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Abstract: Detecting bimodality of a frequency distribution is of considerable interest in several fields.
Classical inferential methods for detecting bimodality focused in third and fourth moments through
the kurtosis measure. Nonparametric approach-based asymptotic tests (DIPtest) for comparing the
empirical distribution function with a unimodal one are also available. The latter point drives
this paper, by considering a parametric approach using the bimodal skew-symmetric normal
distribution. This general class captures bimodality, asymmetry and excess of kurtosis in data
sets. The Kullback–Leibler divergence is considered to obtain the statistic’s test. Some comparisons
with DIPtest, simulations, and the study of sea surface temperature data illustrate the usefulness of
proposed methodology.

Keywords: bimodality; bimodal skew-symmetric normal distribution; Kullback–Leibler divergence;
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1. Introduction

The bimodality of a frequency distribution is crucial in several fields. For example, [1] analyzed
bimodality-generating mechanisms for age-size plant population data sets. Ashman et al. [2] discussed
the presence of bimodality in globular cluster metallicity distributions, velocity distributions of galaxies
in clusters, and burst durations of gamma-ray sources. Hosenfeld et al. [3] detected bimodality in
samples of elementary schoolchildren’s reasoning performance. Bao et al. [4] applied the minimum
relative entropy method for bimodal distribution to remanufacturing system data. Freeman and
Dale [5] assessed bimodality to detect the presence of dual cognitive processes, and Shalek et al. [6]
found bimodal variation in immune cells using ribonucleic acid (RNA) fluorescence.

In the literature, exist several measures of a frequency distribution’s bimodality. Classical
inferential methods for detecting bimodality focused on third and fourth moments through kurtosis
measure [1]. Darlington [7] and Hildebrand [8] claimed that kurtosis is more a measure of unimodality
versus bimodality than a measure of peakedness versus flatness. Hartigan and Hartigan [9] considered
an asymptotic test to compare the empirical distribution function with a unimodal one. This paper is
motivated by the latter, but considers a parametric approach. Specifically, we considered a generalized
class of distributions that involves bimodal behavior in empirical distribution. This class is called
the bimodal skew-symmetric normal (BSSN) distribution [10], and includes the particular case of
bimodal normal distribution of [11]. Thus, with BSSN distribution it is possible to capture asymmetric
and platykurtic/leptokurtic (excess negative/positive kurtosis) in data sets, in addition to bimodality.
Besides, entropic measures are useful to obtain the statistic’s test if some regularity conditions of the
probability distribution function are accomplished [12]. We considered the Shannon entropy [13],
the Kullback–Leibler [14] divergence, and the BSSN maximum likelihood estimators to provide an
asymptotic test for bimodality.

This paper is organized as follows: some properties and inferential aspects of BSSN distribution
are presented in Section 2. In Section 3, we provide the computation and description of information
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theoretic measures related to BSSN distribution and then develop a hypothesis test about significance
of bimodality parameter together with a simulation study (Section 4). In Section 5, real data of sea
surface temperature collected off northern Chile illustrate the usefulness of the developed methodology.
Discussion concludes the paper in Section 6.

2. Bimodal Skew-Symmetric Normal Distribution

Definition 1. Let X be a continuous random variable defined at R, so we say X is bimodal skew-symmetric
normal (BSSN), distributed and denoted as X ∼ BSSN(µ, σ2, β, δ) [10], if its probability density function (pdf)
is given by

f (x) = c[(x− β)2 + δ]φ(x; µ, σ2), x ∈ R, (1)

where µ, β ∈ R are location parameters, σ > 0 and δ ≥ 0 denote respectively the scale and bimodality
parameters, φ(·; µ, σ2) is the normal pdf with location µ and scale σ parameters; and c = [λ2 + σ2 + δ]−1, with
λ = β− µ.

The mean and variance of X are given by

E[X] = µ− 2cλσ2, (2)

Var[X] = c2σ2(3σ4 + 4δσ2 + [λ2 + δ]2), (3)

respectively. Equation (1) shows that X ∼ N(µ, σ2) as δ→ ∞ or |β| → ∞. The pdf of Equation (1) can
also be expressed in a standardized form as is presented next.

Definition 2. A random variable Y has a BSSN distribution, with location parameters µ, β ∈ R, positive scale
parameter σ, and non-negative bimodality parameter δ if its pdf is

f (y) =
[

cσy2 − 2cλy +
1
σ
− 1
]

φ(y), y ∈ R,

where y = (x− µ)/σ, φ(·) is the standardized normal pdf with location 0 and scale 1, and c and λ are defined
as in Equation (1).

Figure 1 portrays various plots of the BSSN pdf, accommodating various shapes in terms of
skewness, kurtosis and bimodality. We observed that bimodality is presented for smallest δ, see also
Proposition 2.4 in [10]. In addition, the µ and β parameters allows accomodating skewness and kurtosis.

For a random sample X = (X1, . . . , Xn)> with pdf given in Equation (1), the log-likelihood
function can be written as

`(θ; X) = n log c +
n

∑
m=1

log[(Xm − β)2 + δ]− 1
2

n

∑
m=1

Y2
m, (4)

where Ym = (Xm − µ)/σ, m = 1, . . . , n, and θ = (µ, σ2, β, δ)>. Therefore, the MLE θ̂ is obtained by
maximizing the function (4). The Fisher Information Matrix (FIM) related to maximum likelihood
equations and derivatives with respect to θ, is

I(θ) =


Iµµ Iσµ Iβµ Iδµ

Iµσ Iσσ Iβσ Iδσ

Iµβ Iσβ Iββ Iδβ

Iµδ Iσδ Iβδ Iδδ

 , (5)



Symmetry 2020, 12, 1013 3 of 13

where its elements denoted by Iθiθj = −E[∂2`(θ; X)/∂θi∂θj], θk = {µ, σ2, β, δ}, k = 1, 2, 3, 4; are

Iµµ =
2nc
σ4 − n

(
2cλ

σ4

)2
+

n
σ2 ,

Iσσ = 2nσ2 − 4nc2
(

δ + λ2

σ2

)2

,

Iββ = Iµµ −
n
σ2 − 2

n

∑
i=1

δ− (Xi − β)2

[δ + (Xi − β)2]2
,

Iδδ = −n
( c

σ4

)2
+

n

∑
i=1

1
[δ + (Xi − β)2]2

,

Iµσ = −4nλ
( c

σ2

)2
− 2n(X− µ) = Iσµ,

Iµβ =
n
σ2 − Iµµ = Iβµ,

Iµδ = 2nλ
( c

σ4

)2
= Iδµ,

Iσβ = 4nλ
( c

σ2

)2
= Iβσ,

Iσδ =
Iσβ

2
= Iδσ,

Iβδ = −Iµδ − 2
n

∑
i=1

Xi − β

[δ + (Xi − β)2]2
= Iδβ,

where X = 1
n ∑n

i=1 Xi. It can be seen that FIM of Equation (5) is regular, for all δ ≥ 0.
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Figure 1. Various shapes of the pdfs of X ∼ BSSN(µ, σ2, β, δ), with σ2 = 5, δ = 0, 2, 5, 10 (black, red,
blue and violet lines, respectively); and (a) µ = 1, β = 1, (b) µ = 1, β = 0, (c) µ = −1, β = −0.5, and
(d) µ = −1, β = 0.5 parameters.
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3. Information Measures

In the next subsections, we present the main results of information measures for BSSN distribution.

3.1. Shannon Entropy

The entropy concept is attributed to uncertainty of information or mathematical contrariety
of information. Of all possible entropies presented in the literature, we focus on Shannon entropy
(SE) [13]. The SE of a random variable Z with pdf f (z) is defined as the expected value given by

H(Z) = −E[log f (Z)] = −
∫
R

f (z) log f (z)dz, (6)

where E[g(Z)] denotes the expected information in Z for a function g(z). In this case, SE is the expected
value of the function g(z) = − log f (z), which satisfies g(1) = 0 and g(0) = ∞. We extend this
notation in all expected values expressed in this paper.

Proposition 1. Let X ∼ BSSN(µ, σ2, β, δ) with pdf defined in Equation (1), the SE of X is given by

H(X) =
1
2

log
(

2πσ2

c2

)
+

(cσ)2

2

[
3σ2 + 4δ− 4λ2 +

(
λ2 + δ

σ

)2]
− E

[
log{(X− β)2 + δ}

]
, (7)

with λ = β− µ.

Proof. From Equation (1), we have

log f (x) = log c + log [(x− β)2 + δ]− 1
2

log(2πσ2)− 1
2σ2 (x− µ)2.

Then, from the definition of SE given in Equation (6), we have

H(X) = −
∫
R

f (x) log cdx +
∫
R

1
2

log(2πσ2) f (x)dx

−
∫
R

log [(x− β)2 + δ] f (x)dx +
∫
R

1
2σ2 (x− µ)2 f (x)dx,

= − log c +
1
2

log(2πσ2) +
1

2σ2 E[(x− µ)2]− E
[
log {(X− β)2 + δ}

]
. (8)

Given that E[(X − µ)2] = Var[X − µ] + E[X − µ]2 = Var[X] + (E[X]− µ)2, the result for H(X)

yields from Equations (2) and (3) and some basic algebra.

For any δ, the expected values of Equation (7) are not directly computable. However, the integrals
are evaluated numerically using the integrate function of R software’s [15] QUADPACK routine [16].
Several cases of SE given in Equation (7) are illustrated in the left panel of Figure 2 for δ = 0.1 to
20. SE is positive and reaches its maximum value for largest values of β and 0 < δ < 5 (where more
bimodality exists). As is highlighted in Section 2, the SE of BSSN random variable tends to SE of a
normal one,

H(X) =
1
2

log(2πσ2e) = H(XN),

as δ→ ∞ or |β| → ∞, where XN ∼ N(µ, σ2) [17]. Therefore, for highest values of δ, the SE decreases
and converges to normal SE, H(XN) = 2.224, with σ2 = 5. It can be shown that H(X) = H(XN) for
δ ≈ 500.

From the expected value given in Equation (8), we could consider the polynomial of second order,
p(x) = x2 − 2xβ + β2 + δ. This polynomial has determinant given by ∆ = −4δ. Given that δ ≥ 0,
we have two cases for possible roots, u1 and u2, of p(x) = (x− u1)(x− u2):
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(i) δ = 0 ⇒ ∆ = 0: u1 = u2 = β (real and equal roots). Thus, f (x) = c∗(x − β)2φ(x; µ, σ2), with
c∗ = [λ2 + σ2]−1. However, for this case X does not present bimodality, so p(x) 6= 0 for all
x ∈ R \ {β}.

(ii) δ > 0 ⇒ ∆ < 0: u1 = β + i
√

δ and u2 = β − i
√

δ, i =
√
−1 (complex and different roots).

However, x is defined in the real line, R.

Considering cases (i) and (ii), the SE exists and is finite if p(x) 6= 0 for all x ∈ R/{β}, δ = 0,
and for all x ∈ R, δ > 0. These cases are illustrated in the right panel of Figure 2. Red dots are related
to roots without real part (β = 0) and the other dots are related to β 6= 0. Given that ∆ < 0, several
dots are related to δ, shaped like circles.
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Figure 2. (Left) Shannon entropy for X ∼ BSSN(µ, σ2, β, δ) using several combinations of µ, β and
δ = 0.1, 0.2, . . . , 20. (Right) Inverse roots of p(x) = (x − u1)(x − u2) in the unit circle for the same
values of β and δ used in the left panel, where the inverse roots, 1/u1 and 1/u2 are plotted in their real
(x axis) and imaginary (y axis) parts, respectively.

3.2. Kullback-Leibler Divergence

Another measure related to the SE is the Kullback-Leibler (KL, [14]) divergence. It measures the
degree of divergence between the distributions of two random variables, Z1 and Z2, with pdf f (z1)

and g(z2), respectively. The KL divergence of the pdf of Z1 from the pdf of Z2 is defined by

K(Z1, Z2) = E
[

log
{

f (z)
g(z)

}]
=
∫
R

f (z) log
{

f (z)
g(z)

}
dz, (9)

where, as indicated in the notation, the expectation is defined with respect to the pdf f (z1). We note that

K(Zj, Zj) = 0, j = 1, 2, but again K(Zj, Zk) 6= K(Zk, Zj), j, k = 1, 2, j 6= k, at least that Zj
d
= Zk, i.e., the

KL divergence is not symmetric. An important property of KL divergence is that is non-negative:
K(Zj, Zk) ≥ 0, j, k = 1, 2, j 6= k, for all Z1, Z2. Given that KL divergence does not satisfy the triangular
inequality, it must be interpreted as a pseudo-distance measure [17].

Proposition 2. Let Zj ∼ BSSN(µj, σ2
j , β j, δj), j = 1, 2, both with pdf defined in Equation (1), the KL

divergence between Z1 and Z2 is given by

K(Z1, Z2) = log
(

c1σ2

c2σ1

)
+

1
2

(
1
σ2

2
− 1

σ2
1

)
c2

1σ2
1 (3σ4

1 + 4δ1σ2
1 + [λ2

1 + δ1]
2)

+
1

2σ2
2
(µ1 − µ2 − 2c1λ1σ2

1 )
2 − 2c2

1λ2
1σ2

1 + E
[

log
{
(Z1 − β1)

2 + δ1

(Z1 − β2)2 + δ2

}]
, (10)
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with cj = [λ2
j + σ2

j + δj]
−1, λj = β j − µj, j = 1, 2.

Proof. Assuming that Z1 and Z2 have pdf f and g, respectively; from Equation (1) we get

log g(x) = log c2 + log [(x− β2)
2 + δ2]−

1
2

log(2πσ2
2 )−

1
2σ2

2
(x− µ2)

2.

Then, from definition of KL divergence given in Equation (9), we get

K(Z1, Z2) = −
∫
R

f (z1) log g(z1)dx− H(Z1)

= −
∫
R

log [(z1 − β2)
2 + δ2] f (z1)dz1 +

∫
R

1
2σ2

2
(z1 − µ2)

2 f (z1)dz1

−
∫
R

f (z1) log c2dz1 +
∫
R

1
2

log(2πσ2
2 ) f (z1)dz1 − H(Z1)

=
1
2

log

(
2πσ2

2
c2

2

)
+

1
2σ2

2
E[(Z1 − µ2)

2]− E
[
log {(Z1 − β2)

2 + δ2}
]
− H(Z1)

=
1
2

log

(
2πσ2

2
c2

2

)
+

1
2σ2

2

[
Var[Z1] + (E[Z1]− µ2)

2
]

−1
2

log

(
2πσ2

1
c2

1

)
− 1

2σ2
1

[
Var[Z1] + (E[Z1]− µ1)

2
]

+E
[
log{(Z1 − β1)

2 + δ1}
]
− E

[
log {(Z1 − β2)

2 + δ2}
]

. (11)

Given that E[(Z1 − µ2)
2] = Var[Z1 − µ2] + E[Z1 − µ2]

2 = Var[Z1] + (E[Z1] − µ2)
2, the result

yields from Equations (2) and (3), Proposition 1, and some basic algebra.

For any δj, j = 1, 2, the expected values of Equation (10) are not directly computable.
However, the integrals were evaluated numerically using the integrate function of QUADPACK
routine [16]. Besides, we are considering two polynomials of second order, pj(x) = x2− 2xβ j + β2

j + δj,
with determinants given by ∆j = −4δj, j = 1, 2, respectively. Given that δj ≥ 0, we get four cases for
possible roots, uj,k of pj(x) = (x− uj,k)(x− uj,k), j, k = 1, 2:

(i) δj = 0 ⇒ ∆j = 0, j = 1, 2: u1,1 = u1,2 = β1 and u2,1 = u2,2 = β2 (real and equal roots). Thus,
f (x) = c1(x− β1)

2φ(x; µ1, σ2
1 ), with c1 = [λ2

1 + σ2
1 ]
−1, and g(x) = c2(x− β2)

2φ(x; µ2, σ2
2 ), with

c2 = [λ2
2 + σ2

2 ]
−1. However, neither densities presents bimodality. Thus, p1(x) 6= 0, for all

x ∈ R \ {β1}, and p2(x) 6= 0, for all x ∈ R \ {β2}.
(ii) δj > 0 ⇒ ∆j < 0, j = 1, 2: uj,1 = β j + i

√
δj and uj,2 = β j − i

√
δj (complex and different roots).

However, z1 is defined in the real line, R.
(iii) δ1 = 0 ⇒ ∆1 = 0, δ2 > 0 ⇒ ∆2 < 0: u1,1 = u1,2 = β1, u2,1 = β2 + i

√
δ2 and u2,2 = β2 − i

√
δ2

(complex and different roots). Thus, f (x) = c1(x − β1)
2φ(x; µ1, σ2

1 ), with c1 = [λ2
1 + σ2

1 ]
−1.

However, f (x) does not present bimodality and z1 is defined in the real line, R. So, p1(x) 6= 0, for
all x ∈ R \ {β1}.

(iv) δ1 > 0 ⇒ ∆1 < 0, δ2 = 0 ⇒ ∆2 = 0, : u2,1 = u2,2 = β2, u1,1 = β1 + i
√

δ1 and u1,2 = β1 − i
√

δ1

(complex and different roots). Hence, g(x) = c2(x − β2)
2φ(x; µ2, σ2

2 ), with c2 = [λ2
2 + σ2

2 ]
−1.

However, g(x) does not present bimodality and z1 is defined in the real line, R. Therefore,
p2(x) 6= 0, for all x ∈ R \ {β2}.

All of these cases are analogous to those illustrated in the right panel of Figure 2.
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Corollary 1. Let Z ∼ BSSN(µ, σ2, β, δ) and Z0 ∼ BSSN(µ, σ2, β, δ0), both with pdf defined in Equation (1),
the KL divergence between Z and Z0 is given by

K(Z, Z0) = log
(

λ2 + σ2 + δ0

λ2 + σ2 + δ

)
+ E

[
log
{

(Z− β)2 + δ

(Z− β)2 + δ0

}]
, (12)

with λ = β− µ.

Proof. The result is straightforward from Proposition 2 (by replacing µ = µ1 = µ2, σ = σ1 = σ2,
β = β1 = β2, δ = δ1 and δ2 = δ0) and some basic algebra.

As is highlighted in Section 2, the KL divergence between two BSSN random variables tends to a
KL divergence between two normal ones [17],

K(Z1, Z2) =
1
2

{
log

(
σ2

2
σ2

1

)
+

σ2
1

σ2
2
+

(µ1 − µ2)
2

σ2
2

− 1

}
= K(X1, X2),

as δj → ∞ or |β j| → ∞, where Xj ∼ N(µj, σ2
j ), j = 1, 2.

Figure 3 (left) illustrates the numerical behavior of the KL divergence between two BSSN
distributions under different δ1 and δ2 parameters. Specifically, we can observe from there the
behavior of the KL divergence given in Proposition 2, where for δ1 ≈ δ2, the KL divergence tends
to zero but is always non-negative. For δ1 6= δ2, we observe that KL divergence has the highest
values. The right panel illustrates the cases δ1 = {0.5, . . . , 100} and δ2 = {0, 2, 5, 10}, where the KL
divergence converges to 1.269 when δ2 = 0 (see Equation (12)), as δ1 → ∞, and increases for δ1

between 0 and 100. For δ1, δ2 > 0, the KL divergence decreases because more similarity exists between
bimodality parameters.
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2) µ=1, σ2=5, β=1
µ=1, σ2=5, β=0
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µ=−1, σ2=5, β=0.5

Figure 3. (Left) KL divergence between Z1 ∼ BSSN(1, 5, 1, δ1) and Z2 ∼ BSSN(1, 5, 1, δ2), for δ =

0.1, 0.2, . . . , 20. (Right) KL divergence between Z1 and Z2, Zj ∼ BSSN(µ, σ2, β, δj), j = 1, 2, for δ1 =

0.5, . . . , 100, δ2 = 0, 2, 5, 10, and the same parameters µ, σ2 and β of Figures 1 and 2.

3.3. Jeffreys Divergence

As KL divergence is not symmetric, Jeffrey’s (J) divergence [18] is considered as a symmetric
version of the KL divergence, which is defined as

J (Z1, Z2) = K(Z1, Z2) +K(Z2, Z1) = J (Z2, Z1). (13)
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The J divergence does not satisfy the triangular inequality of distance, so it is a
pseudo-distance measure.

Corollary 2. Let Zj ∼ BSSN(µj, σ2
j , β j, δj), j = 1, 2, both with pdf defined in Equation (1), the J divergence

between Z1 and Z2 is given by

J (Z1, Z2) =
1
2

(
1
σ2

2
− 1

σ2
1

) [
c2

1σ2
1 (3σ4

1 + 4δ1σ2
1 + [λ2

1 + δ1]
2)− c2

2σ2
2 (3σ4

2 + 4δ2σ2
2 + [λ2

2 + δ2]
2)
]

+
1

2σ2
2
(µ1 − µ2 − 2c1λ1σ2

1 )
2 +

1
2σ2

1
(µ2 − µ1 − 2c2λ2σ2

2 )
2 − 2c2

1λ2
1σ2

1 − 2c2
2λ2

2σ2
2

+E
[

log
{
(Z1 − β1)

2 + δ1

(Z1 − β2)2 + δ2

}]
+ E

[
log
{
(Z2 − β2)

2 + δ2

(Z2 − β1)2 + δ1

}]
. (14)

with cj = [λ2
j + σ2

j + δj]
−1, λj = β j − µj, j = 1, 2.

Proof. The result is straightforward from the definition given in Equation (13), Proposition 2, and
some basic algebra.

As mentioned in Section 2, the J divergence between two BSSN random variables tends to a J
divergence between two normal ones [17],

J (Z1, Z2) =
1
2

{
σ2

1
σ2

2
+ (µ1 − µ2)

2

(
1
σ2

2
+

1
σ2

1

)
− 2

}
= J (X1, X2),

as δj → ∞ or |β j| → ∞, where Xj ∼ N(µj, σ2
j ), j = 1, 2.

4. Bimodality Test

First, an analytical tool is necessary to determine a set of values for δ where bimodality exists.
Following Proposition 2.5 of [10], the steps presented next determine these values for given µ, β and
σ2 parameters.

4.1. Bimodality

Let f (k)(x) = ∂k f (x)
∂xk be the kth derivative of f (x) with respect to x, k = 1, 2, we have

f (1)(x) = 2c
{
(x− β)− 1

2σ2 (x− µ)[(x− β)2 + δ]

}
φ(x; µ, σ2),

f (2)(x) = 2c
{

1 +
1

2σ4 (x− µ)2[(x− β)2 + δ]− 1
2σ2 [(x− β)2 + 4(x− µ)(x− β) + δ]

}
φ(x; µ, σ2).

Thus, the pdf of Equation (1) is bimodal if a δ0 ≥ 0 like δ < δ0 exists for the following cases:

(i) if µ = β, thus δ0 = 2σ2;

(ii) if µ 6= β, thus f (1)(x) = 0 implies to find three roots, v1, v2 and v3 (v1 < v2 < v3), of the
polynomial of degree three, r(x) = a3x3 + a2x2 + a1x + a0 = 0, with
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a3 =
1

2σ2 ,

a2 = − 1
2σ2 (2β + µ),

a1 =
1

2σ2 (β2 + 2βµ + δ− 2σ2),

a0 = − 1
2σ2 (β2µ + δµ− 2βσ2).

For given µ, σ2 and β parameters, µ 6= β, the polynomial r(x) can be solved for v2 in terms of δ

and inequality f (2)(v2) > 0 can be used to determine δ0. This implies that

δ <
2σ4 + (v2 − µ)2(v2 − β)2 − σ2(v2 − β)(5v2 − 4µ− β)

σ2 − (v2 − µ)2 = δ0. (15)

Therefore, since δ < δ0, the upper bound given in Equation (15) can be used for detecting
bimodality if δ0 > 0 for a given root v2 of r(x), v1 < v2 < v3, and µ, σ2 and β parameters.

4.2. Asymptotic Test

The results given in [12] can be applied, for example, to construct a bimodality test from the KL
divergence presented in Corollary 1 between a regular BSSN distribution and a BSSN distribution
without bimodality. Specifically, consider a random sample X1, . . . , Xn from X ∼ BSSN(µ, σ2, β, δ)

and the null (H0) and alternative (H1) hypothesis

H0 : δ ≤ δ0 versus H1 : δ > δ0, (16)

where the null and alternative hypothesis refers to bimodality and unimodality, respectively. Thus the
BSSN random variable X becomes a BSSN(µ, σ2, β, δ0) random variable for a specific value δ0 under
H0. The δ0 could be selected using, for example, the criteria explained in cases (i) and (ii) of Section 4.1.

Proposition 3. Let θ̂ = (µ̂, σ̂2, β̂, δ̂)> be the MLE of θ = (µ, σ2, β, δ)> as in Section 2, and θ̂0 =

(µ̂, σ̂2, β̂, δ0)
>. Therefore, under H0 we have

SK(θ̂, θ̂0) = 2nK̂(Z, Z0)
d−→

n→∞
χ2

1, (17)

where χ2
1 denotes the chi-square distribution with 1 degree of freedom, and K̂(Z, Z0) is the MLE of K(Z, Z0)

defined in Equation (12) of Corollary 1.

Proof. The result is straightforward from ([12], p. 375).

Under specifications of Proposition 3, the statistic SK(θ̂, θ̂0) depends only on δ̂ and n. As stated
in Sections 2 and 3, unimodality is typically obtained from the BSSN class at δ ≤ δ0. Given that FIM is
regular and regularity conditions (i), (ii), and (iii) stated in ([12], p. 375) are satisfied, it is possible to
test bimodality via hypothesis testing of Proposition 3. Let

C = {X1, . . . , Xn | SK(θ̂, θ̂0) ≥ χ2
1−α, 0 < α < 1}

be the critical region related to (16), thus P(χ2
1 ≤ χ2

1−α) = 1− α. Hence, from Proposition 3, evidence
exists to accept the null hypothesis of bimodality given in Equation (16) at level α if

P(χ2
1 < SK(θ̂, θ̂0)) > 1− α or P(χ2

1 > SK(θ̂, θ̂0)) ≤ α. (18)
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The observed power of the asymptotic bimodality test can be obtained from Equations (17)
and (18), for different sample sizes and values of the bimodality parameter. These results were
obtained from 1000 simulations for a nominal level of 5%. In each simulation, the estimation of the
BSSN model’s parameters was carried out by maximizing the likelihood function of Equation (4)
over the parameter space θ and a random sample of size n = 25, 50, 100 and 200. To estimate
the parameters and get their standard errors, first the random sample is obtained using the rBSSN
function of gamlssbssn package [19]. Second, the log-likelihood function is computed using the pdf
of Equation (1) implemented in the same package. Third,, the log-likelihood function is optimized
using the mle function included in the stats4 package of R software [15]. To avoid local maxima,
the optimization routine was run using specific starting values used for random samples.

Table 1 shows that the proposed test is highly conservative since the observed rate of incorrect
rejections of the bimodality hypothesis (H0) is always lower than the nominal level, i.e., for δ � δ0

and δ� δ0, the observed power tends to increase and decrease, respectively. The proposed test is also
more powerful in large samples (n ≥ 100) and for δ > 0.5. As expected, the power of the test increases
with sample size, given that statistic SK(θ̂, θ̂′) depends on n although K̂(Z, Z0) is small (Figure 3).

Table 1. Observed power (in %) of the proposed bimodality test using MLE of BSSN model from
1000 simulations for nominal level 5%, locations µ = 1 and β = 0 (see Figure 1b), various values of
bimodality parameters δ and δ0, and sample size n.

δ0

n δ 0.5 1 2 3 5 7 10

25 0.5 25.40 17.63 19.78 34.31 59.97 75.69 86.49
2 44.27 30.19 23.01 21.39 33.61 48.22 65.56
5 75.19 56.85 34.51 26.77 25.05 31.91 38.73
7 84.04 70.12 40.21 32.34 23.00 26.96 34.07

50 0.5 18.14 16.64 47.95 72.14 93.58 97.52 99.23
2 62.58 35.97 23.89 33.05 59.77 77.14 87.29
5 94.42 81.45 51.11 31.96 25.90 36.40 49.09
7 97.68 87.83 64.03 47.04 26.01 26.72 36.61

100 0.5 19.70 29.65 81.74 95.53 99.75 99.87 100.00
2 79.76 48.59 24.22 39.92 77.82 92.45 97.79
5 99.90 96.20 69.70 43.40 26.03 36.60 59.50
7 99.90 99.20 88.00 66.27 29.20 26.03 41.00

200 0.5 21.37 53.33 95.04 100.00 100.00 100.00 100.00
2 95.80 70.10 24.92 51.30 93.20 99.30 100.00
5 100.00 100.00 93.20 60.10 23.30 45.50 80.10
7 100.00 100.00 99.40 88.90 38.80 24.20 45.60

5. Application to Sea Surface Temperature Data

A real application in this section illustrates the performance of the asymptotic bimodality test.
Specifically, we considered the Sea Surface Temperature (SST) data sets presented in [20], which were
recorded from 2012 to 2014 by scientific observers of the northern Chilean longline fleet (industrial and
artisanal, 21◦31′–36◦39′ LS and 71◦08′–85◦52′ LW). Contreras-Reyes et al. [20] proposed the Skewed
Reflected Gompertz (SRG) model based on two-piece distributions [21] as suitable for interpreting
annual bimodal and asymmetric SST data. The SRG distribution produces two-piece asymmetric and
bimodality behavior of Gompertz (GZ) density.

To estimate the parameters and get their standard errors, the log-likelihood function and its
optimization were carried out (see Section 4.2). However, to avoid local maxima, the optimization
routine was run using specific starting values obtained by visual inspection of histograms, which are
widely scattered in the parameter space. To evaluate the goodness of fit test, the Kolmogorov–Smirnov
(K–S), Anderson–Darling (A–D), and Cramer-von Mises (C–V) tests were considered for all
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models. These are commonly used to analyze the goodness of fit test of a particular distribution
(see e.g., [20,21]). The test are implemented with the goftest package [22] of R software, and all
considered the cumulative distribution function pBSSN of gamlssbssn package [19]. The proposed
asymptotic bimodality test is compared with a nonparametric approach-based asymptotic test (DIPtest),
implemented in the diptest package/function [23].

Considering the smallest Akaike (AIC) and Schwarz (BIC) information criteria values,
we observed in Table 2 that BSSN performs better than the SRG model (and the other competitors,
see AIC and BIC values reported in Table 1 of [20]). In addition, considering the K–S, A–D, and C–V
test for a 95% confidence level, BSSN fits perform well for all years (p-values higher than 0.05 mean
appropriate goodness of fit). Figure 4 illustrates this performance, where more than one mode is
presented in histograms. The most notorious bimodality emerged for 2014.

Parameters estimated from the BSSN model, presented in Table 2, are used to perform the SE and
KL divergence for SST in each year and for the asymptotic test of Section 4.2. The determination of
δ0 was conducted using the procedure explained in Section 4.1. The results of these analyses appear
in Table 3, where K̂(Z, Z0) represents the KL divergence under null hypothesis. Shannon entropies
illustrate that most SST information come from 2013. In addition, the asymptotic test presented in
Table 3 is analogous for all years. In fact, the null hypothesis H0 of bimodality is accepted at 95%
confidence level according to Equation (18). This acceptance is reinforced by large sample size and by
the DIPtest results, where rejection (p-value < 0.05) implies at least bimodality.

Table 2. Parameter estimates and their respective standard deviations (S.D) for SST by year based on
BSSN model. For each fit, log-likelihood function `(θ) with θ = (µ, σ2, β, δ), Akaike (AIC) and Schwarz
(BIC) information criteria, and goodness of fit tests (Kolmogorov–Smirnov (K–S), Anderson–Darling
(A–D), and Cramer–von Mises, (C–V)) are also reported with respective p-values in parenthesis.

Year Param. Estim. (S.D) `(θ) AIC BIC K–S A–D C–V

2012 µ 19.007 0.078 −1396.1 2800.3 2818.9 0.042 1.760 0.233
(n = 774) σ2 1.434 0.020 (0.13) (0.13) (0.21)

β 19.670 0.151
δ 1.746 0.384

2013 µ 18.187 0.068 −683.71 1375.4 1391.5 0.035 0.636 0.074
(n = 414) σ2 0.886 0.044 (0.68) (0.61) (0.73)

β 18.328 0.127
δ 1.026 0.310

2014 µ 17.628 0.040 −643.62 1295.2 1311.6 0.043 0.518 0.070
(n = 439) σ2 0.550 0.054 (0.41) (0.73) (0.75)

β 17.682 0.058
δ 0.306 0.079
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Figure 4. Histograms of SST data by year and their respective MLE fits of BSSN model (solid line).
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Table 3. BSSN Shannon, H(Z), KL divergence K̂(Z, Z0), statistic and respective p-values of
Equation (17) are reported for SST data and for each year. All reported H(Z), δ̂, and K̂(Z, Z0) estimates
considered the estimated parameters and sample size n reported in Table 2.

Method Quantifier 2012 2013 2014

Proposed H(Z) 1.613 1.634 1.455
δ̂ 1.746 1.026 0.306
δ0 9.273 2.534 2.579
K̂(Z, Z0) 0.003 0.025 0.138
Statistic 556.657 21.425 121.087
p-value 0.971 0.999 1.000

DIPtest Statistic 0.023 0.029 0.038
p-value <0.01 0.016 <0.01

6. Conclusions

We have presented a methodology to compute the Shannon entropy and the Kullback–Leibler
and Jeffreys divergences for the family of bimodal skew-symmetric normal distributions. Given the
regularity conditions accomplished by the BSSN distribution, specifically by the regularity of Fisher
information matrix, an asymptotic test for bimodality was developed. A statistical application to South
Pacific sea surface temperature was given. We illustrated that asymptotic tests in samples of three years
were useful to detect strong evidence of bimodality. This approach can be applied to real models and
used for data analysis in various systems, such as Artic Sea Temperature [24] and biological [25] data.

The main result is that information measures and asymptotic tests can be employed in bimodal
distributions (if regularity conditions are accomplished [12]) and present enough flexibility in complex
data. Compared with DIPtest [9,23] and kurtosis measure [7,8], the proposed asymptotic test for
bimodality presented the following novelties: (i) it was built under a parametric approach (a known
distribution); (ii) it was based on information measures; and (iii) it considered regularity conditions of
BSSN distribution. In addition, the computation of information quantifiers of BSSN distributions is
a more adequate tool, compared with information quantifiers obtained for finite mixture of flexible
distributions, where Shannon entropy is approximated by bounds [26].

Finally, we encourage researchers to consider the proposed methodology for further investigations
with other bimodal distributions, such as bimodal normal distribution [11], the extension proposed in
Equation (19) of [10], or the generalized bimodal skew-normal distribution proposed by [27].
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