
symmetryS S

Article

Canonical Transformation of Potential Model
Hamiltonian Mechanics to Geometrical Form I

Yosef Strauss 1, Lawrence P. Horwitz 1,2,3,4, Jacob Levitan 2 and Asher Yahalom 5,6,*
1 Department of Mathematics, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel;

yossefst@ariel.ac.il (Y.S.); larry@tauex.tau.ac.il (L.P.H.)
2 Department of Physics, Ariel University, Ariel 40700, Israel; levitan@ariel.ac.il
3 Department of Physics, Tel Aviv University, Ramat Aviv 69978, Israel
4 Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
5 Department of Electrical & Electronic Engineering, Ariel University, Ariel 40700, Israel
6 PPPL, Princeton University, Princeton, NJ 08543, USA
* Correspondence: asya@ariel.ac.il

Received: 29 April 2020; Accepted: 10 June 2020; Published: 14 June 2020
����������
�������

Abstract: Using the methods of symplectic geometry, we establish the existence of a canonical
transformation from potential model Hamiltonians of standard form in a Euclidean space to an
equivalent geometrical form on a manifold, where the corresponding motions are along geodesic
curves. The advantage of this representation is that it admits the computation of geodesic deviation
as a test for local stability, shown in recent previous studies to be a very effective criterion for the
stability of the orbits generated by the potential model Hamiltonian. We describe here an algorithm for
finding the generating function for the canonical transformation and describe some of the properties
of this mapping under local diffeomorphisms. We give a convergence proof for this algorithm
for the one-dimensional case, and provide a precise geometric formulation of geodesic deviation
which relates the stability of the motion in the geometric form to that of the Hamiltonian standard
form. We apply our methods to a simple one-dimensional harmonic oscillator and conclude with
a discussion of the relation of bounded domains in the two representations for which Morse theory
would be applicable.

Keywords: classical Hamiltonian dynamics; symplectomorphism; geometric representation; geodesic
deviation; stability

PACS: 02.40.Ry; 02.40.Yy; 45.20.Jj; 45.10.Na

1. Introduction

This paper is concerned with the development of a new method for embedding the motion
generated by a classical Hamiltonian of standard form into a Hamiltonian defined by a bilinear
form on momenta with coordinate-dependent coefficients (forming an invertible matrix) by means
of a canonical transformation. This type of Hamiltonian, which we shall call geometric, by applying
Hamilton’s equations, results in equations of motion of geodesic form. The coefficients of the resulting
bilinear form in velocities can be considered to be a connection form associated with the coefficients in
the momenta in the geometric Hamiltonian considered as a metric on the corresponding coordinates.
The advantage of this result, which may be considered to be an embedding of the motion induced
by the original Hamiltonian into an auxiliary space for which the motion is governed by a geodesic
structure, is that the deviation of geodesics on such a manifold (involving higher order derivatives
than the usual Lyapunov criteria) can provide a very sensitive test of the stability of the original
Hamiltonian motion.
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In previous work, an ad hoc construction of a geometrical embedding using a conformal
metric [1] introduced. Casetti and Pettini [2] have investigated the application of the Jacobi metric
and the extension of the analysis of the resulting Jacobi equations along a geodesic curve in terms of
a parametric oscillator; such a procedure could be applied to the constuction we discuss here as well.
The relation of the stability of geometric motions generated by metric models previously considered to
those of the motion generated by the original Hamiltonian is generally, however, difficult to establish.
The transformation that we shall construct here preserves a strong relation with the original motion
due to its canonical structure.

The methods we shall use are fundamentally geometric, involving the properties of symplectic
manifolds which enable the definition and construction of the canonical transformation without using
the standard Lagrangian methods. These geometric methods provide a rigorous framework for this
construction, which makes accessible a more complete understanding of the dynamics.

The theory of the stability of Hamiltonian dynamical systems has been discussed in depth,
for example, in the books of Ar’nold [3], Guckenheimer and Holmes [4], and recently by
DiBenedetto [5,6]. In his discussion of stability, Gutzwiller [7] (see also Miller and Curtiss [8])
discusses the example of a Hamiltonian of geometric type, where the Hamiltonian, instead of the
standard expression

H(q, p) =
p2

2m
+ V(q), (1)

has the form (in two or more dimensions),

HG(x, π) =
1
2

gij(x)πiπ j, (2)

with indices summed (We use the convention, differing from that of the standard literature on
differential geometry, of denoting coordinates with lower indices and momenta with upper indices,
to conform with the usage in [1].). In one dimension, g(x) would be just a scalar function, but, as we
shall see, is still of interest. We shall call such a structure geometrical. We shall call the space of the
standard variables {q, p} the Hamilton space. The application of Hamilton’s equations to Equation (2)
results in a geodesic type equation

ẍ` = −Γmn
` ẋm ẋn, (3)

where the coefficients have the structure of a connection form (here, gij is the inverse of gij)

Γmn
` =

1
2

g`k

(
∂gkm

∂xn
+

∂gkn

∂xm
− ∂gnm

∂xk

)
. (4)

This connection form is compatible with the metric gij(x) by construction, i.e., the covariant
derivative of of gij constructed with the Γmn

` of Equation (3) vanishes, and we recognize that the
dynamics generated on the coordinates {x} is a geodesic flow. It can carry, moreover, a tensor structure
which may be inferred from the requirement of invariance of the form given in Equation (2) under
local coordinate transformations.

The stability of such a system may be tested by studying the geodesic deviation, i.e., by studying
what happens when one shifts to a nearby geodesic curve, corresponding to a local change in initial
conditions. The resulting separation of the two geodesic curves provides a very sensitive test of stability
(see Gutzwiller [7], and for its application to general relativity, Weinberg [9]). An exponentially growing
deviation is characteristic of local instability, and may lead to chaotic behavior of the global motion.

In order to obtain a criterion in the case of a standard Hamiltonian of the form given in Equation (1),
Horwitz et al. [1] constructed an ad hoc transformation of this Hamiltonian to a Hamiltonian of the
form of (2) by defining the metric as

g`k(x) = δ`kφ(x), (5)
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where (with a relation between x and q to be explained below)

φ(x) =
E

E−V(q)
≡ F(q), (6)

and E is taken to be the assumed common (conserved) value of H and HG.
The motion induced on the coordinates {x} by HG , after the local tangent space transformation

ẏk = gk`(x)ẋ`, results in a geometric embedding of the original Hamiltonian motion for which the
geodesic deviation gives a sensitive diagnostic criterion for the stability of the original Hamiltonian
motion [1,10–13]. The condition of dynamical equivalence of the two systems, based on enforcing
equal values of the momenta at all times (the transformation is not necessarily canonical), provides
a constraint that establishes a correspondence between the coordinatizations {x} and {q} in the sense
that φ(x) can be expressed as a series expansion in F(q) and its derivatives, and conversely, F(q) can
be expressed as a series expansion in φ(x) and its derivatives, in a common domain of analyticity [14];
in this way, all derivatives of φ(x) can be expressed in terms of derivatives of F(q), and conversely.

The remarkable success of this method has not yet been explained, although some insights
were provided in [15]. In the theory of symplectic manifolds (see, for example [16]), a well-defined
mechanism exists for transforming a Hamiltonian of the form of Equation (1) to that of Equation (2)
(with a possibly conformal metric) by a rigorous canonical transformation, admitting the use of
geodesic deviation to determine stability, which would then be clearly associated with the original
Hamiltonian motion. We shall define this theory, and describe some of its properties, in this paper.

We remark that in an analysis [17] of the geodesic deviation treated as a parametric oscillator,
a procedure of second quantization was carried out providing an interpretation of excitation modes for
the instability in a “medium” represented by the background Hamiltonian motion. This interpretation
would be applicable to the results of the construction we present here as well.

In the following, we describe this mapping and an algorithm for obtaining solutions. We give
a convergence proof for the recurrence relations for the generating function in the one-dimensional
case which appears to be applicable to the general n-dimensional case. Although the algorithm for the
construction is clearly effective (and convergent), its realization requires considerable computation for
specific applications, which we shall carry out in succeeding publications. The resulting programs
could then be applied to a wide class of systems to provide stability criteria without exhaustive
simulation; the local criteria to be developed could, furthermore, be used for the control of intrinsically
chaotic systems [13].

In this paper we discuss some general properties of the framework. In Section 2, we give the basic
mathematical methods in terms of the geometry of symplectic manifolds.

A central motivation for our construction is to make available the study of stability by means of
geodesic deviation. This procedure is studied in Section 3, in terms of geometric methods, making clear
the relation between stability in the geometric manifold and the original Hamiltonian motion.

In Section 4, an algorithm is described for solving the nonlinear equations for the generating
function of the canonical transformation. In Section 5, we study this algorithm for the one-dimensional
case, and prove convergence of the series expansions, under certain assumptions in Section 6.
The series expansions that we obtain can be studied by methods of Fourier series representations;
the nonlinearity leads to convolutions of analytic functions (see, for example, Hille [18]) that may offer
approximation methods that could be useful in studying specific cases. We plan to discuss this topic in
a future publication.

Since the iterative expansions for the generating function could be expected to have only bounded
domains of convergence, we consider, in Section 7, the possibility of shifting the origin of the
expansion in general dimension, As for the analytic continuation of a function of a complex variable,
this procedure can extend the definition of the generating function to a maximal domain.

Since the image space of the symplectomorphism has geometrical structure, it is natural to
study its properties under local diffeomorphisms. A local change of variable alters the structure of
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the symplectomorphism. We study the effect of such diffeomorphims on the generating function
(holding the original Euclidean variables fixed) in Section 8.

Further mathematical implications, such as relations to Morse theory (e.g., [19,20]), are briefly
discussed in Section 9; a more extended development of this topic will be given in a succeeding publication.

2. Basic Mathematical Formulation

The notion of a symplectic geometry is well-known in analytic mechanics through the existence of
the Poisson bracket of Hamilton–Lagrange mechanics, i.e., for A, B functions of the canonical variables
q, p on phase space, the Poisson bracket is defined by

{A, B}PB = ∑
k

(
∂A
∂qk

∂B
∂pk −

∂B
∂qk

∂A
∂pk

)
. (7)

The antisymmetric bilinear form of this expression has the symmetry of the symplectic group,
associated with the symmetry of the bilinear form ξiη

ijξ j, with i, j = 1, 2, . . . 2n and ηij an antisymmetric
matrix (independent of ξ); the {qk} and {pk} can be considered as the coordinatization of
a symplectic manifold.

The coordinatization and canonical mapping of a symplectic manifold [16], to be called
a symplectomorphism, can be constructed by considering two n-dimensional manifolds X1 and
X2 (to be identified with the target and image spaces of the map) with associated cotangent bundles
M1 = T∗X1, M2 = T∗X2, so that

M1 ×M2 = T∗X1 × T∗X2 ' T∗(X1 × X2). (8)

To complete the construction of the symplectomorphism, one defines the involution σ2. The action
of this involution, in terms of the familiar designation, if (x2, p2) ∈ M2 = T∗X2 is a point in M2 (so that
x2 is a point in X2 and p2 is a one-form at the point x2), we define

σ2(x2, p2) = (x2,−p2). (9)

We then define
σ = idM1 × σ2, (10)

where idM1 is the identity map on M1.
This construction can be extended to a coordinate patch on M2, enabling the construction of

a bilinear form in the tangent space of M2. A vector

v = vj ∂

∂uj , (11)

where, on some coordinate patch on M2 with uj = x2
j, j = 1...n, and uj = p2,j−n, j = n + 1, ...2n,

and ũ = σ2u, in the tangent space TM2, gives rise to a one-form; the differential of the map induced by
σ2 results in the vector (“pushforward”),

dσ2(v) = vj ∂ũi

∂uj
∂

∂ũi . (12)

If β is a one-form, the (“pullback”) map σ2
∗ : T∗M2 → T∗M2, defined by

σ2
∗β(v) = β(dσ2(v)). (13)

provides the characteristic antisymmetric form on the symplectic manifold required for the formulation
of Lagrangian mechanics.
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One then proceeds to define a smooth function f ∈ C∞(X1 × X2); if d f is a closed 1-form on
T(X1 × X2), call

Yf = {((x, y), (d f )(x,y)) : (x, y) ∈ X1 × X2}. (14)

Then,
Yf

σ = σ(Yf ) = {((x, y), dx f ,−dy f )) : (x, y) ∈ X1 × X2}. (15)

If Yf
σ is a graph of a diffeomorphism ϕ : M1 → M2, then ϕ is a symplectomorphism.

Now suppose ϕ : M1 − T∗X1 → M2 = T∗X2 is the map

ϕ(x, ξ) = (y, η) (16)

and Yf
σ is its graph, then

tξidxi = ∂ f
∂xi dxi ⇒ ξi =

∂ f
∂xi

ηidyi = − ∂ f
∂yi dyi ⇒ ηi = −

∂ f
∂yi .

(17)

We may now attempt to solve (16) to obtain

y = y(x, ξ), (18)

and then the second of (17) to obtain

η = η(x, y(x, ξ)) ≡ η(x, ξ) (19)

and with this, determine the symplectomorphism

ϕ(x, ξ) = (y(x, ξ), η(x, ξ)). (20)

In its application to Hamiltonian mechanics, in the usual notation, let

ϕ(q1, ...qn, p1, ...pn) = (x1, ...xn, π1...πn) (21)

between M1 = T∗X1 and M2 = T∗X2 through the equations

pi =
∂ f (q, x)

∂qi

πi = −∂ f (q, x)
∂xi , i = 1, 2...n, (22)

where we have denoted the generating function of the symplectomorphism ϕ by f . We remark that
the possibility of solving Equation (17) locally to obtain Equation (18) and Equation (19) requires that

det
(

∂2 f (q, x)
∂qi∂xj

)
6= 0. (23)

The Equation (22), of the form of the usual canonical transformation derived by adding a total
derivative to the Lagrangian in Hamilton-Lagrange mechanics, have been obtained here by a more
general and more powerful geometric procedure (the theory of symplectomorphisms), enabling, as we
shall see, a simple formulation of the transformation from the standard Hamiltonian form to
a geometrical type Hamiltonian.
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3. Geodesic Deviation

The principal reason for introducing the canonical transformation from Hamiltonian form to
the geometric form, as we have pointed out in the introduction, is to make accessible the very
sensitive measure of stability provided by geodesic deviation. In this section we develop a geometrical
formulation of this technique which makes clear the relation between stability in the geometric space
and stability in the original Hamiltonian space.

Returning to the geometrical framework defined in Section 2, let X be a Hamiltonian vector field
in the phase space M1, satisfying

iXω = dH, (24)

where ω is the canonical symplectic form on M1. The integral curves of X , obtained by solving
Hamilton’s equations for H, are the trajectories of the Hamilton dynamical system. Since the mapping
ϕ to M2 is a symplectomorphism, the pullback by ϕ of the canonical symplectic form ω̃ on M2 satisfies

ϕ∗ω̃ = ω. (25)

If dϕ : TM1 7→ TM2 is the differential of ϕ and we define the vector field Xgeo = dϕ(X), we have

iXgeo ω̃ = dHgeo, (26)

so that Xgeo is a Hamiltonian vector field in TM2 with respect to the Hamiltonian function Hgeo;
the integral curves for Xgeo correspond to geodesics in M. We shall refer to such integral curves of Xgeo

as M2 geodesics, or cotangent bundle geodesics.
Let γ ⊂ M1 be a trajectory in phase space of the original dynamical system. Then, γϕ = ϕ(γ)

is an M2 geodesic. If π̃ : M2 → M is the projection of the cotangent bundle M2 = T∗M on the base
manifold M, then π̃(γϕ) is a geodesic in M. For G the map of the tangent bundle M3 = TM to the
cotangent bundle M2, we apply the inverse map G−1 : M2 7→ M3, the tangent bundle for M, i.e., (x, v),
where v ∈ Tx M (x is a point in M), to γϕ, we obtain an M3 (or tangent bundle) geodesic

γQ = G−1(γϕ) = (G−1 ◦ ϕ)γ = Q(γ). (27)

If now π : M3 7→ M is the projection of the tangent bundle on the base manifold M,
then π(γQ) = π̃(γϕ) is a geodesic in M. This establishes the equivalence of trajectories in the original
Hamiltonian space with geodesics in the geometric space.

Let u0 ∈ M1 be a point in phase space and let γ0 ⊂ M1 be the curve given by γ0(t) = φt(u0),
where φt is the flow in the phase space M1 of the Hamiltonian dynamical system generated by H,
i.e., γ0 is a trajectory of the system such that γ0(0) = u0. Let W̃2n−1 ⊂ M1 be a surface of section
at u0, i.e., a hypersurface in M1 transverse to the trajectories of the dynamical system and defined
in some open neighborhood of u0. Let E0 ⊂ M1 be an equal energy hypersurface passing through
a point p0 ∈ E0, for which dH = 0 on E0, and let W = W2n−1 ∩ E0. Then W is a 2n− 2-dimensional
submanifold of M1 such that the Hamiltonian H has the same value at all points u ∈W and such that
the trajectories of the dynamical system are transverse to W at all points of intersection. Now, let u
be an arbitrary point in W; then it is a base point of a trajectory γu given by γu(t) = φt(u). In a time
interval 0 ≤ t ≤ T(T > 0) we define a submanifold Nu0 ⊂ M1 by

Nu0 = {φt(u) : ∀u ∈W, ∀t ∈ [0, T]}. (28)

Then, Nu0 is parametrized by (u, t), for u ∈ W, t ∈ [0, T]. and consists of trajectories of the
dynamical system corresponding to all initial points u ∈ W. Now apply the mapping Q to obtain
a submanifold Nu0

Q ⊂ M1 according to

NQ
u0 = Q(Nu0) = {Q[φt(u)] : ∀u ∈W, ∀t ∈ [0, T]}. (29)
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Again, by construction, Nu0
Q is parametrized by (u, t), for u ∈ W, t ∈ [0, T]. For each u ∈ W,

the curve γu
Q = Q(γu) is an M3 geodesic curve given by γu

Q(t) = Q[φt(u)] and Nu0
Q consists of all

such geodesic curves corresponding to all possible initial points u ∈W. In particular, γ0
Q = Q(γ0) is

the M3 geodesic corresponding to to the trajectory γ0 of the original dynamical system.
To calculate geodesic deviation, we now consider variations of such trajectories. Let γvar ⊂ W

be a curve parametrized by a parameter α and based at the point u0 ∈ W. For some interval I ⊂ R,
with 0 ∈ I, γvar is given by a smooth function u(α) ∈ W, ∀α ∈ I and u(0) = u0. The curve γvar

corresponds to a two dimensional surface Svar(γvar) ⊂ Nu0 through the definition

Svar(γvar) = {φt(u(α)) : α ∈ I, t ∈ [0, T]} (30)

By construction, (t, α), t ∈ [0, T], α ∈ I are coordinates on Svar(γvar), the variational surface of γ0

corresponding to γvar. Each such curve γU(α), given by γvar(t) = φt(u(α), t ∈ [0, T], is a trajectory of
the original Hamiltonian system. Furthermore, γvar is carried by the flow φt to a variation curve γt

var
at time t defined by γt

var = φt(γvar), given explicitly by the function φt(α) = φt(u(α)), where u(α) is
the function defining γt

var. Applying the mapping Q to Svar(γvar), we obtain an n− 1-dimensional
surface in M3 (two-dimensional surface in a three-dimensional problem)

SQ
var(γvar) = Q[Svar(γvar)] =

{
γQ

u(α) : α ∈ I
}
= {Q(γu(α)) : α ∈ I} =

= {Q[φt(u(α))] : α ∈ I, t ∈ [0, T]},
(31)

where
γQ

u(α) = Q(γu(α)) = Q[φt(u(α))]. (32)

Note that (t, α), t ∈ [0, T], α ∈ I are coordinates on SQ
var(γvar), and that, since each curve γu(α)

is a trajectory of the original dynamical system, γQ
u(α) is an M3 geodesic. Therefore, SQ

var(γvar) is
a surface of variation for γ0

Q consisting of M3 geodesics. Furthermore, γvar
Q,t = Q(γvar

t = [φt(γvar)]

is the variation at time t in SQ
var(γvar) corresponding to the variation curve γvar

t ⊂ Svar(γvar).
A parametrization of γvar

Q,t is provided by the function γvar
Q,t(α) = γu(α)

Q(t), α ∈ I, with t constant.
We now wish to investigate the deviation of nearby trajectories of the original Hamiltonian system

by considering the deviation of the corresponding geodesics in M3. We quantify the deviation of nearby
trajectories from the base trajectory γ0 in Nu0 , i.e., on the variational surface Svar(γvar), by studying
the evolution along γ0 of the tangent vector to the variation curve γvar

t . The tangent vector, which we
call the phase space trajectory deviation vector is formally given by

Vtrj(t) =
[

∂

∂α
γvar

t(α)

]∣∣∣∣
α=0

=

[
∂

∂α
φt(u(α))

]∣∣∣∣
α=0

, Vtrj(t) ∈ TM1. (33)

The deviation vectorVtrj(t) is mapped by the differential dQ∗ of the mapping Q into a deviation
vector in TM3, formally given by:

Jdev(t) =
[

∂

∂α
γvar

Q,t(α)

]
α=0

=

[
∂

∂α
γu(α)

Q(t)
]

α=0
=

[
∂

∂α
Q[φt(u(α))]

]
α=0

=

dQ∗

([
∂

∂α
φt(u(α))

]
α=0

)
= dQ∗(Vtrj(t)), Jdev(t) ∈ TM3,

(34)

where dQ : TM1 7→ TM3 is the differential of the map Q.
In order to obtain a more explicit expression for Jdev(t) we will need a more explicit expression

for the points in NQ
u0 ⊂ M3 and, in particular, points in SQ

var(γvar). Recall the fact that
(t, α), t ∈ [0, T], α ∈ I serve as coordinates in NQ

u0 . The point corresponding to the pair (t, α) is
γu(α)

Q(t) = Q[φt(u(α))] = (x(x, α), T(t, α)), where x(t, α) = π(γQ
u,α) ∈ M is a point on the
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geodesic π
(
γu(α)

Q(t)
)

at the point x(t, α). Since T(t, α) forms a vector field defined on π(NQ
u0)

and, in particular, along the geodesic curve γQ,t
var, its α derivative is given by the covariant derivative

∇T(t,α)
∂α . Then, we find that

Jdev(t) =
[

∂

∂α
Q[φt(u(α))]

]
α=0

=

(
∂x(t, α)

∂α

∣∣
α=0,
∇T(t, α)

∂α

∣∣
α=0

)T

. (35)

Note that Jdev(t) ∈ Tx(t,0)M⊕ Tx(t,0)M = TM3.
The standard definition of the geodesic deviation vector for geodesics in M is

J(t) =
(

∂x(t, α)

∂α

)∣∣∣∣
α=0

, J(t) ∈ Tx(t,0)M. (36)

According to Theorem 10 of Frankel [19],

∇J(t)
∂t

=

(
∇T(t, α)

∂α

)∣∣∣∣
α=0

, (37)

so that

Jdev(t) =
(

J(t),
∇J(t)

∂t

)T

, (38)

where t is the affine parameter parametrizing γQ
0 .

The equation of evolution of Jdev(t), i.e., the dynamical system representation of the geodesic
deviation equation, has been studied in ref. [17].

Let X, Y, Z ∈ Tp M be (n = dimensional) vectors and let Rp(X, Y) : Tp M 7→ Tp M be the
curvature transformation at the point p ∈ M i.e., the linear transformation with matrix elements
[Rp(X, Y)]j

i = Ri
jk`XiY j so that

Rp(X, Y)Z = (Ri
jk`XkY`Zj)∂i, (39)

where ∂i are coordinate vectors at p and ( Xk, Yk, Zk, 1 ≤ k ≤ n are the components of X, Y, Z with
respect to the basis {∂k}k=1

n). The quantities Ri
jk` are the components of the Riemann curvature tensor

at the point p.
Furthermore, if < ·, · >Tp M denotes the inner product defined on Tp M with the metric g(·, ·) on

M, then for W ∈ Tp M we have

< Rp(X, Y)Z, W >Tp M= Ri
jk`XkY`ZjWi, (40)

where Wi = gijW j. For the geodesic γ0
Q ∈ M, given in terms of the function γ0

Q(t) = Q[φt(u0)],
using the above notation for the curvature transformation, the geodesic deviation equation along
γ0

Q is
∇2J(t)

dt2 + Rγ0
Q(t)(J(t), T(t))(T(t)) = 0, (41)

where J(t) is the geodesic deviation vector defined above, T(t) ≡ Tγ0
Q(t) is the tangent vector to γ0

Q

at the point γ0
Q(t) and Rγ0

Q(t) is the curvature tensor at the point γ0
Q(t). The dynamical system

representation of the geodesic deviation equation corresponds to putting Equation (41) into the form

∇
dt

(
J(t)
∇J(t)

dt

)
=

(
0 I

−Rγ0
Q(t)(·, T(t))T(t) 0

)(
J(t)
∇J(t)

dt

)
. (42)
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Denoting

R̂
γQ

0 (t) =

(
0 I

−Rγ0
Q(t)(·, T(t))T(t) 0

)
(43)

and using Equation (38), we may write Equation (42) in the shorter form

∇Jdev
dt

= R̂γ0
Q(t)Jdev. (44)

The behavior of the solution Jdev of Equation (44) determines the deviation properties of
geodesics near γ0

Q as a function of t and, through the relation Vtrj(t) = dQ−1(Jdev(t)) obtained
from Equation (34), also the deviation of trajectories of the original dynamical system near γ0 over
time. The deviation of trajectories of the original system near γ0 is therefore governed by the curvature
transformation Rγ0

Q(·) along the geodesic γ0
Q(·).

4. Formulation of the Algorithm

The purpose of the canonical transformation we have discussed above is to construct a Hamiltonian
of the geometrical form of Equation (2) by means of a canonical transformation from a Hamiltonian of
the form of Equation (1). As above, we label the coordinates and momenta of the image space by {xi}
and {πi} (we do not require that pi and πi are necessarily simply related for all t here; the equivalence
of the dynamics is assured by the canonical nature of the transformation). We must therefore find the
generating function f (q, x) and the metric gij(x) from the statement

p2

2m
+ V(q) =

1
2m

gij(x)πiπ j. (45)

Substituting Equation (22) for the momenta, the problem is to solve (note that the left hand side
treats the indices as Euclidean since it does not carry the local coordinate transformations available to
the geometric form on the right hand side)

V(q) +
1

2m

(
∂ f (q, x)

∂qi

)(
∂ f (q, x)

∂qi

)
=

1
2m

gij(x)
(

∂ f (q, x)
∂xi

)(
∂ f (q, x)

∂xj

)
. (46)

Assuming analyticity in the neighborhood of the origin of the coordinates {q} , and in the
potential term V(q), one can write a power series expansion of the generating function and the
potential, and identify the resulting powers of qi, qj... and their products. This procedure provides
an effective recursive algorithm for a system of nonlinear first order equations in the expansion
coefficients since the powers of q on the right hand side occurring in the expansion of f (q, x) are higher
by one order that the expansions on the left hand side, which contain derivatives with respect to q.
Assuming analyticity in {x} as well near the origin (as for Riemann normal coordinates), one can find
a recursion relation for the resulting coefficients.

For example, in two dimensions, one may expand, into some radius of convergence,

f (q1, q2, x1, x2) = Σ∞
k,`=0Ck,`(x1, x2)(q1)k(q2)` (47)

and expand V(q1, q2) in power series

V(q1, q2) = Σ∞
k,`=0vk,`(q1)k(q2)`. (48)
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Substituting into the relation, Equation (46) (in teh two-dimensional form), and equating
coefficients of powers of q1 and q2, one finds the following recursion relations:

vk,` + Σm
k=0Σn

`=0
[
(k + 1)(m− k + 1)C(k+1),`(x1, x2)C(m−k+1),(n−1)(x1, x2)

+ (`+ 1)(n− `+ 1)Ck,(`+1)(x1, x2)C(m−k),(n−`+1)(x1, x2) + 2vn,m
]
=

= Σm
k=0Σn

`=0
[
g11(x1, x2)

∂Ck,`

∂x1 (x1, x2)
∂Cm−k,n−1

∂x1 (x1, x2)

+ 2g12(x1, x2)
∂Ck,`

∂x1 (x1, x2)
∂Cm−k,n−1

∂x2 (x1, x2)

+ g22(x1, x2)
∂Ck,`

∂x2 (x1, x2)
∂Cm−k,n−1

∂x2 (x1, x2)
]
.

(49)

The solution of this system of equations, for a given potential V requires, even in two dimensions,
significant computational power. Our initial investigations indicate reasonable behavior, with strong
indications of convergence, for some simple cases.

Although the physically interesting cases are in two or more dimensions, where curvature
generated by the geometric Hamiltonian plays an important role in the formation of geodesic curves
and for many practical problems, we shall describe the general structure of the calculation in one
dimension below as well as to give a convergence proof for this case, which, it appears, can be extended
to arbitrary dimension. Some basic properties of the higher-dimensional structure are discussed below
as well, but a full development of the algorithm in higher dimensions and applications will be treated
in succeeding publications.

5. Study of the One-Dimensional Case

In one dimension, Equation (46) becomes

1
2m

(
∂ f (q, x)

∂q

)2

+ V(q) =
1

2m
g(x)

(
∂ f (q, x)

∂x

)2

. (50)

The recursion relation for the one-dimensional case for

f (q, x) = ∑ q`C`(x)

V(q) = ∑
`

V(`)q` (51)

becomes
Σ`

m=0{(`+ 1−m)(m + 1)C`+1−mCm+1 − g(x)C′`−mC′m}+ V(`) = 0. (52)

Now, taking
C`(x) = Σ∞

0 b`mxmg(x) = Σ∞
0 gnxn, (53)

we find (for coefficients of xr),
r = 0:

Σ`
m=0

{
(`+ 1−m)(m + 1)b`+1−m,0bm+1,0 − g0b`−m,1bm,1

}
+ V(`) = 0 (54)

and for
r ≥ 1 :

Σ`
m=0,0≤p≤r(`+ 1−m)(m + 1)b`+1−m,pbm+1,r−p

− Σ`
n,1≤p≤r+1 gnb`−m,pbm,r−n−p+2 × p(r− n− p + 2) = 0.

(55)

Note that for the case r ≥ 1, the potential does enter explicitly since it has no x dependence.
The relations Equations (54) and (55) provide the basis for a systematic recursion.
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One can easily work out several terms to see how the algorithm develops. It is clear that it is
iteratively closed, but it is difficult to draw detailed conclusions on the solutions without extensive
computations, as well as specification of potential models.

In the next section we give a proof in one dimension that the computation converges, with some
reasonable assumptions. The method of proof can be generalized to n dimensions.

6. Convergence of the Algorithm in One Dimension

Now, in Equation (52), define
Dm = mCm, (56)

and note that the first term in Equation (52) can then be written as

Σ`
m=0D`+1−mDm+1 = Σ`+1

m=1Dn A(`)
nmDm, (57)

where symmetric the matrices A(`)
nm consist of completely skew diagonal 1’s, a reflection of the

combinatorial origin of the coefficients. The trace is zero for even and unity for odd ` ’s, and the
eigenvalues are±1. They can occur in any order, but the orthogonal matrices that diagonalize A(`) may
be constructed so that that the eigenvalues alternate (this is convenient for our proof of convergence
but not necessary). Let us call these orthogonal matrices u(`)

nm and represent the “vectors” Dm in
terms of the eigenvectors d`n as

Dm = Σ`+1
n=1u(`)

mndn
`, (58)

where
Σ`+1

n=1u(`)
mnu(`)

m′n = δmm′ . (59)

We then obtain

Σ`
m=0D`+1−mDm+1 = Σ`+1

m=1Dn A(`)
nmDm = Σ`+1

m=1λ(`)
m(dm

`)
2
. (60)

Now, consider the sum in the second term of Equation (52):

Σ`
m=0C′`−m(x)C′m(x) = Σ`

m=0C′mB(`)
mnC′n, (61)

where B(`)
mn = A(`)

m+1,n+1, the same set of matrices as A(`), occurring here with indices 1, ....`+ 1 as
well. By shifting the indices in the vectors C′n by unity, one obtains the same structure as for the left
hand side, i.e., for m = 0, ...`, and f the eigenvectors constructed from C′,

C′m−1 = Σ`+1
n=1u(`)

mn fn
`. (62)

We then have
Σ`

m=0C′mB(`)
mnC′n = Σ`+1

m=1λ(`)
m( fm

`)
2

(63)

so that our condition for a solution to Equation (52) becomes

V(`) + Σ`+1
m=1λ(`)

m[(dm
`)2 − g(x)( fm

`)2] = 0. (64)

We now study the convergence of the d and f sums as `→ ∞. Inverting Equations (58) and (62),
we obtain

d`m = Σ`+1
n=1nCnu(`)

nm (65)

and
f `m = Σ`+1

n=1C′n−1u(`)
nm. (66)
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Since u(`)
nm is an orthogonal matrix, it follows that

Σ`+1
n=1( fm

`)2 = Σ`+1
n=1C′ 2n−1 (67)

and
Σ`+1

n=1(dm
`)

2
= Σ`+1

n=1n2C2
n (68)

It is sufficient to argue that the sequences in these sums are decreasing. The alternating (due to
the λm

`) series appearing in Equation (64) then converges.
We first remark that the generating function f (q, X) is C∞ in both variables, so that all orders

of derivatives with respect to q exist. We seek solutions that can be represented as power series in q.
Suppose that this series converges for all values of q < q0(x) (the radius of convergence can depend on
x), and call Dε the domain of x such that |q0(x)| ≥ ε > 0, The ratio test prescribes that, for each such x,∣∣∣∣C`+1

C`

∣∣∣∣ < 1
|q0(x)| (69)

The series, Equation (46), corresponds to the Taylor expansion

f (q, x) =
∞

∑
0

1
`!

f `, (70)

where

f ` =
∂` f
∂q`

. (71)

The ratio condition then becomes ∣∣∣∣ f `+1

f `

∣∣∣∣ < ∣∣∣∣ `+ 1
q0

∣∣∣∣. (72)

If the derivatives do not grow faster than linearly, this condition should be satisfied for sufficiently
large `. Taking |q0| = ε, the convergence would be uniform in Dε.

Now, consider the decreasing property. As for any series depending on a dimensional variable,
we may scale the dimension, for |q0| > 0, so that |q0(x)| > 1 for all x ∈ Dε (the ratio C`+1/C`

scales with 1/q as well). This choice of scale is adequate for all x ∈ Dε for a scale such that ε > 1.
Then, uniformly, the |C`(x)| forms a decreasing sequence, leading to convergence of the d series in
Equation (64) (the factor m in Equation (56) does not affect the convergence for large m). A similar
argument can be followed for the f series following the convergence of the series in q for ∂ f (q, x)/∂x.

This completes our proof of convergence.
As remarked in the introduction, the nonliear expansions can be studied by means of Fourier series

representations in terms of (upper half place) analytic functions (see, for example [18]), which may
provide useful approximation techniques in specific cases. This study will appear in a later publication.

7. Shift of Origin for Expansion

We now return to arbitrary dimension. The algorithm proposed in Section 3 contains an expansion
of the potential function V(q) around some point q = 0; for a polynomial potential or some other
entire function, there would be no question of convergence of this expansion, but the algorithm itself
may have only a finite domain of convergence. To extend the range of the resulting functions, it would
then be necessary to carry out the expansions around some new origin at, e.g., q = q0.

Therefore, let us now consider expanding V(q) around q0, and carry out the same procedure.
We then rewrite Equation (25) for the modified problem with a new potential function

V′(q) = V(q + q0) (73)
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as

V′(q) + δij
1

2m

(
∂ f̃ (q, x′)

∂qi

)(
∂ f̃ (q, x′)

∂qj

)
= gij(x′)

(
∂ f̃ (q, x′)

∂x′i

)(
∂ f̃ (q, x′)

∂x′j

)
, (74)

where we observe that the solutions f̃ (q, x′) and the manifold which we label x′ will be different from
f (q, x) on the manifold x since the potential function V′(q) is different; however, the variable q on the
original space is still designated by q since it is the argument of V′(q).

The assumptions underlying Equation (74) imply that in the generating function f̃ (q, x′), q and
x′ are independant variables; we may then proceed by recognizing that, as a result of the solution
algorithm, x′ can only be a function of x in the mapping q, x → q, x′.

We can now use the chain rule of derivatives for the right hand side and consider f̃ (q, x′) as
a function of q, x, at least locally under this map. Calling this function h(q + q0, x), we can rewrite
Equation (74) as

V′(q) + δij
1

2m
∂h(q + q0, x)

∂qi

∂h(q + q0, x)
∂qj

= g̃ij(x)
∂h(q + q0, x)

∂xi

∂h(q + q0, x)
∂xj

, (75)

where

g̃ij(x) = gk`(x′)
∂xi
∂x′k

∂xj

∂x′`
. (76)

Replacing as a change of variables q + q0 → q, V′(q) becomes V(q), and Equation (75) becomes

V(q) + δij
1

2m
∂h(q, x)

∂qi

∂h(q, x)
∂qj

= g̃ij(x)
∂h(q, x)

∂xi

∂h(q, x)
∂xj

, (77)

Since this equation has a solution (among others) of the form for which

g̃ij(x) = gij(x), (78)

by applying the same algorithm, we may choose this solution with the consequence that

gk`(x′)
∂xi
∂x′k

∂xj

∂x′`
= gij(x). (79)

With this choice we may follow shifts from q→ q0 → q1.... within the domains of convergence
choosing the same algorithm for solution at every step, building a set of overlapping neighborhoods
that construct a manifold, on which covariance is maintained through the canonical transformation.

8. Change in Generating Function Induced by Diffeomorphisms in the Geometric Space

The structure of the image space has the property of supporting local diffeomorphisms. However, our
construction concerns a mapping from the the coordinates {q, p} to {x, π}; therefore, a diffeomorphism
of the latter set of variables necessarily involves a change in the generating function of the transformation.

In this section, we calculate the effect of an infinitesimal coordinate transformation on the
geometrical space, holding the Hamiltonian variables {q, p} unchanged, on the generating function of
the canonical transformation, i.e., f → f̃ .

On the original choice of coordinates, for which

pi =
∂ f (q, x)

∂qi

πi = −∂ f (q, x)
∂xi

(80)
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we now consider a new mapping from q, p to x′, π′ differing infinitesimally from x, π according to

x′i = xi + λi(x), (81)

where λi(x) is small.
After this mapping, we can write

pi =
∂ f̃ (q, x′)

∂qi

π′i = −∂ f̃ (q, x′)
∂x′i

.
(82)

To study f̃ (q, x′), let us define

gi(q, x′) =
∂ f̃ (q, x′)

∂x′i
= −π′i . (83)

Then,

gi(q, x + λ) ∼=
∂ f̃ (q, x)

∂xi
+

∂2 f̃ (q, x)
∂xi∂xj

λj(x) (84)

so that

− π′i ∼=
∂ f̃ (q, x)

∂xi
+

∂2 f̃ (q, x)
∂xi∂xj

λj(x). (85)

This result could have been obtained directly from Equation (82) but it is perhaps helpful to define
the function gi(q, x′) to clarify the computation.

We now impose invariance of
π′idx′i = πidxi, (86)

which leads, through the Hamilton–Lagrange construction, to invariance of the Hamiltonian. We now
write out

−π′idx′i ∼=
[∂ f̃ (q, x)

∂xi
+

∂2 f̃ (q, x)
∂xi∂xj

λj(x)
]
×
[
dxi +

∂λi
∂xk

dxk
]
=

=
∂ f̃ (q, x)

∂xi
dxi +

∂2 f̃ (q, x)
∂xi∂xj

λj(x)dxi =

+
∂ f̃ (q, x)

∂xi

∂λi
∂xk

dxk +
∂2 f̃ (q, x)

∂xi∂xj
λj(x)

∂λi
∂xk

dxk = −πidxi.

(87)

Therefore, to order λdx,

dxi
∂ f (q, x)

∂xi
= dxi

{
∂ f̃ (q, x)

∂xi
+

∂2 f̃ (q, x)
∂xi∂xj

λj(x) +
∂ f̃ (q, x)

∂xk

∂λk
∂xi

}
=

= dxi

{
∂ f̃ (q, x)

∂xi
+

∂

∂xi

[
∂ f̃ (q, x)

∂xk
λk

]}
,

(88)

so that

dxi
∂ f (q, x)

∂xi
= dxi

∂

∂xi

[
f̃ (q, x) + λk

∂ f̃ (q, x)
∂xk

]
. (89)

If we write (say, integrate up to some xi)

f (q, x) = f̃ (q, x) + λk
∂ f̃ (q, x)

∂xk
, (90)
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we may approximately invert to get

f̃ (q, x) ∼= f (q, x)− λk
∂ f (q, x)

∂xk
. (91)

This corresponds to a conformal-like local transformation. The algebra of such generators is[
λa

i
∂

∂xi
, λb

j
∂

∂xj

]
=

(
λa

i
∂λj

b

∂xi
− λb

i
∂λj

a

∂xi

)
∂

∂xj
. (92)

Thus the algebra is of a conformal type, but the coefficients may run on, so that the group may
not be finite-dimensional.

Example: Suppose λi
a = εi

j(a)xj, such as a rotation generator (we may factor out the infinitesimal
scale), for εi

j(a) antisymmetric constants. Then,[
λa

i
∂

∂xi
, λb

j
∂

∂xj

]
= xj Mi

j(b, a)
∂

∂xi
, (93)

where
Mi

j(b, a) = εi
k(b)εk

j(a)− εi
k(a)εk

j(b). (94)

For the rotation group, these form a finite Lie algebra. The group acts on the generating function
(which forms a representation) but does not affect the {q, p} variables.

9. One-Dimensional Conformal Metric

In this section we study the important case of the conformal metric in the image of our canonical
transformation and, in particular, the illustrative example of the harmonic oscillator potential in one
dimension. Higher-dimensional examples can be treated using similar methods.

Since the transformation establishes a bijective correspondence between the orbits induced by the
original Hamiltonian and those induced by the geometrical form, we understand that the Hamiltonian
coordinate q can be considered a function of the corresponding geometric coordinate x (argued from
a different point of view in Ref. [11]). For the sake of definiteness, and for its relevance to the work of
Ref. [1], we shall fix the metric to be of the form

g(x) =
E

E−V(x)
, (95)

where E is a parameter identified with the energy surface on which the motion takes place. The form
of the metric in Equation (95) was chosen ad hoc in reference [1] since it provided a simple formal
link between the two forms of the generators of motion. It has been an outstanding question of why
the local stability properties of the geometric form of the mechanics, as measured through geodesic
deviation, should be in agreement with the stability properties of the orbits generated by the original
Hamiltonian. The existence of the canonical transformation between the two forms of dymanics, due to
its injective nature, answers this question. We show in this section that a generating function for the
transformation exists, and how it can be constructed for the simple case of the harmonic oscillator.

Consider again Equation (50) for the generating function in one dimension. Assuming that the
potential V(q) is positive we get that g(x) > 0. In this case we can write Equation (50) in the form(

∂ f
∂q

(q, x)
)2

+ 2mV(q) =
(√

g(x)
∂ f
∂x

(q, x)
)2

. (96)
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If we define a new independent variable x′ by setting

dx
dx′

(x′) =
√

g(x) (97)

we obtain (
∂ f
∂q

)2

+ 2mV(q) =
(

dx
dx′

∂ f
∂x

)2

. (98)

We shall assume that Equation (97) can be integrated to obtain an invertible function x = x(x′).
Now define a new function f1(q, x′) by

f1(q, x′) = f (q, x(x′)) . (99)

In this case we have

∂ f1

∂q
(q, x′) =

∂ f
∂q

(q, x),
∂ f1

∂x′
(q, x′) =

dx
dx′

∂ f
∂x

(q, x) =
√

g(x)
∂ f
∂x

(q, x) (100)

so that Equation (98) can be written in the form(
∂ f1

∂q

)2

+ 2mV(q) =
(

∂ f1

∂x′

)2

. (101)

If we can solve Equation (101) for f1(q, x′) we may obtain the generating function f (q, x) by
f (q, x) = f1(q, x(x′)). Observe that the generating function f (q, x) obtained in this way incorporates
the, as yet undetermined, metric g(x) through Equation (97).

Let us try to solve Equation (101), or equivalently,

2mV(q) =
(

∂ f1

∂x′

)2

−
(

∂ f1

∂q

)2

. (102)

Introducing new independent variables y1, y2 by

q = y1 − y2, x′ = y1 + y2 ,

and setting
f2(y1, y2) = f1(q(y1, y2), x′(y1, y2))

we have

∂

∂y1
=

∂x′

∂y1

∂

∂x′
+

∂q
∂y1

∂

∂q
=

∂

∂x′
− ∂

∂q
∂

∂y2
=

∂x′

∂y2

∂

∂x′
+

∂q
∂y2

∂

∂q
=

∂

∂x′
+

∂

∂q

and hence Equation (102) becomes

∂ f2

∂y2
· ∂ f2

∂y1
= 2mV(y1 − y2) . (103)

As an example, let us solve Equation (103) for the case of the harmonic oscillator potential

V(q) =
1
2

mω2q2 . (104)
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Equation (103) becomes in this case

∂ f2

∂y2
· ∂ f2

∂y1
= m2ω2(y1 − y2)

2. (105)

To solve Equation (105) we expand f2(y1, y2) into a power series in y1, y2,

f2(y1, y2) = p0(c1y1 + c2y2) +
p0

L0
(c3y2

1 + c4y1y2 + c5y2
2) +

p0

L2
0
(c6y3

1 + c7y2
1y2 + c8y1y2

2 + c9y3
2)

+
p0

L3
0
(c10y4

1 + c11y3
1y2 + c12y2

1y2
2 + c13y1y3

2 + c14y4
2) + · · ·

with the constants, p0 with dimension of momentum and L0 with dimension of length, inserted in order
for the unknown coefficients to be dimensionless. Next, we insert this expansion into Equation (105)
and obtain equations for the coefficients. One possible solution of this set of equations is (we observe
that the number of undetermined coefficients is greater than the number of equations we obtain so
that there is a certain freedom in choosing the values of the coefficients),

f2(y1, y2) = p0y1 +
p0

L0
y2

1 +
p0

L2
0

α(y2
1y2 − y1y2

2 +
1
3

y3
2) +

p0

L3
0

α(−2y3
1y2 + 2y2

1y2
2 −

2
3

y1y3
2) + · · · (106)

where α = L2
0m2ω2/p2

0. Changing variables back to q, x′ we obtain

f1(q, x′) = f2(y1(q, x′), y2(q, x′) = p0
1
2
(x′ + q)

+
p0

L0

1
4
(x′ + q)2 +

p0

L2
0

α

(
1
8
(x′2 − q2)q +

1
24

(x′ − q)3
)

+
p0

L3
0

α

(
− 1

8
(x′ + q)2(x′2 − q2) +

1
8
(x′2 − q2)2 − 1

24
(x′2 − q2)(x′ − q)2

)
+ · · · .

(107)

We turn now to find the dependence x′ = x′(x) by integration of Equation (97). We have

dx
dx′

(x′) =
√

g(x) =

√
E

E−V(x)
⇒ dx′

dx
(x) =

√
E−V(x)

E
.

Hence, we may define

x′(x) =
x∫

0

√
1− 1

E
V(t)dt . (108)

In particular, in the case of the harmonic oscillator we have

x′(x) =
x∫

0

√
1− 1

E
V(t)dt = x′(x) =

x∫
0

√
1− mω2

2E
t2dt =

=

√
E

2mω2

[
arcsin

(√
mω2

2E
x

)
+

1
2

sin

(
2 arcsin

(√
mω2

2E
x

))]
.

(109)

Once the function x′ = x′(x) is determined we obtain the generating function f (q, x) by recalling
that f (q, x) = f1(q, x′(x)). In particular, for |x| << 1 we get from Equation (109) that

x′ = x− 1
6
· mω2

2E
x3 + · · ·
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and if we plug this into Equation (107) we get

f (q, x) = f1(q, x′(x)) =

= p0 ·
1
2
(q + x) +

p0

L0
· 1

4
(q + x)2 +

p0

L2
0

α

(
− 1

6
q3 +

1
8

q2x +

(
p2

0
12mE

+
1

24

)
x3
)
+ · · · . (110)

Equation (110) provides the first few terms in a series expansion of a generating function for
a symplectomorphism from standard Hamiltonian dynamics to the geometrical form with metric
given by Equation (95).

10. Mapping of Bounded Submanifolds

Since the mapping that we have constructed carries a Euclidean phase space into a geometrical
form, it is natural to study possibly non-trivial topological properties that this geometrical space could
have. As a simple example, consider a potential in the Euclidean space in two dimensions which
contains two identical finite depth potential wells with lower bound E0, and centers spaced along the
x-axis. Above a certain energy, say E1, there is just one connected region of motion, and between E1

and E0 there are two separated regions. The total energy serves as a hight function, in the terminology
of Morse theory [20] (see also [19]).

Let us first consider a particle with energy E0 < E < E1. A particle in one of these wells
has an orbit that is confined to this well. If it reaches the boundary where E = V, the momentum
(and velocity) vanishes, and the orbit necessarily then retraces its path as under time reversal. Under
the symplectomorphism, this orbit is mapped into a geodesic curve, and by the property of 1 : 1
mapping, the corresponding geodesic curve must stop and retrace its path as under time reversal as
well. The family of all such orbits for a given value of E defines a boundary in the geometric space,
and is therefore a closed submanifold with boundary.

It is clear that such orbits associated with each well (at a given value of E) separately are disjoint
since they are disjoint in the original space. Increasing the energy above the value E1 would result
in a single connected region for the geometric orbits. Therefore the homotopy classes of the possible
orbits change as a function of the height function E. We shall explore the consequences, in particular,
of the existence of topoligical invariants, in this context in a later publication.

11. Summary and Conclusions

In this paper we have constructed a canonical transformation from a Hamiltonian of the usual
form given in Equation (1) to a geometric form of Equation (2).

We have given the basic mathematical formulation in terms of the geometry of symplectic manifolds.
For the central purpose of our construction, we formulate the process of studying stability by means

of geodesic deviation in terms of geometric methods, making clear the relation between stability in the
geometric manifold and the original Hamiltonian motion.

We then give an algorithm for solving the nonlinear equations for the generating function of
the canonical transformation. This algorithm was then studied for the simple case of one dimension,
and we proved convergence of the recursive scheme under certain reasonable assumptions.

Since the series expansions generated by the algorithm for finding the solutions for the
generating function may have a bounded domain of convergence, we studied (in general dimensions)
the possibility of shifting the origin in order to carry out the expansions based on a new origin. As for
the analytic continuation of a function of a complex variable, this procedure can extend the solutions
for the generating function to a maximal domain.

Since the image space of the symplectomorphism has geometrical structure, it is natural to study
its properties under local diffeomorphisms. A local change of variables {x, π} → {x′, π′} (leaving the
variables of the original space unchanged) alters the structure of the mapping from the original



Symmetry 2020, 12, 1009 19 of 20

variables {q, p} to the new variables {x′, π′}; we study the effect of infinitesinal diffeomorphims of
this type on the generating function.

We finally discussed briefly the mapping of bounded closed submanifolds, created by potential
wells in the Hamiltonian space, corresponding to closed submanifolds in the geometric space,
where Morse theory may be applied, to open the possibility of obtaining a new class of conserved
quantities associated with homotopies of the image space.
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