppling
61 Basalt 58 200 45 Convex Steep Slope Middle Toppling
62 Basalt 83 218 28 Convex Steep Coast Small Toppling
63 Basalt 60 152 89 Concave Steep Slope Middle Sliding
64 Basalt 52 105 7 Convex Steep Slope Small Pull-Splitting
65 Granodiorite 60 130 23 Convex Steep Slope Small Pull-Splitting
66 Andesite 38 220 65 Convex Steep Slope Middle Pull-Splitting
67 Andesite 50 245 55 Concave Steep Slope Middle Pull-Splitting
68 Andesite 70 135 15 Straight Steep Coast Small Sliding

69 Monzonitic
Granite 44 215 12 Concave Steep Slope Small Toppling

70 Granodiorite 70 190 24 Straight Steep Coast Small Toppling
71 Granite 53 170 14 Convex Steep Coast Small Pull-Splitting
72 Quartzite 73 130 40 Convex Steep Coast Small Pull-Splitting

73 Quartzite 72 184 42 Concave Steep Coast Small Staggered
Breaking

74 Quartzite 52 154 50 Convex Steep Slope Small Staggered
Breaking

75 Quartzite 70 192 45 Convex Steep Coast Middle Staggered
Breaking

76 Monzonitic
Granite 58 195 55 Convex Steep Slope Middle Staggered

Breaking
77 Granodiorite 80 56 8 Straight Steep Coast Small Pull-Splitting

78 Monzonitic
Granite 71 170 75 Convex Steep Coast Small Toppling

79 Monzonitic
Granite 75 138 40 Convex Steep Coast Small Toppling

80 Monzonitic
Granite 51 85 15 Straight Steep Slope Small Toppling

81 Granodiorite 68 175 7 Straight Steep Coast Small Toppling
82 Basalt 62 184 7 Convex Steep Coast Small Toppling
83 Granodiorite 40 160 19 Convex Steep Slope Small Pull-Splitting

Note: Landslide scale: (a) Small; Landslide volume <1 × 104 m3; (b) Middle: 100 × 104 m3 < Landslide volume
<104 m3.
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