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Abstract: Power-consuming entities such as high performance computing (HPC) sites and large 
data centers are growing with the advance in information technology. In business, HPC is used to 
enhance the product delivery time, reduce the production cost, and decrease the time it takes to 
develop a new product. Today's high level of computing power from supercomputers comes at the 
expense of consuming large amounts of electric power. It is necessary to consider reducing the 
energy required by the computing systems and the resources needed to operate these computing 
systems to minimize the energy utilized by HPC entities. The database could improve system 
energy efficiency by sampling all the components’ power consumption at regular intervals and the 
information contained in a database. The information stored in the database will serve as input data 
for energy-efficiency optimization. More so, device workload information and different usage 
metrics are stored in the database. There has been strong momentum in the area of artificial 
intelligence (AI) as a tool for optimizing and processing automation by leveraging on already 
existing information. This paper discusses ideas for improving energy efficiency for HPC using AI. 

Keywords: 5G; high performance computing (HPC); artificial intelligence (AI); energy efficiency 
(EE); machine learning (ML); Big Data; Internet of Things (IoT) 

 

1. Introduction 

The sheer magnitude of data that companies are currently exposed is on the increase as a result 
of emerging technologies such as the Internet of Things (IoT), artificial intelligence (AI), data in 
motion (DIM), and 3-D imaging [1–3]. Real-time data processing is non-negotiable in today’s mobile 
content driven environment for reasons such as live broadcasts of sporting events, monitoring a 
growing hurricane, checking new products, and evaluating stock trends. Organizations need a highly 
efficient, lightning-fast information technology (IT) infrastructure to handle, store, and analyze vast 
quantities of data to stay a step ahead of their competitors [4–6]. AI, IoT, and Fifth Generation (5G) 
communications would be critical drivers of high performance computing (HPC) development as 
they allow vast amounts of data processed at a very high speed [7]. An example of the HPC 
architecture is NVIDIA, which enables new applications to use the same computing network and it 
is expected that 5G radio access network will adopt the technology as well to meet with its computing 
requirements [8]. HPC remains an essential tool for scientists today. HPC allows scientific 
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advancement by simulating situations where trials are either impossible or theory only is insufficient 
[9−11]. The high level of computing power obtainable from recent supercomputers detrimental as it 
consumes enormous amounts of electrical energy [12,13]. Currently, energy efficiency (EE) is a critical 
problem for HPC sustainable development and has been addressed from different perspectives such 
as; network, input, output, and resource organization. The industry has concentrated on built-in and 
low-power computing infrastructures using reduced instruction set computing (RISC) processors for 
an increase in EE [14,15]. HPC centers use a massive volume of power to operate powerful computers 
and infrastructures required to cool [16]. 

As could be seen in Figure 1 and Figure 2, the microprocessor supply voltage and power have 
been on the decrease relative to computational enhancement. Although the 2015-to-2020 dataset was 
not included because it is not available, not much trend reversal is expected because no novel 
technology has emerged to address this issue. Figure 1 illustrates that the microprocessor voltage has 
not scaled down considerably, just in the order of 8% per year. Figure 2 indicates that over the past 
decades microprocessor power consumption has increased exponentially. In both Figures, the year 
2020 was not included because the year 2020 is not yet over. 

 

Figure 1. Minimum supply voltage of microprocessors [17]. 

Recently, significant efficiency improvements have resulted from advancements in multicore as 
well as accelerator technology. Computing centers quickly embraced this technology to meet the 
growing request for computing power resources. Electric power consumption is a significant cost 
element for data centers [18−20]. 
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Figure 2. Power (Thermal Design Power, TDP) of microprocessors [17]. 

Besides, energy consumption increases carbon dioxide emissions, carbon footprints, climate, and 
human health hazards. Also, the heat energy reduces the efficiency and service life of the hardware 
module [20,21]. The synergy between HPC and AI can be a thrilling revolutionary model both for 
business and for technology. AI technological innovations are rapidly growing study fields, 
motivating big-data analysis. A convergence of AI and HPC could be used to evaluate various 
software applications without necessarily creating a reference model [22].  

The motivation driving the advance in computing is AI and has shaped computing the way we 
know it today. AI returns to inspire computation in [23]. Though EE has been extensively discussed 
for ICT before now [12]; however, not many HPC sites have adopted flexible energy-saving methods. 
HPC sites and large data centers tend to belong to the largest power-consuming organizations in the 
ICT sector presently [13,24]. Most of those sites run systems with processing cores counting in 
thousands. With the increase in processor numbers, the power utilization of the systems becomes 
more significant. Up until now, mobile apps and technical data centers have become the critical 
drivers of energy-efficient ICT, finding an improved battery running times, and reducing functional 
costs. Regrettably, several of the energy-saving machineries built either do not measure up to or are 
not relevant at all to the dimensions of HPC sites [12]. This work aims to discuss substantial issues to 
address the problem of EE within HPC. To this end, this study attempted to incorporate as many 
directions as possible. Restricted by size constraints, this work deeply investigated controversial 
research topics based on their respective sub-domains to achieve a precise, concrete, and concise 
conclusion. The key contributions of this study are summarized as follows: 

This study presents a comprehensive overview of research topics on using AI to address the 
problem of EE within HPC. This issue was deeply investigated based on their respective sub-domains 
to achieve a precise, concrete, and concise conclusion. 

This study discusses the current and future technologies for improving the energy efficiency of 
HPC applications and infrastructures. 

For researchers, this article will contribute significantly to opening new horizons for future 
research directions by providing several new references that could support the use of AI to address 
the problem of EE within HPC. 

The remainder of the paper is organized in the following way. Section 2 provides context 
information on the history of HPC evolution. Section 3 contains an analysis of relevant literature, and 
Section 4 offers an overview of HPC in 5G Networks and energy efficiency. In Section 5, we examined 
artificial intelligence and how AI tools address the issues of energy efficiency in HPC. Section 6 
presents a practical application and limitations and conclude in Section 7. 

 

0.1 
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2. HPC Overview 

HPC evolved due to the increase in the demands for processing speed. HPC brings different 
technologies such as algorithms, programs, electronics, and system software to solve advanced 
problems effectively. A highly-efficient HPC system requires a high-bandwidth, low-latency 
network. In 1960, the high performance computer was introduced into the market by Seymour Cray 
at Control Data Corporation (CDC). This computer grew more reliable and faster with extra core 
processors. In this section, we educate the readers on what HPC is, why it is critical in modern 
communications, and how it works. 

2.1. What is HPC 

HPC’s can process data and undertake complex calculations at high speeds. Take, for instance, 
a 3 GHz processor in a laptop or desktop can perform 3 billion calculations per second. Ordinarily, 
this is fast from a human perspective. HPC, on the other hand, performs quadrillions of mathematical 
computations in a second. The most popular type of HPC is the supercomputer. A typical 
supercomputer consists of thousands of computing nodes wired parallel working together to 
complete a task. In 1964, CDC 6600 was the leading supercomputing machine equipped with a single 
processor that can carry out 3 million calculations per second. Still, the modern smartphone is tens of 
thousands of times faster [25]. In 1990, HPC released slower processing speeds than an iPhoneX. 
TeraFLOPS (floating-point operations per second) is the metric for measuring supercomputer's 
computing capability. Scientists have used HPCs to generate climate models to providing visual 
insight into climate evolution. They have also taken to skies by storm and launching supercomputers 
into space for exploration and data collection. The HPC system design and architecture have 
multifaceted challenges [26,27]. 

2.2. Why HPC is Important to Modern Communication 

Discovering new frontiers involves assembling massive data chunks and making some 
intelligence out of them. When fully deployed, IoT technology can generate trillions of data samples 
over some instances of time. These massive data are the vehicle on which data intelligence drives. All 
the apps on our mobile gadgets are deposited in the cloud, which is a software platform. Software 
are driven by hardware, and the hardware is located in the data centers. The hallmark of modern 
communication is the ever-presence of massive data centers whose function is to store and warehouse 
application context needed by end-users. To fully understand the configuration of the datacenter, the 
reader is referred to [28−30]. Energy and power management is one critical problem considering the 
growth phase of an Exascale network. Excessive power consumption is a crucial drawback mitigating 
against the scaling up of HPC systems [26]. The adaptive power management system is, therefore, 
vital to the design and operation of HPC systems to boost EE [31]. The scheduling of energy and 
power-aware jobs and the managing of resources are quite critical for improvement in EE [32,33]. The 
efficient power monitoring system may include the following attributes; self-awareness, self-directed 
resolution-making, and the potential to classify jobs online. Others are plug-in regulating algorithms, 
including time-based power measurement with smooth imaging and effective analytical methods 
[28,34]. 

It is a tough job to achieve ExaFLOP output within a 20-megawatt targeted power consumption. 
Also, the high load variability due to the recurrent change between the computation phases of HPC 
applications needs different power rates at different periods. It will require the development of 
intelligent systems, i.e., a system that knows, anticipate by learning, and makes the necessary 
decisions to ushering an efficient energy management system. It implies that AI would be central to 
the operations and management of the next-generation HPC Program [16,22,35]. 

2.3. What are the Operational Modalities of HPC 

HPC is a leading field of computer science which concentrates on supercomputer architecture, 
parallel algorithms, and parallel software development [24]. As a cutting edge technology, 
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supercomputing has always been a specialized type of computing. Moreover, the field of computing 
expands and evolves, computing has become broader and more complex [25]. A functional HPC, as 
shown in Figure 1, consists of three (3) key components, namely: i) Compute nodes; ii) Network; and iii) 
Storage. As could be seen from Figure 3, the compute nodes servers are networked together to form 
clusters. On each of the compute nodes servers, software, and algorithm run simultaneously in the 
clusters. All the clusters are networked, and their output is kept in the data storage. 

The trend in HPC as of 2019, begun with HPC democratization; however, most HPC work 
continues to be performed in-house, in dedicated or private clouds. The HPC workload in the public 
cloud continues to expand, and sizeable open house providers such as amazon web services and 
Microsoft Azure attract household users [1,3,7]. The rise in the graphics processing unit (GPU) also 
led to massive growth in HPC. From machine learning to self-driving cars, GPU is being used to carry 
out data-intensive functions. It has proven to be a superior chip for processing and handling HPC 
workload. Since the growth of GPU computing, AI and HPC have become synonymous with 
companies like NVIDIA. Google launched its tensor processing unit (TPU). A TPU is an AI accelerator 
application-specific integrated circuit (ASIC) developed by Google specifically for neural network 
machine learning. The future of HPCs focuses on efficiency, HPC aggregate data processing power 
to deliver efficient, reliable, and rapid results. HPC is taking the problem-solving to the next level, 
doing more with less. 

Data Storage

Compute  ClustersUser/Scheduler  
Figure 3. High performance computing (HPC) deployment scenario. 

3. Comparative Studies 

EE has become one of the most sought-after design parameters for the current computer systems, 
especially the large-scale structures. Several strategies are presently explored for enhancing EE for 
HPC systems, both in terms of architectural design, hardware, and software technologies [36−38]. 
The first study of energy-efficient Ethernet (EEE) in the field of HPC was presented by [39] via 
assessing its power-savings capacity. In contrast with previous proposals, a thorough study of the 
effect of added EEE latency overhead was provided using several virtual systems applying traces of 
real HPC applications. The concept of "power-down threshold" was proposed as a potential addition 
to EEE to reduce the on/off overhead changeover. The studies discovered that EEE saves 
approximately 70 percent in connecting the power by shutting off connections, but at the expense of 
efficiency, leading to a 15 percent (average) increase in total system power consumption. The authors 
of [40,41] focused their study on the description of some evolutionary changes in HPC hardware, and 
how recent hardware trends pose challenges associated with Exascale computing hardware 
development. Reference [42] examined energy management problems, challenges, and potential 
solutions for the period 2010-2016 by concentrating on the energy usage of data centers and HPC 
systems. The EE issues currently affecting data centers were highlighted, potential threats identified, 
as well as several short-term predictions. Additionally, the study grouped energy-efficient 
approaches into seven components and also Exascale as an HPC framework prospect. Reference [43] 
described and analyzed several methods of presenting the energy consumption of HPC systems at 
runtime and a method for estimating the energy ingestion of protocols for fault tolerance. A strategy 
to categorize fault tolerance protocols into three groups of families; (hierarchical, coordinated, and 
uncoordinated) was advocated and showed how important the strategy would help users make 
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correct choices concerning energy-efficient services. Reference [44], studied the correlation among 
both EE and strength of large-scale parallel systems. It was illustrated theoretically and empirically 
that significant energy savings are possible by merging undervolting and conventional software-level 
stability methods on contemporary HPC systems without the need for hardware redesign. The 
system is evaluated experimentally and shown to save up to 12.1 percent energy relative to the 
reference runs of 8 HPC specifications. Furthermore, it can save up to 9.1 percent more energy than 
a state-of-the-art frequency regulated dynamic voltage and frequency scaling (DVFS) solution; lower 
operating frequency or hardware device voltage supply [31,33]. DVFS is a significant way of reducing 
a computer system's power and energy usage because CMOS-based parts (e.g., CPU, GPU, and 
memory) are the key power consumers in the device. Reference [45], provided a study of AI-based 
energy building forecasting procedures with a particular concentration on ensemble models. Four 
major types of AI-based forecasting have been researched based on concepts and implementations, 
including multiple linear regression, artificial neural networks (ANNs), supporting vector regression, 
and set model. This paper also addressed the advantages and disadvantages of each type of model. 
The paper carried out an intensive discussion of the advantages and disadvantages of AI-based 
prediction models. Reference [46] stated that diverse researchers describe AI in various ways. There 
are two dimensions to the differences in the AI definition: One is human centrality, and the other is 
rationality. Most of the aspects that the intelligence deals with rational actions are adopted. Reference 
[47], did not consider the use of AI in HPC to make energy efficient. They suggested HPC AI500—a 
test suite to analyze HPC systems that run scientific workloads on the DL. The growing workload 
from HPCAI500 is focused on real-world, scientific DL applications, spanning the most 
representative scientific fields. They proposed a set of metrics for the thorough evaluation of HPC AI 
systems, taking into account both accuracy, efficiency, power, and cost. Reference [48] informs of a 
study conducted in machine learning concentrating on refining the predictive performance of 
algorithms, but recently, researchers are becoming more interested in improving EE as well. The 
paper gives an insight as to why developing energy-efficient algorithms in machine learning is of 
great importance. In comparison to past methods, AI enables HPC systems beyond basic rules-based 
instructions. Reference [49] indicated that in comparison to previous methods, AI empowers HPC 
systems beyond basic rule-based instructions. Instead, AI tests the data using a series of 'theories' and 
algorithms as instructions. Reference [50], suggested two initiatives (Machine Learning classifiers and 
DVFS settings during runtime) to address balancing application performance and system power 
consumption in HPC during runtime of the program, using closed loop feedback architectures based 
on the self-aware computing paradigm to observe, decide, and act, presented ultramodern energy-
conscious HPC, particularly the recognition and grouping of strategies by device and unit size, 
optimization metrics, and energy or power management methods. Types of system include single 
computers, clusters, networks, and clouds, while devices comprise CPUs, GPUs, multiprocessors, 
and hybrid-systems. With respect to modern HPC systems, they addressed tools and APIs, as well as 
environments aimed at predicting and simulating energy and power intake. Reference [51] gave an 
overview of the recent research advancements in energy-efficient computing, identified common 
characteristics, and classified the approaches. They addressed the causes and issues of high power or 
energy usage and present a taxonomy of energy-efficient computer system design covering the levels 
of hardware, operating system, virtualization, and data centers. Reference [52] stated that, HPC 
systems of significant size, system-wide power consumption has been described as one of the core 
constraints going forward, where DRAM main memory units account for approximately 30-50 per 
cent of the overall power utilization of a node. Nonetheless, as an alternative to DRAM, a range of 
new memory technologies called nonvolatile memory (NVM) products are being examined. 
Reference [53] examines the trade-off between energy and performance (time of execution) for HPC 
applications in a real small-scale power-scalable cluster as well as the trade-off between energy and 
performance (time of execution) for serial and parallel HPC programs. From the array of literature 
discussed, it could be seen that some works have dealt on deploying AI to enhance the EE of HPC 
systems. Unfortunately, these works have not failed to provide thorough evidence on why AI is 
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needed in HPC systems. Hence, presenting a myopic view. Secondly, there was no linkage between 
HPC, 5G, and EE in the previous works. Table 1 presents a summary of reviewed related work. 

Table 1. Summary on related studies on HPC energy efficiency. 

Reference Objectives 
Axel Auweter and 

Herbert Huber, 2011, 
[12] 

• The paper provides a summary of the energy-efficient operating concepts 
of an HPC site and reveals variations and similarities with ordinary data 

centers. 

Czarnul, Proficz, 
and Krzywaniak, 

2019, [18] 

• The paper addresses state-of-the-art high-performance 
energy-aware computing (HPC), explicitly identifying and categorizing 
system and device type strategies, optimizing metrics, and energy/power 
management methods. The review established several open spaces and 
significant up-to-date issues relating to methods and resources for modern 
HPC systems that enable energy-aware processing. 

Diouri et al., 2013, 
[43] 

• The paper discusses two possible strategies (with or without knowledge 
of software and services) with the same objective: To reduce the energy 

consumption of large-scale systems supporting HPC software. The paper also 
highlights the importance of helping consumers make the right decisions 

about energy-efficient services. 
 

Florez, Pecero, 
Emeras, and Barrios, 

2017, [14] 

• The authors used an ARM-built cluster, called a millicluster, designed to 
provide high energy output at low power. A model was developed for 

estimating energy consumption founded on experimental findings, derived 
from measurements carried out during a benchmarking process representative 

of a real-life workload. 
 

Hussain, Wahid, 
Shah, Akhunzada, 
and Arshad, 2018, 

[42] 

• This paper analyzed the problems, challenges, and solutions proposed for 
the period 2010-2016 by focusing on data center and HPC energy use. They 

classified existing energy management issues currently faced by data centers.  

Jiang et al., 2018, [47] 

• They introduced HPC AI500 in this paper—a benchmark suite for testing 
HPC systems that run scientific DL workloads. The workload from HPCAI500, 

covering the most representative scientific fields, is focused on 
implementations of real-world experimental deep learning (DL). A collection 
of metrics was proposed to evaluate the HPC AI systems comprehensively, 

taking into account both accuracy and performance. 
 

Johnsson, Ahlin, and 
Wang, 2010 ,[37] 

• The paper introduces a concept, one of many under the Partnership for 
Advanced Computing in Europe (PRACE) initiative, to investigate energy 

efficiency improvements. The paper addressed a study on system design and 
preliminary performance outcomes, concentrating on the energy dimensions 

of tests and comparing findings with Blue Gene/P. 

Labasan, 2016, [54] 

• A survey of current work on energy-efficient and power-constrained 
computing techniques. 

• The paper addressed an overview of these methods as they refer to a 
particular case for use in HPC. 

Lu, 2017, [23] • The author discussed why and how AI would continue to inspire and 
reinvent computation when Moore's law runs out of steam. 

Saravanan, 
Carpenter, and 

Ramirez, 2013, [39] 

• The authors provided the first study of energy efficient Ethernet in the 
HPC domain, exploring its potential for power savings. They suggested the 

use of "Power-Down Threshold" as a theoretical extension to the EEE to reduce 
the on/off overhead transition. 
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Tan et al., 2015, [44] 

•Authors present an undervolting energy-saving strategy that leverages 
conventional resilience strategies to accommodate increased undervolting 

failures. The policy is driven by analytical models that capture undervolting 
impacts and the interplay between energy efficiency and resilience. 

• Experimental results showed that their method could save up to 12.1% of 
energy relative to the baseline and save up to 9.1% more energy than a state-

of-the-art DVFS solution. 

Wang, Zeyu and 
M.E.Rinker, 2015, 

[45] 

• In particular, the paper presents a thorough analysis of AI-based energy 
prediction approaches, multiple linear regression, ANNs and support vector 

regression. 
• The paper also focused on predictive ensemble models used to forecast 

energy building. Ensemble models boost the accuracy of predictions by 
combining multiple predictions. 

Wlotzka et al., 2017, 
[55] 

• This paper discusses critical issues of high-performance energy-aware 
computing. The authors outlined several computational methods commonly 
used in scientific applications and provided an energy profiling and tracing 

technique appropriate for the study of device power consumption. 
• They also addressed energy-saving opportunities in computing using two 
examples. First, for the conjugate gradient process, energy-aware runtime on 

shared-memory multicore platforms. Secondly, energy-efficient techniques on 
the distributed memory clusters for multigrid methods. 

Yi and Loia, 2019, 
[22] 

• Paper presented a summary of emerging technologies and suggested 
recommendations for the implementation of HPC and AI solutions. 

• It covers clean applications and studies within advanced as well as 
evolving HPC framework and AI applications scopes. 

Graham, Susan L. 
Snir, Marc 

Patterson, Cynthia 
A. 2005, [56] 

• A report that presented recommendations after analyzing the state of U.S. 
supercomputing capacities and related research and development.  

X. Mei, Q. Wang, 
and X. Chu, 2017. 

[36] 

• This paper aimed at exploring the impact of graphics processing unit 
dynamic voltage and frequency scaling (GPU DVFS) on the application 

performance and power consumption, and furthermore, on energy 
conservation. 

E. Y. Y. Kan, W. K. 
Chan, and T. H. Tse 

2012., [38] 

• The study presents an innovative framework, known as EClass, for 
general-purpose DVFS processors by recognizing short and repetitive 

utilization patterns efficiently using machine learning. The algorithm is 
lightweight and can save up to 52.9% of the energy consumption compared 

with the classical PAST algorithm. 

PRACE,2013, [10].  
• How supercomputing drives economic growth; drugs, finance, and 

climate case studies  
A. Beloglazov, R. 
Buyya, Y. C. Lee, 
and A. Zomaya, 

2011.[51] 

• Discussed causes and problems of high power/energy consumption and 
present a taxonomy of energy-efficient design of computing systems covering 

the hardware, operating system, virtualization, and data center levels. 

H. Rong, H. Zhang, 
S. Xiao, C. Li, and C. 

Hu, 2016, [24] 

• The paper reviews the progress of energy-saving technologies in HPC, 
energy conservation technologies for computer rooms and renewable energy 

applications during the construction and operation of data centers. 

C. Imes, S. Hofmeyr, 
and H. Hofmann, 

2017, [50]  

• Proposed two projects to address balancing application performance and 
system power consumption in HPC during application runtime, using closed-
loop feedback designs based on the self-aware computing model to observe, 

decide, and act. 
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J. S. Vetter and S. 
Mittal, 2015, [52] 

• A key contributing factor to system power consumption is a system’s 
main memory. 

• However, a number of emerging memory technologies—nonvolatile 
memory (NVM) devices—are being investigated as an alternative for DRAM. 

Moving forward, these NVM devices may offer several solutions for HPC 
architectures. 

V. W. Freeh et al., 
2007, [53] 

• This paper analyzes the energy-time trade-off of a wide range of 
applications—serial and parallel—on a power-scalable cluster, a cluster of 

frequency and voltage-scalable AMD-64 nodes, each equipped with a power 
meter was used. They also investigated metrics that can, at runtime, predict 

when each type of bottleneck occurs. 

A. I. Dounis, 2010, 
[46] 

• Paper briefly presents expert systems and computational intelligence (CI) 
techniques and outlines how they operate. The major objective of this chapter 
is to illustrate how intelligent agents (IAs), and multi-agent systems (MASs) 

may play an essential role in conserving energy in buildings. 

Intel Corporation, 
[49] 

• Offer practical considerations for HPC managers to incorporate AI into 
their HPC environment and scale those capabilities to accommodate emerging 

workloads and increasing end-user demand. 

E. Garcia, 2017, [48] 
• This position paper argues for the reasons why developing energy-

efficient machine learning algorithms is of great importance. 

4. The Need for HPC Energy Efficiency in the Evolving 5G Networks 

With the standardization of 5G communications over and deployment commenced globally, the 
volume of generated telecommunications traffic will increase exponentially. A surge in data traffic 
will be expected because 5G networks will require more data centers, edge computing devices, and 
IT infrastructures to sustain the expected quality of service (QoS). HPCs are an integral part of data 
centers, edge computing devices, and IT infrastructures. Consequently, there will be an increase in 
energy power consumption. Take, for instance, in 2018 before the launch of 5G networks; data centers 
accounted for about 205 terawatt-hours of electricity usage, which is roughly 1% of all electricity 
consumption worldwide. The 205 terawatt-hours represent a 6% increase in total power consumption 
since 2010. This number will still increase when 5G is fully deployed and activated. The expected rise 
in data centers is because 5G will transform the societies enabling features and capabilities hitherto 
considered as a mirage. The vision of 5G is to support various user case scenarios applications namely 
[57,58]; i) massive machine type communication (MMTC) is driven by a smart meter, smart agriculture, 
fleet management; ii) enhanced mobile broadband (eMBB) focusing on broadcasting, 
mobile/wireless/fixed devices, non-sim devices, 4K/8K UHD, virtual reality/ augmented reality; and 
iii) critical machine type communication (CMTC) which comprises of traffic safety and control, remote 
manufacturing, remote training, industrial applications, and monitoring. Both CMTC and MMTC 
adopt small packets transmission architecture with negligible metadata (control information). 

The MMTC is designed to implement low-cost, low energy solutions, small data volumes in 
massive numbers while CMTC is responsible for the provision of ultra-reliable low latency 
communications. These different 5G user case scenarios will aggravate enormous pressure on data 
centers that house HPC systems. The network components must be able to accommodate the high-
speed data transfer between computing servers and data storage. In general, 5G potentials as it relates 
to HPC can be summarized as: 

5G is expected to connect people, things, data, applications, transport systems, and cities in 
smart networked communication environments [59,60].  

It should transport a vast amount of data much faster, reliably connect a massive number of 
devices, and process very high volumes of data with minimal delay [59,61]. 

It will change how developers build distributed software systems. Today, design choices are 
constrained by bandwidth, latency, and cost considerations, but these barriers will fall away rapidly 
[62]. 
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4.1. Discovering IoT Networks Needs in HPC  

The vision of the Internet of Things (IoT) is to provide ubiquitous wireless connectivity to 
anything whose utility can be enhanced by being connected [63]. This implies that sensors, machines, 
and devices will be connected in a unique fashion that would improve productivity and efficiency in 
the industry and impact positively on the overall quality of life. Discovering these new frontiers both 
from the aspect of network architectures and traffic management will present significant technical 
challenges [64]. The massive numbers of distributed systems in the IoT will lead to new features in 
5G. Ideally, IoT devices are not bulk data generators often on the range of 10-20 data payload. 
However, with their intense numbers, big volume of data is subsequently generated and must be 
processed. To carter for the ensuing large chunks of data, organizations wills require highly reliable, 
high-speed IT infrastructure to process, store, and analyze large amounts of payload and metadata 
The big data generated by these connected devices will activate the use of AI, which helps to automate 
analytics. With each successive advancement, computing requirements have increased. As a result, 
data-driven organizations of all types and sizes are discovering that they need HPC platforms [65]. 
For even modest 5G applications, developers will need to embrace HPC and cloud-scale tools such 
as distributed file systems, key-value stores, in-memory data grids, and faster Spark-powered 
analytics to boost the performance of application services [65]. 

While current mobile networks can provide some connectivity for new services like automated 
cars and drones, both 5G and HPC will be essential to unlocking these next-generation services. 5G 
networks owe their speed to the use of millimeter waves (radio signals between 30 GHz and 300 
GHz). These high-frequency waves carry more information than their 4G counterparts (4G operates 
between 1Ghz and 5Ghz), but they have a shorter range. The implication is that 5G systems require 
considerably smaller cells compared with the 4G systems. A single transmission tower might service 
a 4G service area, but a 5G network covering the same area may need 100 or more small, low-cost 
antennas affixed to streetlights and telephone poles. Telcos will need to deploy HPC capabilities to 
capture and analyze the vast amounts of data coming from a more significant number of access points 
and 5G devices. For example, autonomous vehicles and drones relying on 5G services will stream 
telemetry to multiple 5G antennas and rely on HPC, storage, and AI-powered predictive services to 
fuse data in near-real-time so that vehicles can operate safely and avoid collisions. It is then apparent 
that 5G will rely on HPC [8,66,67].  

4.2. Energy Efficiency 

For quite a few decades, the computing world was governed by an energy-efficiency 
architecture. It must have been the dynamic force underlying desktop and mobile computing, which 
converted energy efficiency into improved battery life in mobile computing and reduced monthly 
energy bills for desktops. Energy efficiency is of particular interest to computational areas with 
capped energy supply. In an HPC environment, reducing the use of energy per job is essential to 
optimize the machine's work throughput under power limitations. Energy-efficient computing's 
main aim is to minimize energy consumption without incurring any noticeable performance 
slowdowns at the same time. The slowing is also accepted because it decreases energy costs. Much 
work is devoted to the study of the relationship between energy and efficiency in the HPC domain 
[54]. 

4.3. HPC and Energy Efficiency 

Reference [12] submitted a preliminary step towards improving energy efficiency in HPC. The 
work constitutes a clean evaluation of the power usage of the entire HPC system, comprising not 
only computer nodes, interconnecting networks, and storage devices but also elements of the site 
facilities for cooling, monitoring, and control. The infrastructure of the supercomputing site 
comprises of the whole area surrounding the HPC facility, that is, the house, the required power 
supply equipment, power delivery, and cooling. In general, there are ways to boost energy efficiency 
at the level of HPC site infrastructures; these include [12]: i) Reduction of electrical losses in wires 
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during transformation; ii) advanced cooling technologies; and (3) waste heat reuse. Reference [14], 
proposed that energy consumption could be estimated using an empirical energy model, calculating 
each processor's energy consumption at periodic intervals. To predict any application of the broad 
range of energy-consuming HPC applications, you can build models using the decision trees method; 
it automatically picks the best suitable model for the running workload. In modeling energy 
consumption, linear regression is the model of choice, and to acquire multi-component metric 
models, multivariate linear regression has been used [28,68]. Modeling of node-level energy 
consumption, based on usage of main node components measurements, does not consider external 
causes (e.g., cooling) into account and relies on assigning tasks to the devices. Thus, the energy model 
is derived from the estimation of resource usage and the details of the job executed.  

Data collection, preprocessing, division of dataset, forecasting model selection; were 
methodologies deployed to obtained the models. Reference [14], envisaged that future research 
directions are; the adaptation of the current energy model to an algorithm for job planning, 
maximizing energy usage, analyzing several performance metrics concurrently, and comparing 
energy efficiency with other HPC energy management technology systems in ARM-based mili-
cluster job schedules. References [14,18], indicated that the energy and power management tools 
available could be classified into two domains: tracking and managing. Subject to the method or 
provider, a few devices only permit the energy and power consumption to be read. In contrast, others 
can enable energy and power consumption to be read and restricted. They also stated that some 
devices are meant to limit energy and power usage only, but indirectly where a consumer can adjust 
the energy consumption, e.g., system frequency, to minimize consumption. There are, ultimately, 
other inspired methods that package the above-mentioned low-level drivers in a more accessible way. 
They further provide information on power monitoring and control as elaborated: 

Power Monitoring: The researchers began observing the energy and power usage of the whole 
system using exterior meters like Watts Up Pro after HPC started concentrating not just on the time 
of execution of jobs but also on energy efficiency. The primary benefit of such an approach is that it 
monitors the use of real energy and power consumed. However, on the downside, these external 
meters cannot reveal the consumption of energy and power of device subcomponents (e.g., CPU, 
GPU, and memory) [18,69]. 

Power Controlling: There are several indirect tools or methods which permit control of power 
consumption and energy. DVFS, also known separately as DFS and DVS, is one method that allows 
one to control the voltage or frequency of the processor not just to minimize energy or power 
consumption but also to increase the output at the same time. DVFS is obtainable for both CPUs and 
GPUs [18,36]. 

Power Monitoring and Controlling: Most hardware manufacturers have introduced complete 
power management, which includes energy tracking, power usage, as well as regulating power limits 
[18]. 

Energy-saving trading results dominated HPC power-aware research. DVFS approaches have 
been leveraged to reduce depredating performance by addressing various application characteristics, 
including communication barriers, I/O delays, load imbalances, or repetitive behaviors [36,70]. 
Although energy savings are needed to achieve power targets, they will not be enough, as the all-
embracing objective of Exascale is to control power usage rather than energy use. Initially, it proposed 
offline methods, which served as the foundation for assessing potential online methods. Online 
methods are complicated, as decision-making requires detailed models and predictions of the effect 
on application phases at different CPU frequencies without preceding application knowledge. [54], 
presented an overview of past and current research projects on energy-efficient HPC techniques. 
They addressed the various measuring standards for classifying applications as compute-bound, 
memory-bound, or I/O-bound, finding appropriate resource-saving candidates. 

5. Artificial Intelligence: Overview 

AI is a statistical/probabilistic tool that offers the machine the ability to learn via machine 
learning (ML) algorithms. ML is a collection of tools through which AI problems can be solved. This 
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distinction between AI and ML is essential because rapid developments in ML have contributed a lot 
to speedy worldwide attention in AI. ML algorithms can be classified as a supervised learning 
algorithm or unsupervised learning algorithm [71]. In supervised learning, the output is expected to 
learn from the training data. In other words, given a set of information that the machine has seen 
before, it should be able to recognize and make an informed decision based on it. While in 
unsupervised learning, you have an input with no corresponding output. 

AI can be broadly divided into; regression problem and classification problem, as depicted in 
Figure 4a and Figure 4b, respectively. The goal of the regression problem is given an input data vector 
x determine the targeted output label f(x). In other words, the regression problem is a mapping 
function that maps x to the domain of f(x) [72]. The regression problem maps an input vector to the 
output target by deploying some algorithm to normalize the data. Normalization enables elements 
to lie between 0 and 1, thus bringing all the values of numeric columns in the dataset to a standard 
scale. In this context, the maximum value of f(x) is 1. Normalization is an excellent technique to use 
when there is uncertainty in data distribution or when the distribution is not Gaussian (a bell curve). 
Precisely, normalization crunches the output data to a given range; thus, making prediction easy. The 
data crunching tools are usually nonlinear algorithms that convert linear input to a nonlinear output. 
Regression algorithms suffer from the issue of regularization and over-fitting issues. Some of the 
notable regression algorithms are linear regression, neural network, ANNs, deep learning neural 
network [72]. 

f(x) 

(x)  

(a)                                                    (b) 

Figure 4. (a). Regression task. (b). Classification task. 

Similarly, classification tends to solve the problem of giving an unknown data set, find the 
internal morphology which aligns it to a specific pattern. Having acquired the data recognition 
attribute, one can classify the given object. Hence, it is a pattern recognition task or feature extraction 
[71]. The goal of the classification algorithm reduces to placing an input vector into one of the centric 
circles in Figure 4b. Classification algorithms must devise a strategy to overcome outliers. The 
optimal goal of both regression problem and classification relates to finding that algorithm with the 
barest cost minimization function. In the context of the regression task, the cost function denotes 
using that algorithm whose output is as close as possible to the target label. Minimizing cost function 
can be achieved with the utilization of a gradient descent technique [73]. While in the classification 
task, the cost minimization problem equates locating that algorithm that clearly understands the 
internal morphology of the data. Thus, reducing the probability of having outliers. The conventional 
algorithms used for classification tasks are k-nearest neighbors (KNN), naive Bayes classifier, support 
vector machine (SVM), classification and regression trees (CART), and random forest. Table 2 notable 
attributes, as well as advantages and limitations of classification and regression algorithms. 

Table 2. Notable attributes, as well as advantages and limitations of classification and regression 
algorithms. 
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 Advantages Disadvantages 

Regression 
Algorithm 

Model development is rapid 
and straightforward. 

Useful when the relationship 
to be modeled is not 

extremely complex and do not 
have a lot of data. 

Applicable only if the solution is linear. In 
many real-life scenarios, it may not be the 

case. The algorithm assumes the input 
residuals (error) to be normally distributed but 

may not always be satisfied. 
 

Classification 

Straight forward 
implementation. 

New data can be added 
seamlessly. 

Robust against noisy training 
data. 

It has the capability to 
modeling complex 

classification problems by 
using many hidden neurons. 
Maintain the information that 
presents in the training data. 

Does not work well with large dataset except 
using deep neural network. 

Sensitive to unbalanced training data. It is a 
supervised lazy learner. 

Requires huge memory usage cost 

5.1. The Need for AI in HPC  

HPC is an aggregation of many compute nodes in clusters that pull their computing resources 
together, such as computing power to perform a task that would not have been obtained by a single 
desktop/ workstation. These resources are not infinite as they are faced by energy and cost budgets. 
Energy and power are two impediments that have slowed down the vast deployment of HPCs as 
they often capped. These constraints are adopted to minimize operational costs, enhance system 
efficiency, and increase profitability. Generally, work task in wireless communication is modeled as 
Poisson Point Process (PPP), which implies work task is a function of some randomness. Hence, the 
knowledge of work task application potential energy and power consumption will motivate power-
cost optimization by scheduling low priority jobs with higher energy/power consumption rates to 
off-peak hours when the cost of electrical power is cheaper. This knowledge will reduce the overall 
cost of production and promote a new paradigm in energy costing framework by migrating towards 
energy-driven charging policies as an alternative to currently existing CPU-hour based charging 
systems. Historical power/energy data are available and can further be utilized to predict expected 
needed resources in HPC environment using AI technologies, thus boosting energy efficiency and 
saving on costs [46,74]. 

Technological and organizational interventions can affect energy efficiency. Technology 
programs concentrate on professional development through advanced technology (e.g., new 
machines or manufacturing procedures). This methodology centers on managing multiple 
production line schedules to maximize energy usage from distributed sources of energy, like heat 
and pressure, by leveling or mixing demand and evading significant fluctuations in demand. This 
approach has been shown to be a success. Organizational procedures can be utilized to boost energy 
efficiency, especially on short-term performance planning via. energy-oriented planning on a real-
time basis using data mining. Recent research intends to further increase energy efficiency by 
maximizing the energy usage of the entire operation. This technique is being taken by business 
organizations, which use in-house built technologies to apply AI concepts in their services. That 
needs a large amount of processing of the data. Google (server centers) and Amazon are among those 
companies that use AI as an energy-saving tool [75,76]. 

5.2. AI Tools and Techniques 

We have established the fact that AI has found application in ensuring the running of energy-
efficient systems. It is utilized to track and optimize energy efficiency, ensure precision in predictions, 
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and optimize power consumption in energy-consuming entities [77,78]. AI imitates the human way 
of reasoning, learning, and perception to solve complex problems [79]. There are several AI tools and 
techniques that could be used in HPC to address energy efficiency issues. These include the 
following; ANNs, multi-agent systems, and reinforcement learning. AI has been tipped earlier on to 
be crucial in the subsequent phases of HPC System operations and management. 

5.2.1. Artificial Neural Networks 

ANN is the most easily understood and most commonly used AI model. ANNs learn from 
training cases and capture interactions among data. ANNs are one of the most representative 
methods in machine learning because of their robust adaptive learning and generalization capability, 
especially for nonlinear and non-stationary processes [80,81]. ANNs need few preliminary 
assumptions to learn from examples by adjusting the relationship's weights [82]. Supervised and 
unsupervised learning exists. Supervised learning provides the correct output to the ANN for each 
input sequence. The weights differ to reduce inaccuracy between ANNs input and output specified 
Exascale [79]. Unsupervised learning provides different patterns of input to the ANN. ANN takes 
advantage of the relationships between models and discovers how to classify input [72,83]. Some 
ANNs are a combination of supervised and unsupervised learning. ANN is composed of a node 
network, arranged in strata. Input nodes obtain input data 𝑙𝑛 and deliver outputs either by weight 𝑙𝑛 × 𝑤  or by decision 0,1  based on a law. Outputs are transferred to the hidden layers consisting 
of the system's mathematical models. Parameters in the mathematical model involve weights and 
biases 𝑏𝑛 , and there is also communication between hidden layers and output nodes, serving as 
the output for the outcomes of the AI process. The mathematical model is "trained" over a range of 
inputs, using outcomes from several established systems. Input from known cases is fed and known 
outcomes are compared with output [84]. Then the AI program modifies the mathematical model’s 
weights and biases to provide the model that is a best fit based on the data created. 

Training ANNs in AI may be deployed in energy consumption predicting; anomaly detection 
(comparing input and output data for expected data to identify irregularities once the near fit 
performance has been established); and energy reduction (Process adjustments can be appraised to 
accomplish negligible energy assessment). This brings an improvement in energy efficiency for 
HPCs. ANNs' data structure and nonlinear computations permit good fits to complex, multivariable 
data [83]. ANNs process data in parallel and are irrepressible to data inaccuracies and can generalize 
and seek similarities in defective data as long as there are not many neurons in them to overfit data 
deficiencies. ANN is a complex uninformative model and thus inadequate for process explanatory 
problems; this is a drawback. When an ANN does not converge, there is no way to say why [83]. 

5.2.2. Multi-Agent Systems 

Multi-agent system (MAS) consists of a network of agents that communicate to meet goals. It is 
said that an agent is a module of software that contains code and data. It is unable to solve problem 
on its own the problem assigned to the MAS. The agents interact with each other through a high-
level agent communication language (ACL) by exchange of information, request services and 
negotiate among themselves. Knowledge Query and Manipulation Language (KQML), is the most 
widely used ACL. It has a layer of communication that covers parameters at low-level such as sender, 
receiver and identifiers for discussion. A messaging layer determines the performative and 
interpretive protocol, and a content layer provides another performative information. MASs can 
model intricate systems with numerous dealings between the autonomous and dynamic units [85]. 
The efficacy of these depends primarily on the structure of the agent. Network management can be 
troublesome with peer-to-peer network, whenever a new component is connected to a network, as 
all agents are updated. For centrally organized infrastructures, only the directory of the facilitator has 
to be revised with fresh additions. Nevertheless, processing holdups may surface. Other problems in 
building MASs stem out of their complex form and complex connections among agents, where 
objectives or distribution of roles and resources can clash [72]. 
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5.2.3. Reinforced Learning 

Reinforcement learning (RL) is teaching models of machine learning to create a sequence of 
decision making. In an unknown, potentially complex environment, the agent learns how to reach a 
goal [86,87]. An AI in reinforcement learning faces a game-like situation [5]. RL is learning via a 
learning agent's interaction with its surroundings [88]. The agent learns through trial and error to 
attain a target. There are three parts to an RL problem namely: Reinforcement function, environment, 
and value function. This system is complex and probably has a number of states. The atmosphere is 
dynamic and characterized with a set of states that are possible. For each state st at time t there is a 
set A(st) of possible actions. The AI gets either bonuses or punishments for the acts it performs to get 
the system to do what the programmer wants [89]. The aim is to maximize overall reward. Since the 
designer sets the reward policy, that is, the rules of the game, he does not give the model any clues 
or suggestions on how to solve the game. It is now left to the model to figure out how to do the job 
of optimizing the reward, beginning with completely random trials and finishing with advanced 
techniques and superhuman expertise. RL has been largely restricted to computer programming, and 
various software and machines use it to determine the best action or direction it should take in a 
specific situation. Most RL implementations were both in robotics and game play, where RL 
generates new behaviors instead of modeling existing behaviors. Nevertheless, its use has increased 
with other AI techniques. Computer programs are increasingly using RL to boost efficiency and 
output. Energy and Power-Conscious (Aware) Job Scheduling and good Resource Management are 
crucial in enhancing energy efficiency for this reason, Reinforcement learning is probably the most 
persuasive way to hint the ingenuity of computer by using the power of search and many tests. As 
such, for effective power management, control algorithms based on RL are essential algorithms for 
effective management of energy [72]. The explanation and justification for this is that an adaptive 
power management architecture is important for the design and operation of HPC systems to 
increase energy efficiency. Simply because they make up the critical facets of a power management 
system that is efficient: self-aware, self-governing, and decision-making. Furthermore, they have the 
capacity to classify workloads in online environment, provide plug-in control algorithms, provide 
precise spatial and time-based power measurement with smooth imaging and effective analytical 
techniques. 

6. Case Study: A Practical Application 

Usage of AI for enhancing energy efficiency can better be comprehended by in view of a real-
world application at the Google data centers. Cooling is one key energy consumption source in the 
data center. As large money-making and industrial facilities, data centers gulp a great deal of energy 
for cooling, even though a lot of effort has been put in to curtail the growth of energy use, there is 
still much to do due to the world’s increasing need for computing power. Power usage effectiveness 
(PUE) in the data center setting is a factor by which efficiency is calculated, it is described as the ratio 
of total energy used up in the building to energy use by IT devices [16]. PUE is a ratio; it is not a 
reflection of actual consumption of power. With the improvement in the performance of the data 
center, the overall rate of PUE reduction is still slowed down due to declining yields and the 
shortcomings of the prevailing cooling technology [84]. Figure 5 shows Google’s past PUE 
presentation from a yearly fleet-wide PUE from 2008 to 2013 [90]. ML is fit and appropriate for the 
data center setting because of the nature of the plant processes and the numerous monitoring data 
available. The present, comprehensive data center, features an extensive range of electrical and 
mechanical equipment, together alongside their set points and controls. It is quite challenging to 
predict the performance of the data center using conventional engineering formulae; this is a 
consequence of the exchanges among these systems and different feedback loops. 
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Figure 5. Google’s historical power usage effectiveness (PUE) performance [91]. 

For instance, a simple adjustment to the temperature set point of the cold aisle will result in load 
differences in the cooling system, resulting in nonlinear changes in equipment efficiency in turn. 
Since such complex interdependencies are not identified, the use of traditional methods for 
prognostic modeling most times results in significant mistakes. A large number of potential 
combinations of equipment and their set point values make it hard to decide where the optimum 
performance lies [91]. The target setting points can be accomplished from many possible hardware 
combinations, which may be electrical or mechanical equipment and software, which involves 
control approaches and set points in a real-time data center. Due to time constraints, regular 
variations in IT load, and weather conditions, it would be impossible to test every combination of 
features to optimize performance. Google deployed a machine learning algorithm founded on 
Deepmind's neural network architecture to solve the problem [91], it is designed to learn from real 
operational data to mimic and predict plant performance and PUE for a PUE of 1.1 within a 0.4 
percent error range respectively. This was achieved by taking historical data; e.g., temperatures, 
power, pump speeds, and set points already collected inside the data center by thousands of sensors, 
then use these historical data in the training of a group of neural networks. The goal was to boost 
energy efficiency at its data center. On average future PUE the neural networks were all trained 
[72,84]. Two additional deep neural network classes were trained to forecast the impending 
temperature and pressure of the data center period covering the following hour. These forecasts 
aimed at mimicking the PUE model's suggested behavior to ensure that operational limits have not 
been surpassed [91]. Figure 6 is a superior test day outcome, inclusive of periods machine-learning 
suggestions are switched on or when put off. The machine learning program did achieve a robust 
reduction of 40 per cent in the total energy used up for cooling [91,92]. 

 
Figure 6. Results of testing [92]. 

6.1. Model Implementation 

The three-layered generic neural network used is shown in Figure 7. The input matrix 𝑥 for this 
model is an array 𝑚 × 𝑛 . The value for training instances is “𝑚”. Value for features is “𝑛” (i.e. Data 
Center input variables), which includes information technology load, weather situations, the quantity 
of chillers and running cooling towers, setting equipment points. The input matrix 𝑥 produces the 
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product of the hidden state matrix 𝑎; and the model parameters matrix 𝜃1. In calculating ℎ𝜃 𝑥 , the 
output; layer “𝑎” functions as an intermediate condition, the second parameter matrix 𝜃2 interacts 
with it. ℎ𝜃 𝑥 ; denotes output variable of attention. It can describe several optimizable standards of 
measurements [90]. PUE has been chosen in this situation. Understanding the mathematics 
underlying ℎ𝜃 𝑥  action allows the output to be managed and optimized. The last neural network 
utilized five layers concealed by 50 nodes/hidden layers. Data set for training includes standardized 
variables for input and at output one standardized variable (data center PUE), each with a resolution 
of 5 minutes covering 184435-time samples (approximately a 2-year functional data). A large chunk 
of the dataset is deployed for research (about 70 percent). While the remainder used for the testing 
and cross validation [72]. 

 

Figure 7. Tree layered neural network [90]. 

6.2. Benefits of Power Usage Effectiveness 

Having a precise and robust PUE model provides plant operators and owners with many 
benefits. Such benefits include the following: 

(1) Automatic performance warning, plant efficiency projections in real-time and 
troubleshooting using a contrast of actual vs. expected results under a set of conditions 
stated. 

(2) It helps operators of data centers to measure PUE sensitivity to operating parameters of the 
data center. 

(3) It helps operators to model Data Center operational conditions making no physical 
adjustments or changes. This approach emphasizing simulation enables operators to 
virtualize the Data Center and describe ideal plant configurations while minimizing the 
doubt concerning changes in plants. 

6.3. Limitations 

The value and amount of input data are restricted in machine learning applications, and hence, 
a limitation. To train the mathematical model accurately, there is a need for a full range of operating 
situations. With conditions where fewer data exist, the model accuracy may decrease. The same 
predictive precision can be obtained with many model parameters as for all empirical curve fits. It is 
at the discretion of the researcher and the operator to apply rational assessment in assessing model 
forecasts [72,84]. 

7. Conclusion 

This paper gave a common clue of how HPC systems can boost energy efficiency. Specific 
knowledge bases have been checked to detail ways to run energy-efficient HPCs. It has suggested the 
fundamental concepts of AI, then suggested appropriate methods of application in enhancing energy 
efficiency in HPCs. It mentioned AI and HPC and the remarkable hope for the future ahead. We 
assume that a comprehensive implementation of AI software would make it possible to reduce the 
power consumed as much as possible and thus increase the production of improved energy-efficient 
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HPC systems. New experiments will produce results that we still need to have to imagine. HPC 
transitions in any sector are to be aligned with AI as the new industrial revolution. This paper also 
reckons that, though current mobile networks can provide some connectivity for new technologies 
such as autonomous cars and drones, both 5G and HPC must enable these next-generation 
technologies. It is apparent then that 5G would also depend on HPC. 
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