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Abstract: The main focus of this research is on a comprehensive analysis of robust dissipativity issues
pertaining to a class of uncertain stochastic generalized neural network (USGNN) models in the presence
of time-varying delays and Markovian jumping parameters (MJPs). In real-world environments, most
practical systems are subject to uncertainties. As a result, we take the norm-bounded parameter
uncertainties, as well as stochastic disturbances into consideration in our study. To address the task,
we formulate the appropriate Lyapunov–Krasovskii functional (LKF), and through the use of effective
integral inequalities, simplified linear matrix inequality (LMI) based sufficient conditions are derived.
We validate the feasible solutions through numerical examples using MATLAB software. The simulation
results are analyzed and discussed, which positively indicate the feasibility and effectiveness of the
obtained theoretical findings.

Keywords: neural networks; stochastic disturbance; robust dissipativity; Markovian jump parameters

1. Introduction

Over the last few decades, many studies on a wide variant of neural network (NN) models and
their applications to different fields, e.g., optimization, image analysis, pattern recognition, and signal
process, have been conducted [1–7]. With regard to stability analysis of NNs, two mathematical models
are commonly adopted: either local field NN models or static NN models. Nevertheless, both categories
of models are not always equivalent. By following certain assumptions, we are able to transform them
into compact representations. As such, there exists a class of unified generalized neural network (GNN)
models in the literature [8–10]. Indeed, theoretical investigations on various dynamical properties of
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GNNs have become available recently, e.g., [8–13]. On the other hand, time delays arise naturally in
nearly all dynamical systems, e.g., in chemical processes, nuclear reactors, and other fields [14–20]. In real
environments, time delays are commonly viewed as one of the main factors that contribute to unstable
system performance. In general, time delays can be categorized as either constant delays or time-varying
delays (which constitute a generalized case of constant time delays). In the literature, a number of
aspects concerning various dynamical characteristics of time-delayed NN models have been examined,
and effective methods that produce significant results have been reported [18–35]. On the other hand,
the Markovian jumping neural network (MJNN) has recently received significant research interest. It is an
extremely useful model for understanding the underlying dynamics when the NNs incorporate abrupt
changes in their structure. Studies on MJNN models with various dynamical properties are available in the
literature [17–21]. In practical modeling problems, it is inevitable for most NN models to exhibit stochastic
effects. A comprehensive investigation of NN models with certain stochastic inputs is necessary [22–26].
The stability of stochastic nonlinear systems has recently become an important research field. Considerable
efforts have been devoted to stochastic NNs with Markovian jumping parameters (MJPs), and several
stability conditions have been published recently [23–27]. In [19], issues on exponential stability pertaining
to stochastic NNs with MJPs were tackled using the Lyapunov functional method. The research in [20]
focused on the stability issues related to stochastic NN models with Markovian switching. Similar results
with respect to the proposed problem have also been published, e.g., [18–28]. Another concern in modeling
practical systems is uncertainties associated with the system parameters. Indeed, many practical systems
in real environments are susceptible to uncertainties. Thus, the investigations on NN models along with
their uncertain parameters are important [27–31].

Undoubtedly, the dissipative behavior is essential in control and engineering problems. As a result,
the dissipativity analysis of USGNN models is of importance, and this area has attracted attention
from many researchers [34–40]. In [37], three types of neuron activation functions were discussed for
global dissipativity of delayed recurrent NN models: monotonous non-decreasing, Lipschitz-continuous,
and bounded. In [38], the problem with respect to the global dissipativity of NN models subject to
unbounded, as well as time-varying delays was addressed. Meanwhile, by exploiting the multi-dynamic
behaviors derived from the (Q,S ,R) dissipativity principles, researchers were able to obtain effective
results by changing the system weight matrices. These results are useful for undertaking various control
and engineering problems [35–39]. Recently, analyses on the (Q,S ,R) dissipativity issues in NN models
became available, e.g., [40–42]. Nonetheless, there are only a few studies on the dissipativity of GNNs
with MJPs. In accordance with our literature analysis, robust dissipativity analyses pertaining to USGNN
models that incorporate the Markovian jumping parameters and time-varying delays constitute a new
research topic, which is the main focus and contribution of our current paper.

In view of the limitations of many existing studies, it is our goal to establish robust dissipativity
and stability for USGNNs with Markovian jumping parameters. By leveraging Lyapunov stability
theory, we incorporate time-delay information into the formulation of appropriate Lyapunov–Krasovskii
functionals (LKFs). The LKF derivatives are estimated with new integral inequalities, which offer less
conservatism in the results. By employing Ito’s formula and some analytic techniques, robust dissipativity
and stability conditions can be formulated using simplified LMI. We present several numerical examples
to ascertain the results.

In Sections 2 and 3, we present the problem definition and the main results. Section 4 presents the
numerical examples, while Section 5 outlines the conclusions.

Notations: In the following presentation, Rn indicates an n-dimensional Euclidean space; Rn×n

indicates the set of n × n real matrices, while P > 0 indicates a symmetric positive definite matrix.
The transpose of X is denoted by the superscript in XT . In addition, tr{D} denotes the trace of matrix D.
Given a symmetric block matrix, the elements below its main diagonal are denoted by ?. On the other hand,
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(Ω,F,P) indicates a complete probability space that incorporates a natural filtration. Besides that, diag{.}
indicates a block diagonal matrix. An identify matrix having appropriate dimensions is dented by In.
The mathematical expectation is denoted by E{·}, while L2[0, ∞) indicates the space of an n-dimensional
square integral vector function pertaining to [0, ∞).

2. Problem Statement and Basic Information

By using {e(t), t ≥ 0} to express a right-continuous Markovian process on (Ω,F,P), we have the
transition probability matrix Π = [πxy]N×N on a finite state space S = {1, 2, ..., N} as:

Pr{e(t +4t) = y|e(t) = x} =
{

πxy4t + o(4t), if x 6= y,
1 + πxx4t + o(4t), if x = y,

(1)

subject to x 6= y, where πxy ≥ 0 indicates the transition rate from x to y and πxx = −
N
∑

y=1,y 6=x
πxy.

In addition,4t > 0 and lim
4t→0

o(4t)
4t = 0.

A GNN model that incorporates time-varying delays and MJPs is considered, i.e.,{
ṗ(t) = −D(e(t))p(t) + A(e(t))g(W(e(t))p(t)) + B(e(t))g(W(e(t))p(t− r(t))) + u(t)
q(t) = g(W(e(t))p(t)),

(2)

where the state vector is denoted by p(t) = [p1(t), p2(t), ..., pn(t)]T ∈ Rn, while
g(W(e(t))p(·)) =[g1(W(e(t))p1(·)), g2(W(e(t))p2(·)), ..., gn(W(e(t))pn(·))]T∈ Rn is the nonlinear neuron
activation function. In addition, the external disturbance is indicated by u(t) = [u1(t), ..., un(t)]T ∈ Rn,
which belongs to L2[0, ∞). Note that r(t) corresponds to the transmission delay, while the output vector
is indicated by q(t)=[q1(t),..., qn(t)]T∈ Rn. Let p(t) = φ(t) on −r ≤ t ≤ 0 in φ ∈ C([−r, 0];Rn) be the
initial condition of (2). Besides that, D(e(t)), A(e(t)), B(e(t)), and W(e(t)) are the matrix functions of e(t).
For each e(t) ∈ S,

D(e(t)) =


d1(e(t))

.
.

.
dn(e(t))

 ∈ Rn, A(e(t)) =


a11(e(t)) . . . a1n(e(t))

. . .

. . .

. . .
an1(e(t)) . . . ann(e(t))

 ∈ Rn×n,

B(e(t)) =


b11(e(t)) . . . b1n(e(t))

. . .

. . .

. . .
bn1(e(t)) . . . bnn(e(t))

 ∈ Rn×n, W(e(t)) =


w11(e(t)) . . . w1n(e(t))

. . .

. . .

. . .
wn1(e(t)) . . . wnn(e(t))

 ∈ Rn×n.

(A1): The known time-delay of an NN model (2), i.e., r(t), satisfies:

0 ≤ r(t) ≤ r, ṙ(t) ≤ µ. (3)

where µ and r are known real constants.
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(A2): For all ζ1, ζ2 ∈ R, ζ1 6= ζ2, the activation function of a neuron, i.e., g(·) is continuous and
bounded, which fulfills the following:

[g(ζ1)− g(ζ2)− ∆1(ζ1 − ζ2)]
T [g(ζ1)− g(ζ2)− ∆2(ζ1 − ζ2)] ≤ 0, (4)

where ∆1 and ∆2 are known constant matrices.

Remark 1. Assumption (A2) is imposed on the activation function of a neuron, which is known as the sector-bounded
activation function. In the numerical example later, we can see that this sector bound condition (4) achieves a less
conservative result than those from both the sigmoid and Lipschitz based activation functions.

As stated before, NN models are affected by environmental noise in the real world, compromising the
equilibrium stability. To undertake this challenge, we study a stochastic model in which the consequent
part of a GNN model is subject to a set of stochastic MJPs with time-varying delays, as follows:

dp(t) = [−D(e(t))p(t) + A(e(t))g(W(e(t))p(t)) + B(e(t))g(W(e(t))p(t− r(t))) + u(t)]dt
+σ(t, p(t), p(t− r(t)), e(t))dω(t),

q(t) = g(W(e(t))p(t)),
(5)

where the Brownian motion n-space on (Ω,F,P) is denoted by ω(t) = [ω1(t), ..., ωn(t)]T ∈ Rn, while the
stochastic perturbation is denoted by σ(t, p(t), p(t− r(t)), e(t)). Besides that, σ(·) : R+ ×Rn ×Rn × S→
Rn×n is Borel measurable with σ(0, 0, 0, e(t)) ≡ 0.

For simplicity, let e(t) = x, (x ∈ S). As such, W(e(t)) = Wx, D(e(t)) = Dx, A(e(t)) = Ax, B(e(t)) =
Bx. Model (5) becomes:

dp(t) = [−Dx p(t) + Axg(Wx p(t)) + Bxg(Wx p(t− r(t))) + u(t)]dt
+σ(t, p(t), p(t− r(t)), x)dω(t)

q(t) = g(Wx p(t)).
(6)

For convenience, we adopt the following abbreviations:{
ϕ(t) , −Dx p(t) + Axg(Wx p(t)) + Bxg(Wx p(t− r(t))) + u(t)
σ(t) , σ(t, p(t), p(t− r(t)), x).

(7)

As such, Model (6) becomes: {
dp(t) = ϕ(t)dt + σ(t)dω(t)
q(t) = g(Wx p(t)).

(8)

(A3): For all x ∈ S, matrices L1x > 0, L2x > 0 exists, and they satisfy:

tr{σT(t)σ(t)} ≤ pT(t)L1x p(t) + pT(t− r(t))L2x p(t− r(t)). (9)
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Consider V ∈ C(R+ ×Rn ×Rn × S;R. Pertinent to the trajectory of model (6), we can formulate an
operator LV from R+ ×Rn ×Rn × S to R, i.e.,

LV(t, p(t), x) =Vt(t, p(t), x) +Vp(t, p(t), x)[−Dx p(t) + Axg(Wx p(t)) + Bxg(Wx p(t− r(t))) + u(t)]

+
1
2

tr[σT(t, p(t), p(t− r(t)), x)Vpp(t, p(t), x)σ(t, p(t), p(t− r(t)), x)]

+
N

∑
y=1

πxyV(t, p(t), y),

where:

Vt(t, p(t), x) =
∂V(t, p(t), x)

∂t
,

Vp(t, p(t), x) =
(

∂V(t, p(t), x)
∂p1

, ...,
∂V(t, p(t), x)

∂pn

)
,

Vpp(t, p(t), x) =
(

∂2V(t, p(t), x)
∂px∂py

)
n×n

.

Definition 1 ([28]). Model (6) is mean-squared stable if for any ε > 0, a scalar υ(ε) > 0 exists in which
E{‖p(t)‖2} < ε, t > 0, whenever sup

−r≤t≤0
E{‖φ(t)‖2} < υ(ε). Besides that, Model (6) is mean-squared

asymptotically stable for any initial condition, if the inequality is satisfied lim
t→∞

E{‖p(t)‖2} = 0.

Definition 2 ([36]). Model (6) is strictly (Q,S ,R)− γ− dissipative if for γ > 0 and a zero initial condition,
the inequality below is satisfied:

E{G(u, q, td)} ≥ E{γ〈u, u〉td}, ∀td ≥ 0. (10)

Remark 2. The energy supply function G(u, q, td) can be expressed as follows:

G(u, q, td) = 〈q,Qq〉td + 2〈q,Su〉td + 〈u,Ru〉td , ∀td ≥ 0, (11)

where Q,S ,R ∈ Rn×n, and Q,R are symmetric. In addition,
∫ td

0 qT(t)Qq(t)dt,
∫ td

0 qT(t)Su(t)dt and∫ td
0 uT(t)Ru(t)dt are represented by 〈q,Qq〉td , 〈q,Su〉td and 〈u,Ru〉td , respectively.

As a result, the following dissipativity condition represents the relation in (10):

Jγ,td =
∫ td

0
E
{[

q(t)
u(t)

]T [
Q S
? R− γI

] [
q(t)
u(t)

]}
dt. (12)

Definition 3 ([29]). Model (6) is passive if there exists a scalar γ > 0 in which all td ≥ 0,

2
∫ td

0
E{qT(t)u(t)}dt ≥ −γ

∫ td

0
E{uT(t)u(t)}dt. (13)

The condition in (13) holds for all solutions with p(0) = 0.
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Lemma 1 ([43]). Consider scalars s1 and s2 that satisfy s1 < s2 and a matrix W = WT > 0. Pertinent to all
continuous functions that are differentiable ϑ in [s1, s2]→ Rn, the following inequality holds:∫ s2

s1

ϑT(z1)Wϑ(z1)dz1 ≥
1

(s2 − s1)
vT

1 Θ1v1,

where:

v1 =

[ ∫ s2

s1

ϑT(z1)dz1

∫ s2

s1

∫ z1

s1

ϑT(z2)dz2dz1

∫ s2

s1

∫ z1

s1

∫ z2

s1

ϑT(z3)dz3dz2dz1

]T

,

Θ1 =


9W −36

(s2−s1)
W 60

(s2−s1)2 W
−36

(s2−s1)
WT 192

(s2−s1)2 W −360
(s2−s1)3 W

60
(s2−s1)2 WT −360

(s2−s1)3 WT 720
(s2−s1)4 W

 .

Lemma 2 ([44]). Consider scalars s1 and s2 that satisfy s1 < s2 and a matrix R = RT > 0. Pertinent to all
continuous functions that are differentiable ϑ in [s1, s2]→ Rn, the following inequality holds:∫ s2

s1

∫ z1

s1

ϑT(z2)Rϑ(z2)dz2dz1 ≥
2

(s2 − s1)2 vT
2 Θ2v2,

where:

v2 =

[ ∫ s2

s1

∫ z1

s1

ϑT(z2)dz2dz1

∫ s2

s1

∫ z1

s1

∫ z2

s1

ϑT(z3)dz3dz2dz1

∫ s2

s1

∫ z1

s1

∫ z2

s1

∫ z3

s1

ϑT(z4)dz4dz3dz2dz1

]T

,

Θ2 =


6R − 30

(s2−s1)
R 60

(s2−s1)2 R

− 30
(s2−s1)

R 210
(s2−s1)2 R − 480

(s2−s1)3 R
60

(s2−s1)2 R − 480
(s2−s1)3 R 1200

(s2−s1)4 R

 .

Lemma 3 ([45]). Consider scalars s1 and s2 that satisfy s1 < s2 and a matrix M = MT > 0. Pertinent to all
continuous functions that are differentiable ϑ in [s1, s2]→ Rn, the following inequality holds:

∫ s2

s1

ϑT(z1)Mϑ(z1)dz1 ≥
1

(s2 − s1)

[ ∫ s2

s1

ϑ(z1)dz1

]T

M
[ ∫ s2

s1

ϑ(z1)dz1

]
.

Lemma 4 ([46]). Consider that J1 and J2 are real matrices, and Θ = ΘT , F(t) fulfills FT(t)F(t) ≤ I. As a
result, Θ + (J1F(t)J2) + (J1F(t)J2)

T < 0, iff there exists a scalar ε > 0 in which Θ + ε−1J1JT
1 + εJT

2 J2 < 0
or equivalently: Θ J1 εJ2

? −εI 0
? ? −εI

 < 0.
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3. Main Results

For clarity of the notations, we adopt the following abbreviations in the remaining part of this paper:

pt , p(t),

pr(t) , p(t− r(t)),

pr , p(t− r),

gt , g(Wx p(t)),

gr(t) , g(Wx p(t− r(t))),

qt , q(t),

ut , u(t),

ϕt , ϕ(t),

ϕr(t) ,
∫ t

t−r
ϕ(z1)dz1,

χ1 ,
∫ t

t−r
p(z1)dz1,

χ2 ,
∫ 0

−r

∫ t+z1

t−r
p(z2)dz2dz1,

χ3 ,
∫ 0

−r

∫ t+z1

t−r

∫ t+z2

t−r
p(z3)dz3dz2dz1,

χ4 ,
∫ 0

−r

∫ t+z1

t−r

∫ t+z2

t−r

∫ t+z3

t−r
p(z4)dz4dz3dz2dz1,

ξ(t) , [pT
t ϕT

t pT
r(t) pT

r gT
t gT

r(t) ϕT
r(t) χT

1 χT
2 χT

3 χT
4 uT

t ]
T .

3.1. Dissipativity Analysis

In this subsection, we use the LKF and LMI methods to establish several key sufficient conditions for
dissipativity analysis of Model (6).

Theorem 1. Model (6) is (Q,S ,R)-dissipative subject to any given scalars 0 < r and 0 < µ in which matrices
Px(x ∈ S) > 0, Q > 0, R > 0, S > 0, U > 0, V > 0, X > 0, and any matrices G1, G2, diagonal matrices
H1 > 0, H2 > 0, and scalars δx(x ∈ S) > 0, γ > 0 exist, whereby, given all (x ∈ S), the LMIs below are valid:

Px ≤ δxI, (14)

Θx = (Θi,j,x)12×12 < 0, (15)

where

Θ1,1,x ,
N
∑

y=1
πxyPy + Q + R + r2U + r4

4 V + δxL1x − G1Dx − (G1Dx)T − H1WT
x K1Wx, Θ1,2,x , Px −

G1 − (G2Dx)T , Θ1,5,x , G1Ax + H1WT
x K2, Θ1,6,x , G1Bx, Θ1,12,x , G1, Θ2,2,x , rX − G2 −

GT
2 , Θ2,5,x , G2Ax, Θ2,6,x , G2Bx, Θ2,12,x , G2, Θ3,3,x , −(1 − µ)Q + δxL2x − H2WT

x K1Wx,
Θ3,6,x , H2WT

x K2, Θ4,4,x , −R, Θ5,5,x , S − H1 − Q, Θ5,12,x , −S , Θ6,6,x , −(1 − µ)S −
H2, Θ7,7,x , − 1

r X, Θ8,8,x , −9U, Θ8,9,x , 36
r U, Θ8,10,x , − 60

r2 U, Θ9,9,x , − 192
r2 U− 6V, Θ9,10,x ,

360
r3 U + 30

r V, Θ9,11,x , − 60
r2 V, Θ10,10,x , − 720

r4 U − 210
r2 V, Θ10,11,x , 480

r3 V, Θ11,11,x , − 1200
r4 V,

Θ12,12,x , −R+ γI.
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Proof. For Model (6), the LKF candidate is as follows:

V(t, pt, x) =
4

∑
i=1

Vi(t, pt, x), (16)

where:

V1(t, pt, x) = pT
t Px pt,

V2(t, pt, x) =
∫ t

t−r(t)
pT(z1)Qp(z1)dz1

+
∫ t

t−r
pT(z1)Rp(z1)dz1

+
∫ t

t−r(t)
gT(Wx p(z1))Sg(Wx p(z1))dz1,

V3(t, pt, x) = r
∫ 0

−r

∫ t+z1

t−r
pT(z2)Up(z2)dz2dz1

+
r2

2

∫ 0

−r

∫ t+z1

t−r

∫ t+z2

t−r
pT(z3)Vp(z3)dz3dz2dz1

V4(t, pt, x) =
∫ 0

−r

∫ t+z1

t−r
ϕT(z2)Xϕ(z2)dz2dz1.

A weak infinitesimal random process is denoted by L. As such, Ito’s formula can be used to compute
V(t, pt, x), i.e.,

dV(t, pt, x) = LV(t, pt, x)dt + {σ(t, pt, pr(t),x}dω(t), (17)

where:

LV(t, pt, x) =
4

∑
i=1
LVi(t, pt, x). (18)

The solution of Model (6) can be computed with LV(t, pt, x), yielding:

LV1(t, pt, x) = 2pT
t Px ϕt + pT

t

( N

∑
y=1

πxyPy

)
pt + tr{σT(t)Pxσ(t)}, (19)

LV2(t, pt, x) = pT
t Qpt − (1− ṙ(t))pT

r(t)Qpr(t) + pT
t Rpt − pT

r Rpr

+ gT
t Sgt − (1− ṙ(t))gT

r(t)Sgr(t),

≤ pT
t Qpt − (1− µ)pT

r(t)Qpr(t) + pT
t Rpt − pT

r Rpr

+ gT
t Sgt − (1− µ)gT

r(t)Sgr(t), (20)

LV3(t, pt, x) = r2 pT
t Upt − r

∫ t

t−r
pT(z1)Up(z1)dz1 +

r4

4
pT

t Vpt

− r2

2

∫ 0

−r

∫ t+z1

t−r
pT(z2)Vp(z2)dz2dz1, (21)

LV4(t, pt, x) = rϕT
t Xϕt −

∫ t

t−r
ϕT(z1)Xϕ(z1)dz1. (22)
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By using Lemmas 1–3, we can estimate the integral term in (21)–(22),

−r
∫ t

t−r
pT(z1)Up(z1)dz1 ≤ −


∫ t

t−r p(z1)dz1∫ 0
−r

∫ t+z1
t−r p(z2)dz2dz1∫ 0

−r

∫ t+z1
t−r

∫ t+z2
t−r p(z3)dz3dz2dz1


T

9U − 36
r U 60

r2 U
∗ 192

r2 U − 360
r3 U

∗ ∗ 720
r4 U




∫ t
t−r p(z1)dz1∫ 0

−r

∫ t+z1
t−r p(z2)dz2dz1∫ 0

−r

∫ t+z1
t−r

∫ t+z2
t−r p(z3)dz3dz2dz1

 , (23)

− r2

2

∫ 0

−r

∫ t+z1

t−r
pT(z2)Vp(z2)dz2dz1 ≤ −


∫ 0
−r

∫ t+z1
t−r p(z2)dz2dz1∫ 0

−r

∫ t+z1
t−r

∫ t+z2
t−r p(z3)dz3dz2dz1∫ 0

−r

∫ t+z1
t−r

∫ t+z2
t−r

∫ t+z3
t−r p(z4)dz4dz3dz2dz1


T

6V − 30
r V 60

r2 V
∗ 210

r2 V − 480
r3 V

∗ ∗ 1200
r4 V




∫ 0
−r

∫ t+z1
t−r p(z2)dz2dz1∫ 0

−r

∫ t+z1
t−r

∫ t+z2
t−r p(z3)dz3dz2dz1∫ 0

−r

∫ t+z1
t−r

∫ t+z2
t−r

∫ t+z3
t−r p(z4)dz4dz3dz2dz1

 , (24)

−
∫ t

t−r
ϕT(z1)Xϕ(z1)dz1 ≤ −

1
r

[ ∫ t

t−r
ϕ(z1)dz1

]T

X
[ ∫ t

t−r
ϕ(z1)dz1

]
. (25)

From (9) and (14),

tr{σT(t)Pxσ(t)} ≤ δxtr{σT(t)σ(t)}
≤ pT

t δxL1x pt + pT
r(t)δxL2x pr(t). (26)

For any constant matrices G1, G2 with suitable dimension, the subsequent condition holds,

2[ptG1 + ϕtG2]
T [−ϕt −Dx pt + Axgt + Bxgr(t) + ut] = 0. (27)

Besides that, we can obtain the following inequalities from (4):

(gt − ∆1Wx pt)
T(gt − ∆2Wx pt) ≤ 0, (28)

(gr(t) − ∆1Wx pr(t))
T(gr(t) − ∆2Wx pr(t)) ≤ 0. (29)

Obviously, given any positive diagonal matrices H1, H2, there exist diagonal matrices K1 ≥, K2 ≥ 0,
and ∆1, ∆2 in which the inequalities below hold:

0 ≤ −H1

[
Wx pt

gt

]T [
K1 −K2

∗ I

] [
Wx pt

gt

]
, (30)

0 ≤ −H2

[
Wx pr(t)

gr(t)

]T [
K1 −K2

∗ I

] [
Wx pr(t)

gr(t)

]
. (31)

where:

K1 =
∆T

1 ∆2 + ∆T
2 ∆1

2
, K2 =

∆T
1 + ∆T

2
2

. (32)
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Combining (19)–(31) yields:

LV(t, pt, x)− qT
t Qqt − 2qT

t Sut − uT
t (R− γI)ut ≤ 2pT

t Px ϕt + pT
t

( N

∑
y=1

πxyPy

)
pt + pT

t δxL1x pt

+ pT
r(t)δxL2x pr(t) + pT

t Qpt − (1− µ)pT
r(t)Qpr(t) + pT

t Rpt − pT
r Rpr + gT

t Sgt

− (1− µ)gT
r(t)Sgr(t) + r2 pT

t Upt − χT
1 (9U)χ1 + χT

1 (
36
r

U)χ2 − χT
1 (

60
r2 U)χ3

− χT
2 (

192
r2 U)χ2 + χT

2 (
360
r3 U)χ3 − χT

3 (
720
r4 U)χ3 +

r4

4
pT

t Vpt − χT
2 (6V)χ2

+ χT
2 (

30
r

V)χ3 − χT
2 (

60
r2 V)χ4 − χT

3 (
210
r2 V)χ3 + χT

3 (
480
r3 V)χ4 − χT

4 (
1200

r4 V)χ4

+ rϕT
t Xϕt − ϕT

r(t)(
1
r

X)ϕr(t) − 2pT
t (G1)ϕt − 2pT

t (G1Dx)pt + 2pT
t (G1Ax)gt

+ 2pT
t (G1Bx)gr(t) + 2pT

t (G1)ut − 2ϕT
t (G2)ϕt − 2pT

t (G2Dx)
T ϕt + 2ϕT

t (G2Ax)gt

+ 2ϕT
t (G2Bx)gr(t) + 2ϕT

t (G2)ut − pT
t (W

T
x H1K1Wx)pt + pT

t (W
T
x H1K2)gt

− gT
t (H1)gt − pT

r(t)(W
T
x H2K1Wx)pr(t) + pT

r(t)(W
T
x H2K2)gr(t)

− gT
r(t)(H2)gr(t) − qT

t Qqt − 2qT
t Sut − uT

t (R− γI)ut, (33)

Take the mathematical expectation, which is equivalent to:

E{LV(t, pt, x)− qT
t Qqt − 2qT

t Sut − uT
t (R− γI)ut} ≤ E{ξT

(t)Θξ(t)}. (34)

where Θ and ξ(t) are defined in (15) and the main results, respectively.
Suppose Θ < 0; it is straightforward to obtain:

E{qT
t Qqt + 2qT

t Sut + uT
t Rut} ≥ E{LV(t, pt, x) + γuT

t ut}. (35)

Subject to zero initial conditions, integrating (35) from zero to td yields:

E{G(q, u, td)} ≥ E{γ〈u, u〉td +V(td, p(td)
, x)−V(0, p(0), x)} ≥ E{γ〈u, u〉td}, (36)

for all td ≥ 0. As a result, Model (6) is strictly (Q,S ,R)-dissipative pertaining to Definition 2. This
completes the proof.

Remark 3. Given the unavoidable influence of stochastic disturbances, many stability related issues in different NN
models with stochastic inputs have been investigated, e.g., the local-field NN model [19], the static NN model [20],
the Hopfield NN model [24], and the Cohen–Grossberg NN model [46]. These results are derived without considering
GNN models. Comparing with the results in [19,20,24], our results are more general, since we adopt a general form
of the model for analysis.

Remark 4. It should be noted that, by appropriate setting of the weight matrices, multi-dynamic behaviors can
be depicted by (Q,S ,R)-dissipativity. Suppose Q = 0,S = I and R = 2γI; Model (10) can yield the passivity
condition of 2E{〈q,Su〉td} ≥ −γE{〈u, u〉td}.
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Corollary 2. Model (6) is passive subject to any given scalars 0 < r and 0 < µ in which matrices Px(x ∈ S) >
0, Q > 0, R > 0, S > 0, U > 0, V > 0, X > 0, any matrices G1, G2, diagonal matrices H1 > 0, H2 > 0,
and scalars δx(x ∈ S) > 0, γ > 0 exist, whereby, given all (x ∈ S), the LMIs below are valid:

Px ≤ δxI, (37)

Θ̄x = (Θ̄i,j,x)12×12 < 0, (38)

where

Θ̄1,1,x ,
N
∑

y=1
πxyPy + Q + R + r2U + r4

4 V + δxL1x − G1Dx − (G1Dx)T − H1WT
x K1Wx, Θ̄1,2,x , Px −

G1 − (G2Dx)T , Θ̄1,5,x , G1Ax + H1WT
x K2, Θ̄1,6,x , G1Bx, Θ̄1,12,x , G1, Θ̄2,2,x , rX − G2 −

GT
2 , Θ̄2,5,x , G2Ax, Θ̄2,6,x , G2Bx, Θ̄2,12,x , G2, Θ̄3,3,x , −(1 − µ)Q + δxL2x − H2WT

x K1Wx,
Θ̄3,6,x , H2WT

x K2, Θ̄4,4,x , −R, Θ̄5,5,x , S−H1, Θ̄5,12,x , −I, Θ̄6,6,x , −(1− µ)S−H2, Θ̄7,7,x ,
− 1

r X, Θ̄8,8,x , −9U, Θ̄8,9,x , 36
r U, Θ̄8,10,x , − 60

r2 U, Θ̄9,9,x , − 192
r2 U − 6V, Θ̄9,10,x , 360

r3 U +
30
r V, Θ̄9,11,x , − 60

r2 V, Θ̄10,10,x , − 720
r4 U− 210

r2 V, Θ̄10,11,x , 480
r3 V, Θ̄11,11,x , − 1200

r4 V, Θ̄12,12,x , −γI.

Proof. Using a similar LKF of (16), the following passivity condition with respect to the model in (6) can
be defined as:

2
∫ td

0
E{qT

t ut}dt ≥ −γ
∫ td

0
E{uT

t ut}dt. (39)

With Theorem 1, the proof below is obtained:

E{LV(t, pt, x)− 2qT
t ut − uT

t γut} ≤ E{ξT
(t)Θ2ξ(t)}. (40)

As a result, Θ2 < 0 holds, and (40) implies that:

E{LV(t, pt, x)− 2qT
t ut − γuT

t ut} ≤ 0. (41)

Subject to zero initial conditions, integrating (41) from zero to td yields:

2
∫ td

0
E{qT

t ut}dt ≥ E{V(td, p(td)
, x)−V(0, p(0), x)− γ

∫ td

0
uT

t utdt}

≥ − γ
∫ td

0
E{uT

t ut}dt (42)

for all td ≥ 0. As a result, Model (6) is passive with respect to Definition 3. The proof is completed.

Remark 5. When we consider ut = 0, Model (6) yields:

dp(t) = [−Dx p(t) + Axg(Wx p(t)) + Bxg(Wx p(t− r(t)))]dt + σ(t, p(t), p(t− r(t)), x)dω(t). (43)

We can obtain Corollary 3 using Theorem 1.

Corollary 3. In the mean-squared sense, Model (43) is globally asymptotically stable subject to any given scalars
0 < r and 0 < µ in which matrices Px(x ∈ S) > 0, Q > 0, R > 0, S > 0, U > 0, V > 0, X > 0, any matrices
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G1, G2, diagonal matrices H1 > 0, H2 > 0, and scalar δx(x ∈ S) > 0 exist, whereby, given all (x ∈ S), the LMIs
below hold:

Px ≤ δxI, (44)

Θ̆x = (Θ̆i,j,x)11×11 < 0, (45)

where

Θ̆1,1,x ,
N
∑

y=1
πxyPy + Q + R + r2U + r4

4 V + δxL1x − G1Dx − (G1Dx)T − H1WT
x K1Wx, Θ̆1,2,x , Px −

G1 − (G2Dx)T , Θ̆1,5,x , G1Ax + H1WT
x K2, Θ̆1,6,x , G1Bx, Θ̆2,2,x , rX − G2 − GT

2 , Θ̆2,5,x ,
G2Ax, Θ̆2,6,x , G2Bx, Θ̆3,3,x , −(1 − µ)Q + δxL2x − H2WT

x K1Wx, Θ̆3,6,x , H2WT
x K2, Θ̆4,4,x ,

−R, Θ̆5,5,x , S − H1, Θ̆6,6,x , −(1 − µ)S − H2, Θ̆7,7,x , − 1
r X, Θ̆8,8,x , −9U, Θ̆8,9,x , 36

r U,
Θ̆8,10,x , − 60

r2 U, Θ̆9,9,x , − 192
r2 U − 6V, Θ̆9,10,x , 360

r3 U + 30
r V, Θ̆9,11,x , − 60

r2 V, Θ̆10,10,x ,

− 720
r4 U− 210

r2 V, Θ̆10,11,x , 480
r3 V, Θ̆11,11,x , − 1200

r4 V.

Remark 6. When ut = 0 and no stochastic disturbance exists, Model (6) yields:

dp(t) = [−Dx p(t) + Axg(Wx p(t)) + Bxg(Wx p(t− r(t)))]dt. (46)

We obtain Corollary 4 using Theorem 1.

Corollary 4. Model (46) is globally asymptotically stable subject to any given scalars 0 < r and 0 < µ in which
matrices Px(x ∈ S) > 0, Q > 0, R > 0, S > 0, U > 0, V > 0, and diagonal matrices H1 > 0, H2 > 0 exist,
whereby, given all (x ∈ S), the LMI below holds:

Θ̃x = (Θ̃i,j,x)9×9 < 0, (47)

where

Θ̃1,1,x , −PxDx − (PxDx)T +
N
∑

y=1
πxyPy + Q + R + r2U + r4

4 V − H1WT
x K1Wx, Θ̃x1, 4, x , PxAx +

H1WT
x K2, Θ̃1,5,x , PxBx, Θ̃2,2,x , −(1− µ)Q−H2WT

x K1Wx, Θ̃2,5,x , H2WT
x K2, Θ̃3,3,x , −R, Θ̃4,4,x ,

S−H1, Θ̃5,5,x , −(1− µ)S−H2, Θ̃6,6,x , −9U, Θ̃6,7,x , 36
r U, Θ̃6,8,x , − 60

r2 U, Θ̃7,7,x , − 192
r2 U−

6V, Θ̃7,8,x , 360
r3 U + 30

r V, Θ̃7,9,x , − 60
r2 V, Θ̃8,8,x , − 720

r4 U− 210
r2 V, Θ̃8,9,x , 480

r3 V, Θ̃9,9,x , − 1200
r4 V.

3.2. An Analysis on Robust Dissipativity

We examine robust dissipativity by extending the previous dissipativity condition with respect to the
following uncertain GNN model:

dp(t) = [−(Dx + ∆Dx(t))p(t) + (Ax + ∆Ax(t))g(Wx p(t)) + (Bx + ∆Bx(t))g(Wx p(t− r(t)))
+u(t)]dt + σ(t, p(t), p(t− r(t)), x)dω(t)

q(t) = g(Wx p(t)).

(48)

where the uncertainties pertaining to the time-varying parameters are ∆Dx(t), ∆Ax(t) and ∆Bx(t), and they
are represented as:

[∆Dx(t) ∆Ax(t) ∆Bx(t)] = MxFx(t)[N1x N2x N3x], (49)
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where an unknown time-varying matrix function of Fx(t) is able to satisfy Fx(t)TFx(t) ≤ I, while the
known real matrices are denoted by Mx, N1x, N2x and N3x.

We can derive Theorem 5 using Theorem 1.

Theorem 5. Model (48) is robust, (Q,S ,R)-dissipative subject to any given scalars 0 < r and 0 < µ in which
matrices Px(x ∈ S) > 0, Q > 0, R > 0, S > 0, U > 0, V > 0, X > 0, any matrices G1, G2, diagonal matrices
H1 > 0, H2 > 0, and scalars δx(x ∈ S) > 0, ε > 0, γ > 0 exist, whereby, given all (x ∈ S), the LMIs below hold:

Px ≤ δxI, (50)

Θ̂x =

(Θ̂i,j,x)12×12 Γ1 εΓ2

z −εI 0
z z −εI

 < 0. (51)

where

Θ̂1,1,x ,
N
∑

y=1
πxyPy + Q + R + r2U + r4

4 V + δxL1x − G1Dx − (G1Dx)T − H1WT
x K1Wx, Θ̂1,2,x , Px −

G1 − (G2Dx)T , Θ̂1,5,x , G1Ax + H1WT
x K2, Θ̂1,6,x , G1Bx, Θ̂1,12,x , G1, Θ̂2,2,x , rX − G2 −

GT
2 , Θ̂2,5,x , G2Ax, Θ̂2,6,x , G2Bx, Θ̂2,12,x , G2, Θ̂3,3,x , −(1 − µ)Q + δxL2x − H2WT

x K1Wx,
Θ̂3,6,x , H2WT

x K2, Θ̂4,4,x , −R, Θ̂5,5,x , S − H1 − Q, Θ̂5,12,x , −S , Θ̂6,6,x , −(1 − µ)S −
H2, Θ̂7,7,x , − 1

r X, Θ̂8,8,x , −9U, Θ̂8,9,x , 36
r U, Θ̂8,10,x , − 60

r2 U, Θ̂9,9,x , − 192
r2 U − 6V, Θ̂9,10,x ,

360
r3 U + 30

r V, Θ̂9,11,x , − 60
r2 V, Θ̂10,10,x , − 720

r4 U− 210
r2 V, Θ̂10,11,x , 480

r3 V, Θ̂11,11,x , − 1200
r4 V, Θ̂12,12,x ,

−R+ γI, Γ1 = [GT
1 MT

x GT
2 MT

x 0 0 0 ‘ 0 0 0 0 0 0 0]T , Γ2 = [NT
1x 0 0 0 NT

2x NT
3x 0 0 0 0 0 0]T .

Proof. Replacing Dx, Ax, Bx, in LMI (15) with (Dx + ∆Dx(t)), (Ax + ∆Ax(t)), (Bx + ∆Bx(t)) yields

Θ̂ + (Γ1F(t)Γ2) + (Γ1F(t)Γ2)
T < 0. (52)

where Θ̂, Γ1, and Γ2 are given in (51).

Based on Lemma 4, a scalar ε > 0 exists in which:

Θ̂ + ε−1Γ1ΓT
1 + εΓT

2 Γ2 < 0. (53)

where:

Γ1 = [GT
1 MT

x GT
2 MT

x 0 0 0 0 0 0 0 0 0 0]T ,

Γ2 = [NT
1x 0 0 0 NT

2x NT
3x 0 0 0 0 0 0]T .

We can deduce that Inequality (53) is equivalent to Inequality (51) by using the Schur complement
lemma. This proof is completed.

4. Simulation Studies

The usefulness of the obtain results is evaluated using three simulated examples.



Symmetry 2020, 12, 1035 14 of 21

Example 1. Consider Model (6) with respect to both modes below:

D1 =

[
2.2 0
0 1.8

]
, A1 =

[
0.3 0.2
0.3 −0.2

]
, B1 =

[
0.2 −0.3
0.4 0.2

]
,

W1 =

[
1 0
0 1

]
, L11 =

[
0.22 0

0 0.22

]
, L21 =

[
0.18 0

0 0.18

]
,

D2 =

[
1.4 0
0 2

]
, A2 =

[
0.3 0.5
−0.2 0.1

]
, B2 =

[
0.3 0.2
−0.3 0.5

]
,

W2 =

[
1 0
0 1

]
, L12 =

[
0.20 0

0 0.20

]
, L22 =

[
0.12 0

0 0.12

]
.

Moreover, we take,

Q =

[
−7 0
0 −7

]
, S =

[
0.1 −0.1
−0.1 0.5

]
, R =

[
12 0
0 12

]
.

Let Π =

[
−3 3
2 −2

]
and r(t) = 0.2 + 0.1sint, which satisfies r = 0.3, µ = 0.2. Furthermore, choose gi(pi(t)) =

tanh(pi(t)), i = 1, 2. As a result, we have ∆1 = 0, ∆2 = I. In addition, from (32), we have K1 = 0, K2 = −0.5I.
We show that LMIs (14) and (15) are valid using MATLAB. The initial values are chosen as p(0) = [0.3,−0.6]T .
As such, the following simulation results can be obtained by taking u(t) = 0.01e−tsin(0.02t) t > 0 with respect
to the model in (6). Figure 1 shows that time responses of Model (6). The state transient response of Model (6) is
displayed in Figure 2. Figure 3 describes the Markovian switching signal.
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Figure 1. Time responses of the state variables p1(t), p2(t) with respect to Model (6) in Example 1.
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Figure 2. Transient responses of the state variables p1(t), p2(t) with respect to Model (6) in Example 1.
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Figure 3. The Markovian switching signal e(t) in Example 1.

Example 2. We consider Model (46) subject to x = 1 along with the following parameters:

A =


−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3894 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

 , B =


0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

 ,

D = diag{1.2769, 0.6231, 0.9230, 0.4480}, W = diag{1, 1, 1, 1}.

This simulation study facilitates the comparison pertaining to the criteria in [11–13]. The neuron
activation function is chosen as gi(pi(t)) = 0.2 tanh(pi(t)), i = 1, 2, 3, 4. As a result, we have
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∆1 = 0, ∆2 = diag{0.1137, 0.1279, 0.7994, 0.2368}. In addition, from (32), we have K1 = 0, K2 =

diag{− 0.1137
2 ,− 0.1279

2 ,− 0.7994
2 ,− 0.2368

2 }. We show that LMI (47) is valid using MATLAB. For various setting
of µ, the maximum permissible delay limit r is listed in Table 1. It is evident that the obtained results in this
paper show less conservatism than those in [11–13]. For the simulation purpose, we used r(t) = 2.6272 + 0.2sint,
which satisfies r = 2.8272. The following simulation results for the initial condition p(0) = [1.5, 1,−1.6, 0.5]T .
The time responses of the state variables p1(t), p2(t), p3(t), p4(t) of Model (46) are depicted in Figure 4. According
to Corollary 4, the GNN (46) is globally asymptotically stable.

Table 1. The maximum permissible delay limit r with different µ settings.

Methods µ 0.1 0.5 0.9

[11] r 3.8739 2.7821 2.3279

[12] r 4.1903 3.0779 2.8268

[13] r 4.1919 3.0790 2.8271

Corollary 4 r 4.1920 3.0791 2.8272
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Figure 4. Time responses of the state variables p1(t), p2(t), p3(t), p4(t) with respect to Model (46) in
Example 2.

Remark 7. In regard to computational complexity analysis, the main governing factor is the maximum number
of decision variables in the LMIs. The use of delay augmented LKFs [32] and the free-matrix based methods [33]
leads to an increase in the number of decision variables. As such, the computational load and complexity increase
with respect to the increase in the number of delay subintervals. To address this problem, we chose suitable LKFs
and exploited new inequalities with tighter bounds, in order to derive simplified LMI based sufficient conditions
and yield less conservative results as compared with those in [11–13]. In addition to less conservatism, our results
required a lower computational load, because we did not adopt any free-matrix based methods or delay-decomposing
methods in our theoretical analysis. In [13], enhanced stability criteria pertaining to GNN model were derived with
free-matrix based methods coupled with augmented LKFs, which resulted in many decision variables, i.e., 82n2 + 5n.
Comparatively, we only required on 18n2 + 5n decision various in our results. Therefore, it was evident that our
results were less conservative with a smaller computational load.
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Example 3. Consider Model (48) with respect to both modes below.

D1 =

[
2.2 0
0 1.8

]
, A1 =

[
0.3 0.2
0.3 −0.2

]
, B1 =

[
0.2 −0.3
0.4 0.2

]
, W1 =

[
1 0
0 1

]
,

L11 =

[
0.22 0

0 0.22

]
, L21 =

[
0.18 0

0 0.18

]
, M1 =

[
0.2 0
0 0.2

]
,

N11 =

[
0.3 0
0 0.3

]
, N21 =

[
0.2 0
0 0.2

]
, N31 =

[
0.1 0
0 0.1

]
,

D2 =

[
1.4 0
0 2

]
, A2 =

[
0.3 0.5
−0.2 0.1

]
, B2 =

[
0.3 0.2
−0.3 0.5

]
, W2 =

[
1 0
0 1

]
,

L12 =

[
0.20 0

0 0.20

]
, L22 =

[
0.12 0

0 0.12

]
, M2 =

[
0.2 0
0 0.2

]
,

N12 =

[
0.3 0
0 0.3

]
, N22 =

[
0.2 0
0 0.2

]
, N32 =

[
0.1 0
0 0.1

]
,

Moreover, we take,

Q =

[
−1 0
0 −1

]
, S =

[
1 0
1 1

]
, R =

[
3 0
0 3

]
.

Let Π =

[
−3 3
2 −2

]
and r(t) = 0.2 + 0.1sint, which satisfies r = 0.3, µ = 0.2. Furthermore,

choose gi(pi(t)) = tanh(pi(t)), i = 1, 2, and we have ∆1 = 0, ∆2 = I. In addition, from (32), we have
K1 = 0, K2 = −0.5I. We show that LMIs (50) and (51) are valid using MATLAB. Under the the initial
values p(0) = [0.3,−0.6]T , the following results can be obtained by taking u(t) = 0.01e−tsin(0.02t) t > 0.
For Model (48), the time responses with respect to variables p1(t), p2(t) are given in Figures 5. Figure 6 describes
the transient responses of variables p1(t), p2(t). The Markovian switching signals are depicted in Figure 7.
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Figure 5. Time responses of the state variables p1(t), p2(t) with respect to Model (48) in Example 3.



Symmetry 2020, 12, 1035 18 of 21

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

p
1
(t)

p 2(t)

Figure 6. Transient responses of the state variables p1(t), p2(t) with respect to Model (48) in Example 3.
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Figure 7. The Markovian switching signal e(t) in Example 3.

5. Conclusions

In this article, we analyzed the robust dissipativity of USGNN models incorporating MJPs and
time-varying delays. Our analyses covered a more general form of USGNN models, which took both
stochastic effects and parameter uncertainties into consideration. To facilitate our analyses, we formulated
appropriate LKFs along with effective integral inequalities and sector bound conditions. As such,
we derived several simplified LMI based sufficient conditions. The corresponding feasible solutions were
validated using MATLAB. We also ascertained the usefulness of our results with three simulation examples.

For further research, we will analyze other types of stochastic NN models with the proposed method.
The stability and synchronization analyses of stochastic fuzzy NN models, coupled stochastic NN models,
fractional-order NN models, and memristor based stochastic NN models can be conducted. Applications
of the resulting NN models to various control and engineering problems will also be examined.
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