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Abstract: In this paper, the problem of solute transport in a fractured-porous medium taking into
account the non-equilibrium adsorption kinetic is studied. The solute transport in fractured-porous
medium consisting of two fractures and a porous block between them located in a symmetric form is
considered. The problem is then solved numerically by using the finite difference method. Based on
the numerical results, the solute concentration and adsorption fields in the fractures and porous blocks
are shown in graphical form. The effect of adsorption on the solute transport in a fractured-porous
medium is then analyzed. In the case of different parameters in two zones, asymmetric distribution
of the solute concentration and adsorption is obtained. The nonlinear kinetics of adsorption leads
to an increase in the adsorption effects, conversely slowing down the rate of the distribution of
concentration of the solute in the fluid.

Keywords: adsorption; diffusion; non-equilibrium adsorption; asymmetric concentration distribution;
porous block; fractured-porous medium

1. Introduction

The problem of solute transport and the fluid flow in porous [1–3] and fractured-porous media
(FPM) [4–6] in recent years has received great attention. This is due to various applications where
the processes of solute transport and fluid flow in the FPM are the basis of industrial, pilot industrial
works on the utilization of various wastes in underground reservoirs [7,8] and the intensification of
oil production by water flooding with various dissolved substances into reservoirs with fractured
porous collectors [9]. One of the rational ways to analyze these processes is to compile and study the
hydrodynamic models of the process.

A large number of works [10–12] are devoted to the problems of hydrodynamic modeling
of the processes of solute transport in porous media. However, the issues of solute transport in
FPM have been studied relatively less. It should be noted that one of the pioneer works was done
in [13–15], where an approach was taken to compile and analyze the hydrodynamic models of the solute
transport in FPM. In the aforementioned works, the process of solute transport in FPM is described
by a combination of convective-diffusion transport, which is dominant in fractures, and diffusion
transport, which is dominant in porous blocks.

The problem of the transport of pollutants in porous, fractured media has attracted considerable
attention by many authors, especially in the case of radioactive waste disposal in underground storage
facilities [16–18]. Using the Laplace transform method [19], a number of solutions to the equations for
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the migration of radionuclides in fractures, as well as in surrounding porous media, were obtained.
Most models suggest that radionuclides are transported through fractures mainly due to advection and
dispersion, while they move into the surrounding porous matrix due to molecular diffusion. It is now
generally accepted that fractures can play an important role in the transport of contamination in the
groundwater system, because the permeability of the fractured system is often much greater than the
permeability of the porous matrix. For such a transport case, the authors of [20–22] obtained analytical
stationary state solutions for various boundary conditions. Complete solution of transport processes
can be found in [23].

In many studies of groundwater flow in fractured media, it was believed that the effective
permeability of the medium is dominated by fractures [24,25]. Although fractures are the main
pathways for water flow and solute transport, diffusion in neighboring porous blocks can play
a significant role in the overall solute transport through the medium. One-dimensional motion through
a single fracture can be described generally by the Navier–Stokes equations for non-turbulent flows of
a viscous incompressible fluid in the space between two parallel planes, neglecting the inertial terms.

In [26], an exact solution to the problem of solute transport in two vertical fractures and a porous
block between them is presented. In fractures, convective transport and hydrodynamic dispersion
are taken into account; however, in the porous block, only molecular diffusion is taken into account.
On the common surface of the porous blocks and fractures, as well as inside the block, the substance
is adsorbed.

The inhomogeneity of the porous medium can have a significant effect on the solute transport,
both in porous and fractured-porous media. Numerous works have been performed to study the
relationship between heterogeneity and the solute transport in such media [27–29]. The inhomogeneity
of the porous block in terms of porosity and permeability leads to heterogeneity of the medium
and in the sense of diffusion solute transport in it. In [30,31], the behavior of solute transport in
inhomogeneous media was numerically studied with emphasis on the influence of permeability
inhomogeneities. There are two main mechanisms that control the solute transport process—diffusion
and advection. The dispersion effect promotes diffusion and mechanical mixing during the solute
transport due to advection of the liquid. The effects of heterogeneity on the processes of solute transport
were studied using various permeability distributions, which are characterized as continuous and
discontinuous models [31]. For continuous distribution models, numerical simulations show that the
tracer distribution is distorted by a local change in permeability, but the global distribution behavior
still resembles a uniform distribution behavior.

The process of solute transport in a system of parallel fractures located in a porous matrix was
studied in [32], which takes into account advection transport, molecular diffusion and mechanical
dispersion in a fracture, molecular diffusion from fractures into the matrix, adsorption on the surface
and inside the matrix, and radioactive decay of the substance. The migration of radionuclides in
the FPM, where porous blocks were modeled as spheres with a certain radius, is considered in [33].
The resulting solution was compared with a similar solution obtained for a system of parallel fractures.
A model of parallel fractures with equal openness and width was used to analyze the labeled solute
transport in the FPM [34]. In the region of small times, a single-fracture model gives satisfactory
results, since the solute does not penetrate deep into the matrix and the effect of a neighboring fracture
is not felt. Diffusion is dominant in matrix with high porosity. In the case of adsorption transport,
the micropores of the matrix act as large sinks due to the large adsorption surface.

In [35], a solution to the problem of solute transport in a fractured medium is presented, where the
solute diffuses from the fractures into the porous matrix. The solute is inert and does not react with the
matrix skeleton and the fracture. The equation in a fracture is the equation of convective (advective)
diffusion in the one-dimensional case, and in porous blocks it is the one-dimensional diffusion type
equation. An analytical solution to the problem used to interpret laboratory data obtained in [36].

In this paper, we study the solute transport in an element of the FPM, a porous block
surrounded by two fractures, taking into account the layered inhomogeneity of the porous block
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and non-equilibrium adsorption of the solute using schematization [35–37]. For the fractures and
the porous block, the equations of solute transport are written separately, taking into account the
mass transfer between them. Adsorption of solute is considered nonlinearly non-equilibrium both
in fractures and in porous block. Based on the numerical solutions of the problem, the concentration
fields of the solute and adsorbed mass are obtained. The role of adsorption and heterogeneity of the
porous block on the characteristics of solute transport is estimated.

2. Problem Formulation

Consider a FPM element consisting of a porous block (matrix), which is surrounded by
both sides with fractures (Figure 1). Fractures and porous block (and its parts R1 and R2)
are considered one-dimensional and semi-infinite. The field of study of the problem consists
of two parts: R1

{
0 ≤ t < ∞, 0 ≤ x < ∞, 0 ≤ y ≤ b3

/
2
}

with characteristics, θ1, D∗1 and
R2

{
0 ≤ t < ∞, 0 ≤ x < ∞, b3

/
2 ≤ y ≤ b3

}
with θ2, D∗2 , where θ1 and θ2 are the porosity coefficients

in R1 and R2 (dimensionless quantities); D∗1 , D∗2 (m2/s) are the coefficients of effective diffusion in the
zones R1 and R2, respectively, which characterize diffusion properties of the parts of the porous block.
In the porous block between the two fractures, diffusion mass transfer occurs in y direction.

Figure 1. Schematic representation of solute transport in the element of fractured porous medium.

The equations of convective-diffusive solute transport, taking into account the adsorption and
mass transfer of the solute, are written separately for fractures and a porous block in the following
form [38–40]:

b1

(
∂c f

∂t
+ ρ1

∂s f

∂t
+ v1

∂c f

∂x

)
= b1D∗f 1

∂2c f

∂x2 + θ1D∗
1

∂c f

∂y

∣∣∣∣
y=o

, (1)

b2

(
∂c f

∂t
+ ρ2

∂s f

∂t
+ v2

∂c f

∂x

)
= b2D∗f 2

∂2c f

∂x2 − θ2D∗2
∂c f

∂y

∣∣∣∣
y=b3

, (2)

∂cm

∂t
+

ρ1

θ1

∂sm

∂t
= D∗1

∂2cm

∂y2 , 0 ≤ y ≤ b3

2
, (x, y) ∈ R1, (3)

∂cm

∂t
+

ρ2

θ2

∂sm

∂t
= D∗2

∂2cm

∂y2 ,
b3

2
≤ y ≤ b3, (x, y) ∈ R2, (4)

where cm = cm (t, x, y) is the concentration of the solute in the matrix, c f = c f (t, x) is the concentration
of the solute in the fractures (m3/m3); sm = sm(t, x, y), s f = s f (t, x) are the concentration of adsorbed
solute in the matrix and in the fractures, respectively (m3/kg); D∗f 1, D∗f 2 are the convective diffusion

coefficients in the first and second fractures (m2/s); v1, v2 are the fluid velocities in the first and second
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fractures (m/s); ρ1, ρ2 are the density of the medium in the R1 and R2 (kg/m3); b1, b2 are the width
of fractures (m); t is the time (s).

We use the following kinetic equations in equilibrium state corresponding to the Freundlich
isotherms [41,42]

∂s f

∂t
= α f (n)(k f (n)c

N
f − s f ), (5)

∂sm

∂t
= αm(n)(km(n)c

N
m − sm), (6)

where k f (n), km(n) are the equilibrium constants of the Freundlich equation in the fracture and in the
matrix (m3/kg; α f (n), αm(n) are the adsorption rate coefficients characterizing the intensities of the
adsorption processes in the fracture and in the matrix, respectively (s−1); N is constant (0 < N < 1);
n is the index coefficient of the equations (n = 1 for R1, n = 2 for R2). From Equations (5) and (6) at t→
∞, we obtain the equilibrium equations (Freundlich isotherm): s f (n) = k f (n)cN

f and sm(n) = km(n)cN
m .

It is worth mentioning that, when N = 1 at equilibrium state we obtain the linear law of adsorption
isotherms (Henry Isotherm).

Let us assume that, at the initial moment the fractures and the porous block filled with pure fluid.
At t > 0, the fluid with a dissolved substance is fed into the fractures, for general case with
different concentrations of c01 and c02, respectively. We assume that, for the time ranges used in
this work, the concentration fields do not reach x = ∞. At the boundary of the porous block y = b3

2 ,
the concentration of the solute remains continuous. With this formulation, the initial and boundary
conditions of the problem have the following form:

c f (0, x) = cm (0, x, y) = 0, (7)

c f (t, 0) =

{
c01, −b1 ≤ y ≤ 0,
c02, b3 ≤ y ≤ b3 + b2,

(8)

c f (t, ∞) = 0, −b1 ≤ y ≤ 0, b3 ≤ y ≤ b3 + b2, (9)

c f (t, x) = cm (t, x, 0) , (10)

c f (t, x) = cm (t, x, b3) , (11)

cm

(
t, x,

b3

2
− 0
)
= cm

(
t, x,

b3

2
+ 0
)

, (12)

D∗1
∂cm

(
t, x, b3

2 − 0
)

∂y
= D∗2

∂cm

(
t, x, b3

2 + 0
)

∂y
, (13)

s f (0, x) = sm (0, x, y) = 0. (14)

3. Numerical Solution Algorithm

The system of Equations (1)–(4) taking into account (5) and (6) under the conditions (7)–(14)
is solved by using the finite difference method [43,44]. To do this, in the region
R1

{
0 ≤ t < ∞, 0 ≤ x < ∞, 0 ≤ y ≤ b3

2

}
and R2

{
0 ≤ t < ∞, 0 ≤ x < ∞, b3

2 ≤ y ≤ b3

}
, (R1

⋃
R2)

we introduce a net ωh1h2τ = ω
(1)
h1h2τ

⋃
ω
(2)
h1h2τ , ω

(1)
h1h2τ = {(tk, xi, yj), tk = τ k, xi = ih 1, yj = jh 2,

k = 0, K, i = 0, 1, . . . I, j = 0, L, τ = T/ K , h2 = b3
J , L = J

2}, ω
(2)
h 1h 2 τ ={(

tk, xi, yj
)

, tk = τ k, xi = ih 1, yj = jh 2, k = 0, K, i = 0, 1, . . . I, j = L, J, τ = T/ K , h2 = b3
J , L = J

2

}
,

where h1 is the grid step in the x direction, I is the number of grid intervals in x, h2 is the grid step in
the y direction, τ is the time step of the grid, K is the number of grid intervals by t, T is the maximum
time during which the process is studied, L is the number of grid intervals by y in R1, J is the total
number of grid intervals of y in R1 and R2.
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On this grid, Equations (1)–(4) are approximated as

c f k+1
i − c f k

i
τ

+ ρ1
s f k+1

i − s f k
i

τ
+ v1

c f k+1
i − c f k+1

i−1
h1

= D∗f 1
c f k+1

i+1 − 2c f k+1
i + c f k+1

i−1

h2
1

+

θ1D∗1
b1

cmk
i,1 − cmk

i,0

h2
, i = 1, I − 1, k = 0, K− 1, in ω

(1)
h1h2τ (15)

c f k+1
i − c f k

i
τ

+ ρ2
s f k+1

i − s f k
i

τ
+ v2

c f k+1
i − c f k+1

i−1
h1

= D∗f 2
c f k+1

i+1 − 2c f k+1
i + c f k+1

i−1

h2
1

−

θ2D∗2
b2

cmk
i,1 − cmk

i,0

h2
, i = 1, I − 1, k = 0, K− 1, in ω

(2)
h1h2τ (16)

cmk+1
i,j − cmk

i,j

τ
+

ρ1

θ1

smk+1
i,j − smk

i,j

τ
= D∗1

cmk+1
i,j+1 − 2cmk+1

i,j + cmk+1
i,j−1

h2
2

,

i = 0, I, j = 1, L− 1, k = 0, K− 1, in ω
(1)
h1h2τ (17)

cmk+1
i,j − cmk

i,j

τ
+

ρ2

θ2

smk+1
i,j − smk

i,j

τ
= D∗2

cmk+1
i,j+1 − 2cmk+1

i,j + cmk+1
i,j−1

h2
2

,

i = 0, I, j = L− 1, J − 1, k = 0, K− 1, in ω
(2)
h1h2τ (18)

where c f k
i , cmk

i,j are the net values of concentrations c f (t, x) and cm(t, x, y) at net points (tk, xi) and(
tk, xi, yj

)
, respectively.

Equations (5) and (6) are approximated as follows

s f k+1
i − s f k

i
τ

= α f 1k f 1(c f k
i )

N − α f 1s f k+1
i , i = 0, I, k = 0, K− 1, in ω

(1)
h1h2τ (19)

s f k+1
i − s f k

i
τ

= α f 2k f 2(c f k
i )

N − α f 2s f k+1
i , i = 0, I, k = 0, K− 1, in ω

(2)
h1h2τ (20)

smk+1
i,j − smk

i,j

τ
= αm1km1(cmk

i,j)
N − αm1smk+1

i,j , i = 0, I, j = 0, L, k = 0, K− 1, in ω
(1)
h1h2τ (21)

smk+1
i,j − smk

i,j

τ
= αm2km2(cmk

i,j)
N − αm2smk+1

i,j , i = 0, I, j = L, J, k = 0, K− 1, in ω
(2)
h1h2τ (22)

where s f k
i , smk

i,j are net values of concentrations s f (t, x) and sm(t, x, y) at net points (tk, xi)

and
(
tk, xi, yj

)
, respectively.

The initial and boundary conditions are approximated as follows

c f 0
i = cm0

i,j = 0, in ωh1h2τ , (23)

c f k+1
0 = cmk+1

0,j =

{
c01, j = 0
c02, j = J

, (24)

c f k+1
I = 0, (25)

c f k
i = cmk

i,0, in ω
(1)
h1h2τ , (26)

c f k
i = cmk

i,J , in ω
(2)
h1h2τ , (27)

cmk+1
i,L−0 = cmk+1

i,L+0, (28)
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D∗1
cmk+1

i,L − cmk+1
i,L−1

h2
= D∗2

cmk+1
i,L+1 − cmk+1

i,L

h2
, (29)

s f 0
i = sm0

i,j = 0, in ωh1h2τ , (30)

where I is taken large enough so that the concentration profiles do not reach the selected conditional
boundaries of the regions.

After approximation, Equations (15) and (17) are reduced to

A1c f k+1
i−1 − B1c f k+1

i + C1c f k+1
i+1 = −F(1)

i , i = 1, I − 1, k = 0, K− 1 (31)

A2cmk+1
i,j−1 − B2cmk+1

i,j + C2cmk+1
i,j+1 = −F(2)

i,j , i = 0, I, j = 1, L− 1, k = 0, K− 1 (32)

where A1 =
D∗f 1

h2
1
+ v1

h1
, B1 = 1

τ + 2
D∗f 1

h2
1
+ v1

h1
, C1 =

D∗f 1

h2
1

, A2 =
τD∗1
h2

2
, B2 = 1 + 2 τD∗1

h2
2

, C2 =
τD∗1
h2

2
,

F(1)
i =

1
τ

ck
i +

θ1D∗1
b1h2

(
cmk

i,1 − cmk
i,0

)
− ρ1

τ
s f k+1

i +
ρ1

τ
s f k

i , F(2)
i, j = cmk

i j −
ρ1

θ1
smk+1

i,j +
ρ1

θ1
smk

i,j.

The Equations (16) and (18) are also reduced to

A3c f k+1
i−1 − B3c f k+1

i + C3c f k+1
i+1 = −F(3)

i , i = 1, I − 1, k = 0, K− 1, (33)

A4cmk+1
i,j−1 − B4cmk+1

i,j + C4cmk+1
i,j+1 = −F(4)

i,j , i = 0, I, j = L− 1, J − 1, k = 0, K− 1 (34)

where, A3 =
D∗f 2

h2
1
+ v2

h1
, B3 = 1

τ + 2
D∗f 2

h2
1
+ v2

h1
, C3 =

D∗f 2

h2
1

, A4 =
τD∗4
h2

2
, B4 = 1 + 2 τD∗2

h2
2

, C4 =
τD∗2
h2

2
,

F(3)
i =

1
τ

ck
i −

θ2D∗2
b2h2

(
cmk

i,J − cmk
i,J−1

)
− ρ2

τ
s f k+1

i +
ρ2

τ
s f k

i , F(4)
i,j = cmk

i j −
ρ2

θ2
smk+1

i,j +
ρ2

θ2
smk

i,j.

Similarly, after approximation, Equations (19)–(22) are respectively reduced to

s f k+1
i = P1k f 1(c f k

i )
N + E1s f k

i , i = 0, I, k = 0, K− 1, (35)

s f k+1
i = P3k f 2(c f k

i )
N + E3s f k

i , i = 0, I, k = 0, K− 1, (36)

smk+1
i,j = P2km1(cmk

i,j)
N + E2smk

i,j, i = 0, I, j = 0, L k = 0, K− 1, (37)

smk+1
i,j = P4km2(cmk

i,j)
N + E4smk

i,j, i = 0, I, j = L, J, k = 0, K− 1, (38)

where P1 =
τα f 1

1+τα f 1
, E1 = 1

1+τα f 1
, P2 = ταm1

1+ταm1
, E2 = 1

1+ταm1
, P3 =

τα f 2
1+τα f 2

, E3 = 1
1+τα f 2

, P4 = ταm2
1+ταm2

,

E4 = 1
1+ταm2

.
The systems of Equations (31) and (32) are solved by the sweep method in the i and j directions,

respectively [44,45]. We use the following relations

c f k+1
i = α

(1)
i+1 + β

(1)
i+1c f k+1

i+1 , i = 0, I − 1, k = 0, K− 1, (39)

cmk+1
i j = α

(2)
j+1 + β

(2)
j+1cmk+1

i, j+1, i = 0, I, j = 0, L− 1, k = 0, K− 1 (40)

where α
(1)
i+1, β

(1)
i+1, α

(2)
j+1, β

(2)
j+1 are indeterminate coefficients.

To solve (33) and (34), the sweep method in the i and j directions is also used, respectively. For this,
we use the following relations

c f k+1
i = α

(3)
i+1 + β

(3)
i+1c f k+1

i+1 , i = 0, I − 1, k = 0, K− 1, (41)
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cmk+1
i j = α

(4)
j−1 + β

(4)
j−1cmk+1

i, j−1, i = 0, I, j = J, L + 1, k = 0, K− 1 (42)

where α
(3)
i+1, β

(3)
i+1, α

(4)
j+1, β

(4)
j+1 are indeterminate coefficients.

When using (39) from (31), we obtain the following recurrence formulas for determining the
coefficients α

(1)
i+1, β

(1)
i+1

α
(1)
i+1 =

F(1)
i + A1 × α

(1)
i

B1 − A1 × β
(1)
i

, β
(1)
i+1 =

C1

B1 − A1 × β
(1)
i

, i = 1, I − 1 (43)

Similarly, we obtain the following recurrence formulas for other sweep coefficients in (40)–(42)

α
(2)
j+1 =

F(2)
i, j + A2 × α

(2)
j

B2 − A2 × β
(2)
j

, β
(2)
j+1 =

C2

B2 − A2 × β
(2)
j

, i = 0, I, j = 1, L− 1 (44)

α
(3)
i+1 =

F(3)
i + A3 × α

(3)
i

B3 − A3 × β
(3)
i

, β
(3)
i+1 =

C3

B3 − A3 × β
(3)
i

, i = 1, I − 1 (45)

α
(4)
j−1 =

F(4)
i, j + C4 × α

(4)
j

B4 − C4 × β
(4)
j

, β
(4)
j−1 =

A4

B4 − C4 × β
(4)
j

, i = 0, I, j = J, L + 1 (46)

Starting values of coefficients α
(1)
i+1, β

(1)
i+1 and α

(3)
i+1, β

(3)
i+1 are determined based on the

condition (24): α
(1)
1 = c01, β

(1)
1 = 0, α

(3)
1 = c02, β

(3)
1 = 0. Starting values of α

(2)
j+1, β

(2)
j+1 and α

(4)
j−1, β

(4)
j−1

are determined based on the conditions (26) and (27): α
(2)
1 = c f k+1

i , β
(2)
1 = 0, α

(4)
J−1 = c f k+1

i , β
(4)
1 = 0.

According to recurrent formulas (44) and (46) we determine the values of α
(2)
j+1, β

(2)
j+1 (j = 1, L− 1 )

and α
(4)
j−1, β

(4)
j−1 (j = J − 1, L + 1 ). From condition (29), we find cmk+1

i,L in following form

cmk+1
i,L =

α
(2)
L + γα

(4)
L

1 + γ− β
(2)
L − γβ

(4)
L

, i = 0, I, (47)

where γ =
D∗2
D∗1

. From Equations (35)–(38), we find s f k+1
i and smk+1

i,j in the zones R1 and R2, respectively.
We note, that sufficient stability conditions to apply Thomas’ algorithm to Equations (31)–(34)

are satisfied.
Knowing the concentration field, we can determine the relative current flow rate of the solute

through the common boundary of the fracture and the porous block in the zones R1 and R2

Q1 = −θ1D∗1
∂cm

∂y

∣∣∣∣
y=0

, Q2 = −θ2D∗2
∂cm

∂y

∣∣∣∣
y=b3

, (48)

and in the net approximation

Qk+1
1,i = −θ1D∗1

cmk+1
i,1 − cmk+1

i,0

h2
, Qk+1

2,i = θ2D∗2
cmk+1

i,J − cmk+1
i,J−1

h2
. (49)

The total relative flow rates across the common boundaries (y = 0 and y = b3) are defined as

Q1,2 tot =
∫ ∞

0
Q1,2 dx, (50)
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and the relative summary flow rates as:

Q1,2 sum =
∫ t

0

∫ ∞

0
Q1,2 dxdt . (51)

Integrals (50), (51) are calculated numerically based on numerical values of Qk+1
i . In this case,

the discretization of the integration region is carried out in accordance with the introduced grid.

4. Results and Discussion

The presented problem is numerically solved using the finite difference method. Some calculation
results are shown in Figures 2–8 for various model parameters. The following values of parameters
are used: D∗1 = D∗2 = 1 × 10−6 m2/s, v1 = v2 = 5 × 10−4 m/s, c01 = c02 = 0.01 m3/m3,
ρ1 = ρ2 = 2500 kg/m3, b1 = b2 = 4× 10−4 m, b3 = m1, θ1 = θ2 = 0.2 [35–37]. We used the following
mesh parameters h1 = h2 = 0.1, τ = 1.

Figure 2 shows surfaces cm/c0 and sm for linear kinetic adsorption (in the equilibrium case,
the corresponding Henry isotherm) with the same characteristics of fractures and porous block.
In Figure 3, the same surfaces given for nonlinear kinetic adsorption (in equilibrium case,
corresponding to the Freundlich isotherm) of the solute. Comparing the data presented, it can be
seen that the surfaces of the distribution of concentration and adsorption of the solute from the
two fractures are symmetric, therefore, the relative current solute flow rate Qi, i = 1, 2 from the first
(i = 1 in the zone R1) and second (i = 2 in the zone R2) fractures in the porous block will be the same.
This conclusions are similar with the results obtained by Grisak and Pickens [35].

Figures 4 and 5 show the distribution fields of the concentration of the solute and the adsorption
field in the medium for two cases of nonequilibrium adsorption. In this case, it was posed that in
the region R2 solute transport without taking into account adsorption, as well as in the R1 zone,
the calculation results are presented with an increase in the adsorption coefficient k f 1 = km1 = k
and α f 1 = αm1 = α. As can be seen from these figures, that changing the values of parameters k f 1,
km1 from k f 1 = km1 = 3× 10−5 m3/kg to k f 1 = km1 = 3× 10−4 m3/kg, α f 1, αm1 from α f 1 = αm1 =

4× 10−5 s−1, to α f 1 = αm1 = 4× 10−4 s−1, and N from N = 0.88 to N = 0.83 (increasing the adsorption
effect), leads to a reduction in the distribution of the concentration field in the zone R1 (Figure 4).
The maximum values at t = 6000 s for non-equilibrium adsorption corresponding at equilibrium
conditions to the Freundlich isotherm are greater than for the Henry isotherms (Figure 5a,b).

The dynamics of the relative solute flow rate from the first (Q1) and second (Q2) fractures into the
porous block for two cases of kinetic adsorption is shown in Figure 6. With an increase in adsorption,
the distribution zone Q1 decreases at small x, then the opposite tendency is observed. An increase in
adsorption in the zone R1 leads to an increase in the total and summary solute flow rate in the zone R1

(Figures 7 and 8).
As can be seen from Figure 7, both cases of linear and nonlinear adsorption kinetics,

a non-monotonic kinetics of the total relative flow rate of the solute from the fractures to the porous
block are obtained. Such non-monotonicity is characterized by the fact that in the initial stages of the
transport process in a zone close to the input section of the medium, which is in the initial sections of
the medium, relatively large concentration gradients are formed. As the solute transport continues,
the porous block begins to saturated with the solute and concentration gradients begin to decrease.
This leads to non-monotonic dynamics of the relative flow rate. Such non-monotonicity is observed
at local time scales. In the summary relative solute flow rates non-monotonicity is not observed,
since they represent an integral temporal characteristic (Figure 8). The lack of non-monotonicity in
Q1sum, Q2sum can also been explained by the fact that the solute mass transfer through the boundaries
of fractures and the porous block over the entire length of the boundaries, for all times occurs in one
direction–from fractures to the porous block.
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Figure 2. Concentration cm/c0 and adsorption sm surfaces for nonequilibrium adsorption, in the
equilibrium case corresponding to the Henry isotherm at α f 1 = α f 2 = αm1 = αm2 = 4× 10−5 s−1,
k f 1 = k f 2 = km1 = km2 = 3× 10−5 m3/kg, t = 6000 s.

Figure 3. Concentration cm/c0 and adsorption sm surfaces for nonequilibrium adsorption, in the
equilibrium case the corresponding Freundlich isotherm at α f 1 = α f 2 = αm1 = αm2 = 4× 10−5 s−1,
k f 1 = k f 2 = km1 = km2 = 3× 10−5 m3/kg, N = 0.88, t = 6000 s.

Figure 4. Surfaces cm/c0 (without adsorption in R2) for nonequilibrium adsorption, corresponding in
the equilibrium case to the isotherm Henry (a) and Freindlich (b) t = 6000 s, α f 1 = αm1 = 4× 10−4 s−1,
k f 1 = km1 = 3× 10−4 m3/kg, N = 0.83.
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Figure 5. Surfaces sm (without adsorption in R2) for nonequilibrium adsorption, corresponding in the
equilibrium case to the isotherm Henry (a) and Freindlich (b) t = 6000 s, α f 1 = αm1 = 4× 10−4 s−1,
k f 1 = km1 = 3× 10−4 m3/kg, N = 0.83.
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Figure 6. Profiles of current relative solute flow rate (without adsorption in R2) for nonequilibrium
adsorption, corresponding in the equilibrium case to the isotherm Henry (a) and Freindlich (b) at
t = 3600 s, α f 1 = αm1 = 4× 10−4 s−1, k f 1 = km1 = 3× 10−4 m3/kg, N = 0.83.
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Figure 7. Dynamics of total relative solute flow rate (without adsorption in R2) for nonequilibrium
adsorption, corresponding in the equilibrium case to the isotherm Henry (a) and Freindlich (b) at
t = 3600 s, α f 1 = αm1 = 4× 10−4 s−1, k f 1 = km1 = 3× 10−4 m3/kg, N = 0.83.
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Figure 8. Dynamics of summary relative solute flow rate (without adsorption in R2) for nonequilibrium
adsorption, corresponding in the equilibrium case to the isotherm Henry (a) and Freindlich (b) at
t = 3600 s, α f 1 = αm1 = 4× 10−4 s−1, k f 1 = km1 = 3× 10−4 m3/kg, N = 0.83.

5. Conclusions

The problem of solute transport in a FPM element, consisting of two fractures and a porous block
between them, with the effect of the non-equilibrium kinetic adsorption of the solute on the transfer
characteristics is considered. Based on numerical calculations, it was found that the adsorption in the
R1 zone leads to a decrease in the concentration field in the zone.

In this study, two cases of non-equilibrium adsorption are analyzed and its effect on the solute
transport in the element are shown. For different effective diffusion coefficients in the porous block,
an asymmetric distributions of the concentration and adsorption of the solute are obtained.

It is found that the layered inhomogeneity of the porous block leads to an asymmetric distribution
of the concentration and adsorbed solute mass fields. The nonlinear kinetics of adsorption, ceteris
paribus, leads to increase the adsorption effects. Thus, it slows down the rate of the distribution and
the concentration of the solute in the fluid. A non-monotonic dependence is found for the current and
total relative solute flow rates through the common boundary of the fractures and the porous block.
Total relative solute flow rates sharply increases in small values of time, then over time it decreases
slowly. This is explained by the formation of large concentration gradients in the initial sections of the
medium in the initial stages of the process and their subsequent decrease. Non-monotonicity is not
observed for the summary relative flow rate.

Thus, this approach together with the schematization of the porous block as a layered
inhomogeneous medium by diffusion properties allows a qualitative and quantitative analysis of
transport processes in inhomogeneous FPMs.
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