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Abstract: The fundamental groups and homotopy decompositions of algebraic topology have
applications in systems involving symmetry breaking with topological excitations. The main aim of
this paper is to analyze the properties of homotopy decompositions in quotient topological spaces
depending on the connectedness of the space and the fundamental groups. This paper presents
constructions and analysis of two varieties of homotopy decompositions depending on the variations
in topological connectedness of decomposed subspaces. The proposed homotopy decomposition
considers connected fundamental groups, where the homotopy equivalences are relaxed and the
homeomorphisms between the fundamental groups are maintained. It is considered that one
fundamental group is strictly homotopy equivalent to a set of 1-spheres on a plane and as a result it is
homotopy rigid. The other fundamental group is topologically homeomorphic to the first one within
the connected space and it is not homotopy rigid. The homotopy decompositions are analyzed in
quotient topological spaces, where the base space and the quotient space are separable topological
spaces. In specific cases, the decomposed quotient space symmetrically extends Sierpinski space with
respect to origin. The connectedness of fundamental groups in the topological space is maintained by
open curve embeddings without enforcing the conditions of homotopy classes on it. The extended
decomposed quotient topological space preserves the trivial group structure of Sierpinski space.
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1. Introduction

The symmetry breaking in any system involves a wide variety of topological excitations and it
contains the associated topological constraints. The preparations of homotopy groups and related
decompositions provide meaningful insights into the phases of a system after the symmetry is broken [1].
The homotopy decomposition in the classifying space is constructed considering that the space contains
torsion-free groups [2]. The special homotopy classes in a category of based spaces are proposed
allowing the decomposition of stable homotopy. The formulation is based on positive filtration of
the space and the Toda bracket [3]. The decomposition and related decomposed homotopy types
for metrizable LCn spaces are formulated in [4]. Interestingly, often the homotopy type of original
space and the decomposed space are very similar in LCn spaces. Moreover, the cellular decomposition
G of Sn (n-sphere) in higher dimension (n ≥ 5) results in the formation of n-manifold denoted by
Sn/G, which is also homeomorphic to Sn. If X, Y are metric continua with the absolute neighbourhood
retract then there is a isomorphic functional continua fn between the fundamental groups πn(X) and
πn(Y). It indicates that if X is compact as well as connected space and G is an upper semicontinuous
decomposition of X into the corresponding compact quotient space X/G, then X and X/G have same
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homotopy type. However, this observation holds if and only if the quotient space X/G is finite
dimensional in nature.

There are varieties of fundamental groups based on the nature of topological spaces. It is known
that in a connected and compact metric space, the fundamental groups can be finitely generated [5].
In the loop based topological space X, the quasitopological fundamental group π

qtop
1 (X, x0) is a

fundamental group variety with inherited quotient topology [6]. Interestingly, if a topological space
X does not have any universal cover then the fundamental groups are non-discrete. Moreover,
the quasitopological fundamental group is homotopy invariant in nature. It is illustrated that a locally
path connected metric space X is π1-shape injective if the fundamental groups given by πqtop

1 (X, x0) are
separated. Hence, a locally path connected space is homotopically path-Hausdorff if the fundamental
group πqtop

1 (X, x0) follows separation axioms in T1 topological space. The Peano continuity is defined
in the compact metric space, which is a connected space (including the locally connectedness property).
There exists homeomorphism between a fundamental group in one-dimensional Peano continuum
and another fundamental group in the Peano continuum on a plane if the map is continuous [7].
Moreover, a set of homotopy fixed points derived from a planar Peano continuum coincides with a
point set representing a space, which is not a (locally) simply connected space. In one-dimensional wild
space with Peano continuum, the fundamental group determines the respective homeomorphism type.
Note that the loops of fundamental groups in a planar space (set) are homotopy rigid [7].

In this paper, the two different varieties of homotopy decompositions are proposed in a connected
topological space. The aim is to analyze the variations in algebraic and topological properties
of homotopy decompositions in quotient topological spaces depending on the connectedness of
decomposed subspaces as well as fundamental groups. The main difference between the proposed
decomposition varieties is the variations of connectedness of the decomposed subspaces. However,
every variety of homotopy decomposition considers connected fundamental groups having different
base points. The analysis of decomposed homotopy within quotient topological space is presented
maintaining Hausdorff property. The decomposed quotient topological space extends Sierpinski
space symmetrically with respect to origin in specific case. In the following subsections (Sections 1.1
and 1.2), brief descriptions about the concepts of homotopy decomposition and motivation for this
work are presented.

1.1. Homotopy and Decomposition

The fundamental groups in a space can be formulated in various different ways. In general,
the fundamental group F of a group manifold denoted by G is Abelian. It is shown that if the
fundamental group of homogeneous space is solvable then it can be finitely generated [8]. If E is
the exterior of a knot based at point x, then the fundamental group of knot exterior can be defined
as γK : [0, 1]2 → (E, x) and in such case the homotopies fix the boundary points [9]. The Kampen
fundamental group is variety of fundamental groups in a topological space, where such groups are
dependent on the homeomorphism in subspaces [10]. In other words, the Kampen fundamental group
needs identification of homeomorphic subsets of underlying topological space. It is important to note
that, Kampen fundamental group considers separable and regular topological spaces. As the simplexes
are constructed with the possibility of inclusion of deformation, hence the underlying topological
space is considered to be an arc-wise connected space. Interestingly, the Kampen fundamental groups
can be generated as arc-wise connected components by using countable generators. If X, Y are two
one-connected spaces, then the Postnikov homotopy decomposition of f : X→ Y reduces space Y into
a point [11]. A topological space is not separable if it is path connected and most possibly a convex
space. However, this concept is further refined in hyperspace topological structures. If X is a space then
the topology in hyperspace is in 2X containing every closed subsets equipped with Vietoris topology of
exponential type [12]. The compactness of Vietoris topological hyperspace and the compactness of
original space X are equivalent in nature. The ordered arc maintains connectedness in a hyperspace by
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following the ordered set inclusion principle. As a result, the continuum in a topological hyperspace is
decomposable if and only if it is a union two proper subcontinua.

The compact Lie groups form classifying spaces and the corresponding homotopy theory is
developed for those classifying spaces. The homotopy decomposition of such classifying spaces
are constructed considering that maximal torus T exists in such spaces [13]. The similar homotopy
decomposition results were proposed by A. Borel considering the existence of normalizer NT of torus
forming the Weyl group given by NT/T. It is important to note that the Lie group is a connected group
supporting isomorphism and cohomology of primes. The corresponding homotopy decomposition
applies the algebraic functors of category theory [13]. Specifically, the functors maintain left-adjoint
property. From the geometric point of view, the groups of symplectomorphisms on symplectic
manifolds are considered for generating homotopy on the topological groups [14]. This means that
symplectomorphic groups of manifolds are considered as a class of topological groups. The initial results
are formulated based on symplectomorphic group actions on contractible spaces. In such case, a specific
condition is maintained that spaces should be compatible to almost complex symplectic manifolds.
The constructions employ various aspects of homotopy pushout decomposition, canonical projections
and amalgamation of topological groups [14]. Interestingly, the concept of tubular neighbourhood in a
contractible space is introduced to analyze homotopy. Note that, in this case the homology commutes
with sequential colimits of T1 topological spaces with closed inclusion [14]. Moreover, the homotopy
decomposition follows that the homotopy colimits maintain weak contraction and a weak equivalence
relation in contractible spaces, generating a quotient space.

1.2. Motivation

The theories of homotopy and fundamental groups of algebraic topology have several applications.
The properties of fundamental groups and homotopy differ depending on planarity, connectedness
and retraction within a space. In general, the homotopy decomposition considers different forms
of symmetries and homeomorphisms. However, an interesting question is: if such symmetry and
homeomorphism is relaxed in a connected topological space, then what would be the properties
of decompositions? What would be the nature of homotopy decompositions within the quotient
topological spaces if the fundamental groups are connected? Moreover, if the connected fundamental
groups differ in homotopic rigidity, then what would be the structural properties of connected quotient
topological spaces? These questions are addressed in this paper in relative details. It is illustrated that,
various homotopy decompositions with different forms of connectedness as well as homotopic rigidity
give rise to different sets of properties in the decomposed quotient topological spaces. Interestingly,
in specific cases, the decomposed quotient space generated from homotopy decomposition extends
Sierpinski space symmetrically with respect to origin. However, the trivial group structure in Sierpinski
space is preserved within the extended decomposed quotient topological space.

Rest of the paper is organized as follows. The preliminary concepts are presented in Section 2.
The proposed definitions and main results are presented in Sections 3 and 4, respectively. The discussion
about interrelation between the decomposed quotient space and Sierpinski space is illustrated in
Section 5. Finally, Section 6 concludes the paper.

2. Preliminary Concepts

In this section a set of basic definitions and preliminary concepts are presented to establish the
notions about topological spaces and homotopy. Note that the symbol S1 denotes 1-sphere in a complex
plane by following the standard representation. Let X be a point set and τX ⊆ P(X) be a subset of power
set of X. The structure (X, τX) is called a topological space if the following axioms are satisfied by

it: (I) {φ, X} ⊂ τX, (II) [{Ai : i ∈ Z+
} ⊂ τX]⇒

[
∪

i∈Z+
Ai ∈ τX

]
and, (III) [{Ai, Ak} ⊂ τX]⇒ [(Ai ∩Ak) ∈ τX] .

It indicates that the topological space includes indiscrete topology, countably infinite union of subspaces
and finite intersection between subspaces. A function f : (X, τX)→ (Y, τY) between two topological
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spaces is continuous if ∀x ∈ X,∃y ∈ Y such that f (Ux) ⊂ Uy, where Ux, Uy are open neighbourhoods of
x, y respectively. Let two continuous functions be defined between two spaces X, Y as, f1 : X→ Y and
f2 : X→ Y . The functions f1, f2 are called homotopic if there exists continuous F : X × [0, 1]→ Y such

that, F(x, 0) = f1(x) and F(x, 1) = f2(x). If we consider that {pi
∣∣∣pi : [0, 1]→ X} is a set of continuous

functions then it prepares two base points pi(0) ∈ X, pi(1) ∈ X in the space for some i ∈ Z+. If we consider
two such continuous functions, p1 : [0, 1]→ X and p2 : [0, 1]→ X then Fp : [0, 1]2 → X is called a path
homotopy if following properties are satisfied: (I) Fp(s ∈ [0, 1], 0) = p1(s), (II) Fp(s ∈ [0, 1], 1) = p2(s),
(III) Fp(0, t ∈ [0, 1]) = p1(0) = p2(0) and (IV) Fp(1, t ∈ [0, 1]) = p1(1) = p2(1).

The fundamental group in (X, τX) at a base point xb ∈ X is given by π1(X, xb ∈ X) containing
the homotopy class [p]xb and ∗H is the homotopy product such that ∀pi, pk ∈ [p]xb, pi ∗H pk is a loop
at base point xb. If {x0, x1, x2} ⊂ X are distinct base points in path homotopies (not necessarily
fundamental groups) then the homotopy product in topological space is given as: pi ∗H pk, where
pi(0) = x0, pi(1) = x1 and pk(0) = x1, pk(1) = x2. Note that, the homotopy functions pi, pk may belong
to different path homotopy classes, which are equivalent classes each. Moreover, the homotopy product
maintains the algebraic condition given by, [p] ∗H [q] = [p ∗H q], where [p], [q] are two homotopy classes
in (X, τX).

Two circle functions fc1 : [0, 2π]→ S1, fc2 : [0, 2π]→ S1 are called circle homotopic if there exits
a homotopy given by Fc : [0, 2π] × [0, 1]→ S1 such that the following condition is maintained:
∀t ∈ [0, 1], Fc(0, t) = Fc(2π, t). In the topological space (X, τX), if A ⊂ X is a subspace then v : X→ A
is a retract if and only if v(.) is continuous and the identity v(a ∈ A) = a is maintained.

3. Connected Fundamental Groups and Decomposed Homotopy

In this section, a set of definitions are formulated for topological path embeddings, homotopy
decompositions, and the generation of decomposed quotient topological spaces. In this paper, sets
< and Z represent sets of reals and integers, respectively. Note that, we consider two separable
Hausdorff topological spaces (X, τX) and (Y, τY) for the constructions. The open set Ux ⊂ X denotes
neighbourhood of x ∈ X and the similar concept also applies to (Y, τY) for some point in the
corresponding topological space. If A is topologically homeomorphic to B then it is denoted by
hom(A, B). It is important to note that, the proposed definitions and results consider multiple
connected as well as homeomorphic fundamental groups, where at least one group is circle homotopy
rigid. This indicates that, if we consider π1(X, xα) as a fundamental group in (X, τX), then it is
homotopy rigid with respect to a set of circle groups GS = {S1

∣∣∣i : i ∈ Z+
} such that ∀h ∈ [ f ]xα is closed

and there exists a homotopy equivalence χ : S1
∣∣∣i → (A ⊂ X) with homeomorphism hom(S1, A), where

the equivalence relation is preserved as A � h.

3.1. Topological Path Embedding

The topological path embedding closely follows the concept of generalized curve embeddings
within topological spaces [15]. Let A be an arbitrary set and (X, τX) be a Hausdorff topological
space. The continuous injective function l : A→ X is a topological path embedding such that
l(a ∈ A) , l(b ∈ A) if a , b. The functional composition involving such topological path embedding is
employed in later sections to construct homeomorphic curve embedding and associated structures
for homotopy decompositions. In particular, we are interested in arbitrary open paths (i.e., not loops)
generated from the corresponding arbitrary set. This means that, the topological open path embedding
does not involve any homotopy class. However, in order to generate such path embedding with
homeomorphism to a given arbitrary curve represented by a function, the open paths are composed
from the function with homeomorphism as defined below.
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3.2. Homeomorphic Embedding of Curve

Let f : [0, 1]→ A be a continuous open curve. The topological embedding (l ◦ f ) : [0, 1]→ (X, τX)

is a homeomorphic open path embedding if ∀x ∈ (l ◦ f ),∃y ∈ A such that Uy ⊆ l−1(Ux), where (l ◦ f )(.)
is injective and continuous in (X, τX).

Specifically, we consider ∃{x0}, {x1} ∈ τX such that x0 = (l ◦ f )(0) and x1 = (l ◦ f )(1) are distinct
points in the embedded open curve. This paper considers multiple fundamental groups in (X, τX),
which are connected through such points.

3.3. Connected Fundamental Groups

Let π1(X, xα) and π1(X, xβ) be two fundamental groups in (X, τX) such that {Aα, Aβ} ⊂ τX with
{xα} ⊂ Aα and {xβ} ⊂ Aβ. The fundamental groups π1(X, xα) and π1(X, xβ) are called connected in
(X, τX) if x0 = xα and x1 = xβ.

It is considered that ∃W ⊂ X, V ⊂ X such that W ∩V , φ and Aα ⊂W, Aβ ⊂ V, where Aα ∩Aβ = φ.
Thus, the fundamental groups are placed within the separation of subspaces in a path-connected
topological space.

Remark 1: Evidently, there exist two path-homotopies F0 : [0, 1]2 → (A0 ⊂ X, τX) and
F1 : [0, 1]2 → (A1 ⊂ X, τX) generating the fundamental groups π1(X, x0) and π1(X, x1) in (X, τX).
The corresponding homotopy classes associated to π1(X, x0) and π1(X, x1) are denoted by [h]x0 and
[h]x1 respectively. For the simplicity of notation, the fundamental groups in (X, τX) are distinguished
by indicated base points within the topological space.

3.4. Decomposed Homotopy Loop

If the homotopy loop hi∈Z+
0
∈ [h]x0 then the decomposition of hi is given by Dhi = {Ei1, Ei2, {x0}}

such that:
∪
B
(B ∈ Dhi) = hi,

Ei1 ∩ Ei2 , φ,
x0 < Ei1 ∪ Ei2.

(1)

Remark 2: In this paper we consider the equivalence relation hi � S1 allowing homotopy rigid.
However, it is maintained that hom(hk, S1) for hk∈Z+

0
∈ [h]x1 if not specified otherwise in some cases.

Moreover, the connected variety of decomposition is prepared in a way so that |Ei1 ∩ Ei2|= 1 , where
Ei1, Ei2 are half-open. Note that, if the decomposition is fully disconnected then Ei1 ∩ Ei2 = φ and the
decomposed components are open. In any case, the decomposition maintains the condition given as
Ei1 ⊂ S1, Ei2 ⊂ S1 by following homotopy rigid.

Once the decomposition of a homotopy loop is completed, the quotient topological maps can
be performed to generate quotient topology under decomposition. In this case, two separable
(i.e., not path connected) topological spaces are considered which are denoted by (X, τX) and (Y, τY),
where X∩Y = φ.

3.5. Decomposed Quotient Topology

Let the two separable Hausdorff topological spaces be given by (X, τX) and (Y, τY). The surjective
quotient map γ : Dhi → (Y, τY) is called a decomposed quotient map if the following conditions
are satisfied:

{A0, Ain} ⊂ τY, n ∈ {1, 2},
γ(Ein) = ain ∈ Ain,
γ({x0}) = a0 ∈ A0.

(2)
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The concept of decomposed quotient map enforces surjective property of the map while generating
quotient topology from the partitioned set-valued domain. It is illustrated in later sections of this
paper that the generated quotient topology under decomposition can retain discrete group algebraic
structures. However, first, we present a definition of the related cyclic generator and the corresponding
concept of cycle number.

3.6. Cyclic Generator and Cycle Number

Let hi ∈ [h]x0 be a homotopy loop in π1(X, x0) in (X, τX) and {g} be an isolated point set.
The function µ : hi → {g} is defined as:

m, n, p ∈ Z+,µ(x ∈ hi) = g,
gm
≡ ai1, m = 1, 4, . . . ,

gn
≡ ai2, n = 2, 5, . . . ,

gp
≡ a0, p = 3, 6, . . .

(3)

Hence, the element g is the cyclic generator of γ(Dhi) within (Y, τY) preparing a cyclic group itself
represented as Gg = (µ(hi), ·). The cycle number r ∈ Z+ denotes the repetition of cycle g4r in γ(Dhi).

Remark 3: It is easy to verify that if r = 1 then g4 completes a full closed cyclic sequence in γ(Dhi).
Note that g3 is identified with the identity element.

4. Main Results

A set of main results are presented in this section. It is important to note that the decomposed
quotient map between two separable topological spaces does not inherently generate group structure.
If the homotopy decomposition is a connected variety then the quotient map cannot be a uniform
surjection and the co-domain cannot induce a group structure. This observation is presented in
next theorem.

Theorem 1: The decomposed quotient topology γ(Dhi) cannot induce group structure from hi � S1 in (X, τX)

to (Y, τY) maintaining uniform surjection.

Proof: Let (X, τX) and (Y, τY) be two Hausdorff topological spaces such that X ∩Y = φ. Let π1(X, x0)

be a fundamental group in subspace (A0 ⊂ X, τX) associated to homotopy class [h]x0 with hi � S1,
where hi ∈ [h]x0. If γ : Dhi → (Y, τY) is a decomposed quotient map, then ∃B1 ⊂ Ei1 and ∃B2 ⊂ Ei2
such that γ(B1) = ai1 ∈ Ai1 and γ(B2) = ai2 ∈ Ai2, where {Ai1, Ai2} ⊂ τY. Suppose, ∃a0 ∈ A0 ∈ τY such
that it maintains γ({x0}) = a0 in (Y, τY). Let us assume that, G = (γ(Dhi), ∗Y) be a group of order 3,
where ∗Y : γ2

→ γ is closed in (Y, τY). Furthermore, let us consider that in the decomposed quotient
topological subspace the following group algebraic properties hold as, (ai1 ∈ γ) = (a−1

i2 ∈ γ) and
a0 ∈ γ, (ain ∗Y a0) = (a0 ∗Y ain) = ain with n ∈ {1, 2}. However, the definition of Dhi indicates that ∃x ∈ hi
such that γ({x}) = Ax ∈ τY, where Ax = {ai1, ai2} ⊆ Ai1 ∪Ai2 and x ∈ Ei1 ∩ Ei2. If hi � S1 condition
is maintained in π1(X, x0), then γ(.) is not invertible and it is a multi-valued surjection. This leads
to the contradiction about formation of induced G = (γ(Dhi), ∗Y) due to decomposed quotient map,
because it is not a uniform surjection. Hence, as a consequence G = (γ(Dhi), ∗Y) is not an induced
group structure in the decomposed quotient topology in (Y, τY) under uniform surjection. �

Example 1: The following example illustrates the concept. Let S1 be a unit circle group in the
complex z-plane and hi � S1. In G = (S1, ·) multiplicative group structure if xθ = eiθ in hi � S1

then ∀xθ ∈ hi,∃x−1
θ ∈ hi such that xθ.x−1

θ = x−1
θ .xθ = e2iπ

∈ S1. Moreover, it is true that ∀e±iθ
∈

S1, e±iθ.e2iπ = e2iπ.e±iθ = e±iθ. Suppose, Ei1, Ei2 are half-open in S1 and {x0} = {e2iπ
} for π1(X, x0).

If Ei1 ∩ Ei2 = {eiπ
} condition is maintained in Dhi by following concept of connected decomposition

then it leads to eiπ.eiπ = e2iπ
∈ S1. Moreover, in Dhi, one can select xθ ∈ Ei1\{eiπ

} and x−1
θ ∈ Ei2\{eiπ

}.
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As a result, if we consider γ(Dhi) = {yθ, y−1
θ , y0} ⊂ Y such that yθ = γ({xθ}) and y−1

θ = γ({x−1
θ }),

then assuming G = (hi � S1, ·) exists one can conclude that y0 = γ({x0}) = γ({xθ.x−1
θ }), where

y0 = γ({xθ}).γ({x−1
θ }) = yθ.y−1

θ . However, this leads to contradiction because γ({eiπ
}) = {yθ, y−1

θ } is a
multi-valued surjection maintaining Ei1 ∩ Ei2 = {eiπ

} and yθ.y−1
θ = y0. Hence γ(.) is not a uniform

surjection inducing a group structure in (Y, τY).

However, if the homotopy decomposition is a disconnected variety then the surjection is uniform,
and the decomposed quotient map induces a group structure. This property is presented as a
corollary below.

Corollary 1: If the decomposition of hi ∈ [h]x0 is fully disconnected such that Ei1 ∩ Ei2 = φ then there
is uniform quotient surjection γ(.) inducing a group G = (γ(D1

hi), ∗) of order 3 in (Y, τY), where D1
hi is

the disconnected decomposition.

Proof: Let D1
hi be a disconnected decomposition of hi ∈ [h]x0 considering fundamental group π1(X, x0)

in the topological space (X, τX). Thus, in D1
hi the decomposition maintains Ei1 ∩ Ei2 = φ, where both

Ei1, Ei2 are open sets. If the disconnected decomposition is formulated as, D1
hi = {Ei1, Ei2, {x0, x1}} such

that∪
B
(B ∈ D1

hi) = hi and the corresponding uniform surjection is given by γ : D1
hi → (Y, τY) generating

quotient topology such that γ(Ei1) = ai1,γ(Ei2) = ai2 and γ({x0, x1}) = a0 then G = (γ(D1
hi), ∗) is a

group of order 3 if and only if ai1 = a−1
i2 and ain ∗ a0 = a0 ∗ ain = ain, where n ∈ {1, 2}. �

Remark 4: It is interesting to note that, the multi-valued surjection (i.e., non-uniform surjection) can be
transformed under function composition to induce a group structure in quotient topological space. Let
P(Ai) be a power set of Ai = {ai1, ai2, a0} and δ : P(Ai)→ Ai be a single valued function following the
concept of axiom of choice [16,17]. If we restrict δ : P(Ai)→ Ai such that δ(B ∈ P(Ai)) = b ∈ B if |B|= 1
and apply axiom of choice if |B|> 1 , then (δ ◦ γ) : Dhi → (Y, τY) can induce a group G = ((δ◦γ)(Dhi), ∗)
in quotient subspace in (Y, τY).

In general, the orientations of various sets of path homotopies influence the behaviour of homotopic
product (∗H) of functions in homotopy classes in the fundamental groups. For example, hi ∗H hi = x0 in
π1(X, x0), where hi is the orientation reversing. However, the orientations in decomposed homotopy
paths also influence the formation of induced groups in quotient topological space. The appropriately
oriented homotopy paths in decomposed homotopy loops can directly induce additive group of order
3 in the decomposed quotient topological spaces. This observation is presented in next theorem.

Theorem 2: If s : [0, 1]→ hi and q : [0, 1]→ hi are two orientation reversing paths in decomposed homotopy
loop in [h]x0 then there exists decomposed quotient map γ : Dhi → (Y, τY) generating G = (γ(Dhi),+) in
quotient topological space.

Proof: Let (X, τX) and (Y, τY) be two Hausdorff topological spaces, which are not path connected. Let
π1(X, x0) be a fundamental group in (X, τX) and hi ∈ [h]x0 in the homotopy class such that hi � S1.
If s : [0, 1]→ hi and q : [0, 1]→ hi are two orientation reversing paths in decomposed homotopy loop
Dhi of hi ∈ [h]x0, then one can define them as:

s(t) = eiπt, t ∈ [0, 1],
q(t) = e−iπt, t ∈ [0, 1].

(4)
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Let us prepare the corresponding decomposition Dhi as given below:

Ei1 = {s(t) : t ∈ (0, 1]},
Ei2 = {q(t) : t ∈ (0, 1]},
x0 = s(0) = q(0).

(5)

This preserves the connected decomposition condition that, Ei1 ∩ Ei2 = {s(1)} = {q(1)}.
Suppose γ : Dhi → (Y ⊂ Z, τY) is a decomposed quotient map in integer space (Z) such that
γ(Ei1) = (iπt)−1 ln s(t) and γ(Ei2) = (iπt)−1 ln q(t). Thus, it leads to γ(Ei1 ∪ Ei2) = {−1, 1} ⊂ Y
and γ(Ei1 ∩Ei2) ⊂ {−1, 1}. Moreover, suppose the decomposed quotient map maintains γ({x0}) = 0 ∈ Y.
Hence, the generated quotient topological subspace from orientation reversing paths in the decomposed
homotopy loop induces a group G = (γ(Dhi),+), where γ(Dhi) = {−1, 0, 1} in (Y ⊂ Z, τY). �

The induced group structure formation in quotient topological spaces from the decomposed
homotopy loop can be further extended involving multiple fundamental groups in a connected
topological space. Suppose (X, τX) is a path connected topological space and two disjoint fundamental
groups are presented by π1(X, x0), π1(X, x1) within two separable subspaces (because (X, τX)

topological space is Hausdorff). It can be illustrated that the second quotient topological subspace can
acquire a group structure from the first one if a bijective composition can be established between the
two subspaces. This is explained in the next theorem.

Theorem 3: If π1(X, x0) andπ1(X, x1) are two fundamental groups in a path connected topological space (X, τX)

with two decomposed quotient maps γ : Dhi → (Y, τY) , γ : Dhk → (Y, τY) for the two corresponding homotopy
loops hi ∈ [h]x0, hk ∈ [h]x1 then there exists a bijection β : γ(Dhk)→ γ(Dhi) such that G1 = ((β ◦ γ)(Dhk),+)

is a group of order 3.

Proof: Let (X, τX) and (Y, τY) be two Hausdorff separated topological spaces (X∩Y = φ). Letπ1(X, x0)

and π1(X, x1) be two fundamental groups in (X, τX), where γ : Dhi → (Y, τY) and γ : Dhk → (Y, τY)

are two decomposed quotient maps from (X, τX) to (Y, τY). Suppose, the two corresponding disjoint
homotopy loops are hi ∈ [h]x0 and hk ∈ [h]x1. If the decompositions are denoted by Dhi = {Ei1, Ei2, {x0}}

and Dhk = {Ek1, Ek2, {x1}}. Let there be a bijection β : γ(Dhk)→ γ(Dhi) between the quotient topological
subspaces. One can formulate the bijection as:

akn, a1 ∈ γ(Dhk), n ∈ {1, 2},
β(akn) = β(ain),
β(a1) = a0.

(6)

Recall that G = (γ(Dhi),+) is a group of order 3. This leads to the conclusion that:

n, n + 1 ∈ {1, 2},
β(akn) + β(ak(n+1)) = β(a1),
β(a1) + β(akn) = β(akn),
β(a1) + β(ak(n+1)) = β(ak(n+1)),
β(a1) + β(a1) = β(a1).

(7)

Hence, the bijective composition structure G1 = ((β ◦ γ)(Dhk),+) is also a group in (Y ⊂ Z, τY). �

Remark 5: It is important to note that, in the above theorem we have considered that hi � S1; however
we have not put condition that hk � S1 in [h]x1. The above theorem is valid as long as hom(hk, S1)

condition is maintained.
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Evidently, multiple fundamental groups in a topological space can induce distributed disjoint
groups within decomposed quotient spaces. The following corollary illustrates that there exists an
isomorphism between groups in decomposed quotient spaces if they have equal order.

Corollary 2: Ifπ1(X, x0) andπ1(X, x1) are topologically homeomorphic in (X, τX) then G = (γ(Dhi),+)

and G1 = ((β ◦ γ)(Dhk),+) are isomorphic in (Y, τY).

Proof: Let (X, τX) and (Y, τY) are two Hausdorff topological spaces, where π1(X, x0) and π1(X, x1)

are disjoint topologically homeomorphic fundamental groups in (X, τX). Suppose homotopy loop
hi ∈ [h]x0 exists such that hi � S1. If f∗ : π1(X, x0)→ π1(X, x1) is a homeomorphism then f∗[h]x0 = [h]x1.
Note that G = (γ(Dhi),+) with order 3 is generated in decomposed quotient topological space of
hi ∈ [h]x0. However, due to homeomorphism it is true that f∗(hi) = hk ∈ [h]x1 and the structure
G1 = ((β ◦ γ)(Dhk),+) also has order 3 in (Y, τY). This leads to conclusion that, G1 � G (isomorphic)
in topological space (Y, τY). �

We have so far dealt with the properties of multiple fundamental groups and associated
decomposed quotient mappings within the topological spaces. However, earlier it is mentioned
that we are considering connected fundamental groups and such groups are placed in a connected
topological space. Moreover, the decomposed quotient spaces are generated in a separable topological
space. Hence, it is interesting to analyze the inherent locality of homeomorphism of the topological
spaces in this structural setting. The following theorem shows that an equivalence relation between
the two path embeddings exists.

Theorem 4: If ηX : (A ⊂ X, τX)→ (B ⊂ Y, τY) is a local homeomorphism in topological subspaces such that
(l ◦ f )([0, 1]) ⊂ A then there exists ηY : [0, 1]→ B such that ηX(A)

∣∣∣(l◦ f ) � ηY([0, 1]) .

Proof: Let (X, τX) and (Y, τY) be two separated Hausdorff topological spaces, where ηX : A→ B
is a local homeomorphism in topological subspaces A ⊂ X, B ⊂ Y. Suppose (l ◦ f ) : [0, 1]→ A is a
continuous embedding such that (l ◦ f )(0) = x0 and (l ◦ f )(1) = x1, where π1(X, x0) and π1(X, x1)

are two fundamental groups. As ηX : A→ B is a local homeomorphism in topological subspaces,
so ∀b ∈ ηX(.),∃a ∈ A such that Ua ⊆ η−1

X (Ub) and ηX(.) is a continuous bijection. Let ηY : [0, 1]→ B
be a continuous function such that ηY(0) = y0 ∈ Y and ηY(1) = y1 ∈ Y, where ηX(x0)

∣∣∣(l◦ f ) = ηY(0)
and ηX(x1)

∣∣∣(l◦ f ) = ηY(1) . This leads to the conclusion that ∀b ∈ (l ◦ f )(.),∃a ∈ ηY(.) such that
Ub ⊆ η

−1
X (Ua). As a result, the equivalence relation ηX(A)

∣∣∣(l◦ f ) � ηY([0, 1]) is maintained in respective
topological subspaces. �

Lemma 1: The following observations can be made further from the above theorem: if γ(Dhi) ⊂ YA ⊂

Y,γ(Dhk) ⊂ YB ⊂ Y such that YA ∩ YB = φ then G = (γ(Dhi),+) and G1 = ((β ◦ γ)(Dhk),+) are not
path connected, however if Ua0 ⊂ YA, a0 ∈ Ua0 and Ua1 ⊂ YB, a1 ∈ Ua1 are each locally path connected
open neighbourhoods, then Ua0 ∪Ua1 is a connected subspace in (Y, τY). As a result, Ua0, Ua1 are
locally dense sets.

Proof: The topological space (Y, τY) is Hausdorff and ∃Ua0, Ui1, Ui2 ⊂ YA such that Ua0 ∩Ui1 =

φ, Ua0 ∩Ui2 = φ and Ui1 ∩Ui2 = φ. The similar property holds for YB. Thus the subspaces YA and
YB are consisting of countable dense sets if ∀x ∈ γ(Dhi)∪ γ(Dhk) the open neighbourhoods maintain
Ux ∪ ∂Ux = Ux. Hence, the subspaces Ua0 ⊂ YA, a0 ∈ Ua0 and Ua1 ⊂ YB, a1 ∈ Ua1 are connected by
ηY([0, 1]). Moreover, Ua0, Ua1 are locally dense and are also locally path connected. �

There exists a set of homotopically equivalent paths between topological spaces containing
connected fundamental groups and decomposed quotient subspaces. The following theorem presents
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this property considering ∗H as homotopic function product. Note that �H denotes the equivalence of
path homotopy between two homotopic paths in the topological space.

Theorem 5: If f∗ : π1(X, x0)→ π1(X, x1) is a homeomorphism in (X, τX) with α � (l ◦ f )([0, 1]) and
βG : G→ G1 is a bijection in (Y, τY) then there are oriented homotopy paths in p0 : π1(X, x1)→ π1(X, x0)

and p1 : π1(X, x0)→ π1(X, x1) such that (βG ◦ γ)(w) = γ(v), where w ≡ α ∗H f∗[h]x0 ∗H α and v ≡
α ∗H [h]x0 ∗H α.

Proof: Let f∗ : π1(X, x0)→ π1(X, x1) be a homeomorphism in topological space (X, τX) such that
α � (l ◦ f )([0, 1]) is an isomorphic path in (X, τX). Let βG : G→ G1 be a bijection in (Y, τY) and γ(.) is
a decomposed quotient map between (X, τX) and (Y, τY). Suppose one defines the oriented homotopy
paths in p0 : π1(X, x1)→ π1(X, x0) and p1 : π1(X, x0)→ π1(X, x1) as p0[h]x1 = ([α] ∗H [α]) ∗H [h]x0
and p1[h]x0 = ([α] ∗H [α]) ∗H [h]x1 respectively. However, as f∗[h]x0 = [h]x1 thus p1[h]x0 = ([α] ∗H
[α]) ∗H f∗[h]x0 is in (X, τX). Moreover, if the constant path is defined as exn : [0, 1]→ (xn ∈ X), n ∈ {0, 1}
such that ex0(t ∈ [0, 1]) = x0 = ([α] ∗H [α]) and ex1(t ∈ [0, 1]) = x1 = ([α] ∗H [α]) then there are
equivalences of path homotopies denoted by ex1([0, 1]) �H p0[h]x1 ∗H [α] and ex0([0, 1]) �H p1[h]x0 ∗H [α].
Thus, if one selects two homotopic paths w ≡ α ∗H f∗[h]x0 ∗H α and v ≡ α ∗H [h]x0 ∗H α, then w = x0 and
v = x1. This leads to the conclusion that (βG ◦ γ)(w) = γ(v) in (Y, τY). �

Remark 6: Note that in the homotopy classes the following condition is maintained: f∗([α] ∗H [h]x0) =

f∗[α] ∗H f∗[h]x0. However, it is easy to verify that f∗[h]x0 = p1[h]x0 and p1[h]x0 = ([α] ∗H [α]) ∗H [h]x1.
This leads to the condition that f∗[α] = f∗[α] ∗H ([α] ∗H [α]). Hence, one can conclude that f∗[α] =
f∗[α] ∗H ex1([0, 1]) and [α] ∗H [α] , [α] ∗H [α]. Moreover, the following commutativity is maintained:
f∗[α] ∗H ex1([0, 1]) = ex1([0, 1]) ∗H f∗[α].

The connectedness of fundamental groups gives rise to an interesting property. It indicates that
it is possible to formulate a homotopically equivalent path involving multiple homotopy classes.
This property is illustrated in next theorem.

Theorem 6: If π1(X, x0) and π1(X, x1) are two connected fundamental groups in topological space (X, τX)

with hil ∈ [h]x0, hkm ∈ [h]x1 and α � (l ◦ f )([0, 1]) then ∃ − a, b ∈ < such that λ : [−a, b]→ (X, τX) exists,
where λ([−a, b]) �H hil ∗H α ∗H hkm for some l, m ∈ Z+.

Proof: Let (X, τX) be a topological space and π1(X, x0),π1(X, x1) are two connected fundamental
groups. Consider α � (l ◦ f )([0, 1]) as a path for the corresponding embedding in (X, τX). Suppose
∃ − a, b ∈ <, b > 1 such that there exist two disjoint path homotopies given by Fi : [−a, 0]2 → (X, τX)

and Fk : [1, b]2 → (X, τX) . As result, one can consider l, m ∈ Z+, ∀hil ∈ [h]x0,∀hkm ∈ [h]x1 to formulate
the sets of homotopic functions, which is given as:

l ≤ L, m ≤M,
hil : [−a, 0]→ (X, τX),
hkm : [1, b]→ (X, τX),
hil(−la) = hil(0) = x0,
hkm(mb) = hkm(1) = x1.

(8)

Suppose a continuous function λ : [−a, b]→ (X, τX) exists such that λ(−a) = x0,λ(b) = x1.
Moreover, the continuous function maintains the condition, λ([0, 1]) = (l ◦ f )([0, 1]) in the
topological space (X, τX). Furthermore, the continuous function λ : [−a, b]→ (X, τX) maintains
the following properties:

λ(t ∈ [−a, 0]) = hil(lt), l ∈ [1, L],
λ(t ∈ [1, b]) = hkm(mt), m ∈ [1, M].

(9)
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Let A ⊂ X be a subspace and there are subspaces given by Bi = {x ∈ X : x ∈ hil ∈ [h]x0}, Bk =

{x ∈ X : x ∈ hkm ∈ [h]x1} such that the combined subspace is given by, A = (l ◦ f )([0, 1]) ∪ Bi ∪ Bk.
Thus λ : [−a, b]→ A is continuous in the corresponding topological subspace. As a result, if we
consider a homotopy path hil ∗H α ∗H hkm in A ⊂ X then it will maintain equivalence of path homotopy
as λ([−a, b]) �H hil ∗H α ∗H hkm.

There exists a relation between isolated point set {g} and the decomposed quotient topological
space if the element of the point set is a generator of the induced group in the decomposed quotient
space. This relation has an effect on the finiteness of cycle number. This observation is presented in the
following theorem. �

Theorem 7: If hi : [0, 1]→ (X, τX) generates a path homotopy in fundamental group π1(X, x0) then∏
t∈[0,1]

µ(hi(t)) induces infinite cycle number, i.e., r→ +∞ in γ(Dhi).

Proof: Let hi : [0, 1]→ (X, τX) be a path homotopy in the fundamental group π1(X, x0) in the
topological space (X, τX). Note that, the interval [0, 1] ⊂ <+ is uncountable and compact real
subspace in nature. As hi(0) = hi(1) in π1(X, x0), hence µ(hi(0)).µ(hi(1)) = g2. Moreover, ∀t ∈ (0, 1)
it is true that µ(hi(t)) = g by the definition. If one chose ε > 0, ε ∈ <+ and the corresponding
interval [t − ε, t + ε], then the interval is also uncountable. This leads to conclusion that, ∃v ∈ Z+

and
∏

u∈[t−ε,t+ε]
µ(hi(u)) = lt

v→+∞
gv
∈ Gg, where Gg = (µ(hi), ·) in (Y, τY). However, this further

leads to the equality involving the cycle number of the cyclic generator that r = lt
v→+∞

(v/4), where

gm = ai1, gn = ai2, gp = a0 and m > 1, n > 1, p > 1. Hence, the product
∏

t∈[0,1]
µ(hi(t)) induces cycle

number r→ +∞ in γ(Dhi). �

This indicates that a continuous homotopic path in the fundamental group generates a countable
infinite cycle number of cyclic generators of the group in the decomposed quotient topological subspace.

5. Discussion: Relation to Sierpinski Space

The Krull–Schmidt property of modular decomposition states that an object decomposes in a
unique way such that a set of further indecomposable objects is generated [18]. This concept is
maintained in the homotopy decomposition varieties presented in this paper in the quotient topological
spaces. There is a relationship between the Sierpinski space and the proposed decomposed homotopy
in quotient topological space (referred to as DHQ space). The proposed decomposed quotient space
generated from the decomposed homotopy loop extends the Sierpinski space [19]. If the Sierpinski
set is given by SP then the one-point extension of Sierpinski set is the set SPγ = SP ∪ {−1} supporting
the additive group G = (γ(Dhi),+) within the decomposed quotient topological subspace. Note that,
the group in Sierpinski space is trivial, in general. However, the induced additive group in decomposed
quotient topological is not necessarily trivial in nature. The one-point extension of Sierpinski space by
the proposed decomposed quotient topological space is symmetric with respect to origin. As a result,
the Sierpinski topology is also extended in decomposed quotient space due to symmetric one-point
extension of the basis set. The extension of topological space is given by E = {{−1}, SPγ}, which can
be included in the original Sierpinski topological space. The summary of interrelationship between
Sierpinski space and its extension in the decomposed quotient space is given in Table 1.

The extension is null if the space is the original Sierpinski space. Otherwise, the basis set is
symmetrically extended with respect to origin and the topological space is extended by inclusion of
resulting topological subspaces. Note that both the spaces are connected in nature in<. The interesting
distinction between the two spaces is based on the uniqueness of non-zero sequence. In case of
Sierpinski space, the non-zero sequence generates a unique cluster point and it is a constant sequence.
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However, in the case of extended Sierpinski space, the non-zero sequences are not unique and as a
result the cluster points are also not necessarily unique.

Table 1. Summary of interrelationship between Sierpinski space and DHQ space.

Space/Set Extension Topology Group Connectedness Compact

Sequentially
Complete
(Non-Zero
Sequence)

Non-Zero
Sequence

Sierpinski {φ}
Sierpinski

topology, τSP
Trivial Yes Compactible Always Unique

cluster-point
Decomposed

homotopy
quotient

E τSPγ = τSP ∪ E Non-trivial Yes Compactible Not always
Not necessarily

unique
cluster-point

Note that, the non-zero convergent sequences in extended Sierpinski space are constants alike original space.
Interestingly, the Sierpinski space is sequentially complete in terms of non-zero sequence. However, it may not be
always true in extended Sierpinski space.

6. Conclusions

The algebraic as well as topological properties of homotopy decomposition vary depending on
the connectedness of the topological space. This paper proposes the homotopy decompositions of
path connected fundamental groups into quotient topological spaces. The proposed decompositions
have two varieties with respect to the connectedness of decomposed subspaces. The resulting
decomposed quotient spaces in a topological space with separation from the base space containing
fundamental groups give rise to the variations in algebraic and topological properties depending on the
connectedness of homotopy decompositions. It is shown that, if the decomposed subspaces maintain
path connectedness within the components, then the decomposed quotient topological space cannot
induce an additive group structure maintaining uniform surjection. However, if the decomposition of
homotopy is disconnected variety then it maintains uniform surjection and successfully induces an
additive group structure within the decomposed quotient topological spaces. The proposed formulation
is supported by fundamental group which is homotopy rigid with respect to a set of circle groups in
a complex plane. It is illustrated that there exists bijection between multiple decomposed quotient
topological spaces allowing formation of group structures under function composition. Interestingly,
the proposed disconnected homotopy decomposition under quotient map extends the Sierpinski space
within the decomposed quotient topological space while preserving the trivial group of Sierpinski
space. The one-point extension of the Sierpinski space is symmetric with respect to origin. Furthermore,
the cyclic generator of the group in the decomposed quotient topological space attains infinite cycle
number when the decomposed homotopy generates locally connected open path components in
homotopy class.
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