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Abstract: New soliton solutions of fractional Jaulent-Miodek (JM) system are presented via symmetry
analysis and fractional logistic function methods. Fractional Lie symmetry analysis is unified with
symmetry analysis method. Conservation laws of the system are used to obtain new conserved
vectors. Numerical simulations of the JM equations and efficiency of the methods are presented.
These solutions might be imperative and significant for the explanation of some practical physical
phenomena. The results show that present methods are powerful, competitive, reliable, and easy to
implement for the nonlinear fractional differential equations.

Keywords: fractional Jaulent-Miodek (JM) system; fractional logistic function method; symmetry analysis

1. Introduction

Integral and derivative operators of any arbitrary order are the basis of fractional calculus, which
has been of great interest for researchers due to its dynamic behavior and exact description of nonlinear
complex phenomena in numerous fields in science and engineering [1–6]. Analytical methods have
played an essential role for Fractional partial differential equations (FPDEs) [1–4]. Lie symmetry
analysis also gives a powerful and effectual implement for generating invariant solutions. The theory
of symmetry analysis is based on the invariance of variables [7–14]. Hence, the study of symmetry
analysis has been made a huge interest for researchers during past decades.

Time-fractional coupled Jaulent-Miodek (JM) type equations [15–17] is considered as:

Dα
t u + uxxx +

3
2

vvxxx +
9
2

vxvxx − 6uux − 6uvvx −
3
2

uxv2 = 0 (1)

and
Dα

t v + vxxx − 6uxv− 6uvx −
15
2

vxv2 = 0 (2)
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where 0 < α ≤ 1 denotes the fractional-order derivative.
The coupled JM equations were first introduced by Jaulent and Miodek [18] by using inverse

scattering transform with the help of energy dependent Schrödinger potentials. The Equations (1)
and (2) also have a relation with Euler-Darboux equation, which has been presented by Matsuno [19].
The Darboux transformation of the JM spectral problem has been studied by Xu [20]. By using hereditary
symmetries, Ruan and Lou [21] have presented the symmetries of Jaulent-Miodek hierarchy. The sech
and tanh–coth methods have been used by Wazwaz [22] and some more methods like homotopy
analysis [23], exp-function [24], extended tanh [25], hyperbolic tangent [26] were presented in the
literature for approximate and exact solutions of classical coupled Jaulent-Miodek equation.

A large interest has been focused for the improvement of past methods dealing with solutions
of FPDEs. The fractional coupled JM equations play an important role in several areas of science
such as fluid mechanics, plasma physics, condense matter physics, optics and associates with energy
dependent Schrödinger potential [27–32]. As the practical application of fractional Jaulent–Miodek
(JM) system, the Wang and Xia has studied its super-Hamiltonian structure using fractional supertrace
identity [33].

Some of these methods for solving fractional coupled JM equation are: method of homotopy
perturbation natural transform [34], Sumudu transform [15], residual power series method (RSPM) and
q-homotopy analysis method (q-HAM) [17], Hermite wavelet [35], (G’/G)-expansion and hyperbolic
tangent [16].

This article deals with fractional coupled JM system by utilizing an original fractional logistic
function method [36], which has been presented in Section 3. Moreover, in the corresponding section, the
numerical simulation has been done for analyzing the physical properties of the solutions. In Section 4,
the symmetry analysis with conservation laws [37,38] for time-fractional coupled JM, equations have
been presented. In Section 4, the fractional Lie group analysis method for symmetry properties [39,40]
of fractional JM system are applied more precisely. Furthermore, conservation laws [37,41] also have
been presented in order to get a new conserved vector by utilizing theorems of conservation law.

2. Theory of Fractional Operators

2.1. Riemann–Liouville (RL) Fractional Derivative

The fractional order Riemann–Liouville (RL) derivative of order α(>0) is defined as [1,3]

Dα
t f (t) =


1

Γ(m−α)
dm

dtm

t∫
0
(t− τ)(m−α−1) f (τ)dτ i f m − 1 < α < m, m ∈ N,

dm f (t)
dtm i f α = m, m ∈ N,

(3)

Riemann–Liouville (RL) derivative of order α (>0) has subsequent property [1–3] is given as:

Dαtβ =
Γ(β+ 1) tβ−α

Γ(β− α+ 1)
, β > α− 1. (4)

2.2. Local Fractional-Order Derivative

Assume h(
↼
x ) ∈ Cα(m, n), where Cα(m, n) denotes α times differentiable with each derivative

continuous in (m, n). Then, the derivative with fractional order α at
↼
x =

↼
x 0 is defined as [42,43]

h(α)(
↼
x 0) =

dαh(
↼
x )

d
↼
x
α

∣∣∣∣∣∣∣↼
x=

↼
x 0

= lim
↼
x→

↼
x 0

∆α(h(
↼
x ) − h(

↼
x 0))

(
↼
x −

↼
x 0)

α (5)

where ∆α(h(
↼
x ) − h(

↼
x 0)) � Γ(1 + α)(h(

↼
x ) − h(

↼
x 0)) and 0 < α ≤ 1.

And has following property [42,43]:
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If z(
↼
x ) = (h ◦ u)(

↼
x ), where u(

↼
x ) = f (

↼
x ), then

dαz(
↼
x )

d
↼
x
α = h(1)

(
f (
↼
x )

)
f (α)(

↼
x ) (6)

when h(1)
(

f (
↼
x )

)
and f (α)(

↼
x ) exist.

3. The Brief Descriptions of the Fractional Logistic Function Method and Implementations

3.1. Brief Description of the Proposed Method

The section emphasizes describing a comparatively new analytic method for getting solutions for
the FPDEs. The procedure for the proposed method has been described in the following manner:

Step 1:

The FPDE is given as:

Q(u, Dα
t u, . . . , ux, uxx, uxxx, . . .) = 0, 0 < α ≤ 1, (7)

where u(x, t) is a function.

Step 2:

Solution of Equation (7) is presented as

u(x, t) = U(ξ), ξ = kx−
γ tα

Γ(α+ 1)
, (8)

where γ and k are parameters.
Then, (6) [44,45] can reduce the fractional derivative into the following form

Dα
t u = σtUξDα

t ξ

Then, the Equation (7) can be reduced by using Equation (7), by the following form:

Q(U,γU′, . . . , kU′, k2U′′ , k3U′′′ , . . .) = 0 (9)

Step 3:

Here, the exact solution of Equation (7) is mentioned in terms of the polynomial in ϕ(ξ) as follows:

U(ξ) = a0 +
n∑

i=1

aiϕ
i(ξ), (10)

where ϕ(ξ) is considered as the sigmoid function or logistic function [46,47], is defined as follows:
ϕ(ξ) = eξ

1+eξ and satisfies the following Riccati equation:

φξ = φ−φ2, (11)

and the value of n can be evaluated by using the homogenous balancing principle [48,49]. Moreover,
the derivatives of different order for the function U(ξ) can be determined by using Equation (11).
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Step 4:

Now, the coefficients ai are determined by putting Equation (11) into Equation (9) and solving the
acquired algebraic equations obtained by equating coefficients of ϕi to 0.

Step 5:

Unknowns obtained in step 4 are written into Equation (10) to get the solutions for Equation (7).

3.2. Soliton Solutions for JM System

The logistic function method is employed for solving Equation (1). By using Equation (8) in
Equation (1), we have:

−γU′(ξ) + k3U′′′ (ξ)+ 3k3

2 V(ξ)V′′′ (ξ) + 9k3

2 V′(ξ)V′′ (ξ)
−6kU(ξ)U′(ξ) − 6kU(ξ)V(ξ)V′(ξ) − 3

2 kU′(ξ)V2(ξ) = 0,
(12)

and
− γV′(ξ) + k3V′′′ (ξ) − 6kU′(ξ)V(ξ) − 6kU(ξ)V′(ξ) −

15k
2

V(ξ)V2(ξ) = 0, (13)

Similar to Equation (10), let us consider the solutions of the governing system are presented by
following mathematical equations as

U(ξ) = a0 +
n∑

i=1

aiϕ
i and V(ξ) = b0 +

m∑
i=1

biϕ
i (14)

By means of homogenous balance principle [48,49], we get n = 2 and m = 1. Thus, the
solutions are:

U(ξ) = a0 + a1ϕ+ a2ϕ
2 and V(ξ) = b0 + b1ϕ, (15)

where ϕ follows satisfies Equation (11).
Putting Equation (15) with Equation (11) into Equations (12) and (13), equating the obtained

coefficient of ϕi to 0, we get:

Set 1:

γ =
k3

4
, a0 = −

k2

32
, a1 = −

3k2

8
, a2 =

3k2

8
, b0 =

ik

2
√

2
, b1 = −

ik
√

2
.

For set 1, the following hyperbolic solutions can be obtained as

U11 = −
k2(cosh(ξ)+7)
32(1+cosh(ξ))

V12 = −
iktanh

(
ξ
2

)
2
√

2

(16)

where ξ = kx− k3tα
4Γ(α+1) .

Set 2:

γ =
k3

4
, a0 = −

k2

32
, a1 = −

3k2

8
, a2 =

3k2

8
, b0 = −

ik
√

2
, b1 =

ik
√

2

For set 2, the following hyperbolic solutions can be obtained as

U21 = −
k2(cosh(ξ)+7)
32(1+cosh(ξ))

V22 = −
ik(1+3 cosh(ξ)+3sinh(ξ))
2
√

2(1+cosh(ξ)+sinh(ξ))

(17)

where ξ = kx− k3tα
4Γ(α+1) .
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Set 3:

γ =
11k3

5
, a0 =

k2

20
, a1 = −2k2, a2 = 2k2, b0 = i

√

5k, b1 = −2i
√

5k

For set 3, the following hyperbolic solutions can be obtained as

U31 =
k2(cosh(ξ)−19)
20(1+cosh(ξ))

V32 = −i
√

5ktanh
(
ξ
2

) (18)

where ξ = kx− 11k3tα
5Γ(α+1) .

Set 4:

γ =
11k3

5
, a0 =

k2

20
, a1 = −2k2, a2 = 2k2, b0 = −i

√

5k, b1 = 2i
√

5k

For set 4, the following hyperbolic solutions can be obtained as

U41 =
k2(cosh(ξ)−19)
20(1+cosh(ξ))

V42 = i
√

5ktanh
(
ξ
2

) (19)

where ξ = kx− 11k3tα
5Γ(α+1) .

3.3. Numerical Simulations

This part emphasizes on numerical simulation for the Equations (1) and (2) by the fractional
logistic equation method. Furthermore, the Equations (16) and (18) have been used here for generating
solutions graphs.

The Figures 1–4 illustrates obtained solutions of governing equations.

Case 1: For α = 0.1 (Fractional order)
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)(),,,( 2εεη Ovuxt
x
u
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∂
∂→

∂
∂



, 

)(),,,( 2εεϑ Ovuxt
x
v

x
v x ++

∂
∂→

∂
∂



, 

)(),,,( 2
3

3

2

2

εεη Ovuxt
x
u

x
u xx ++

∂
∂→

∂
∂



, 

(22) 

Figure 4. (a) A 3-D solitary wave figure of
∣∣∣v(x, t)

∣∣∣ in Equation (16) with V32, for k = 0.3 and α = 0.1,
(b) 2-D figure of

∣∣∣v(x, t)
∣∣∣ for t = 0.1.

4. Lie Symmetry Analysis Method

4.1. Theory of Symmetry Analysis Method

In this part, the general method for generating the symmetries of FPDEs is discussed by means of
fractional Lie symmetry analysis.
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Consider
Dα

t u = F(t, x, u, ux, uxx, uxxx, v, vx, vxx, vxxx, . . .) (20)

Dα
t v = G(t, x, u, ux, uxx, uxxx, v, vx, vxx, vxxx, . . .) (21)

Let us now consider that the Equations (20) and (21) are invariant in one-parameter Lie group
transformation:

↔
x → x + εξ(t, x, u, v) + O(ε2),
↔

t → t + ετ(t, x, u, v) + O(ε2),
↔
u → u + εη(t, x, u, v) + O(ε2),
↔
v → v + εϑ(t, x, u, v) + O(ε2),
Dα

t
↔
u → Dα

t u + εη0
α(t, x, u, v) + O(ε2),

Dα
t
↔
v → Dα

t v + εϑ0
α(t, x, u, v) + O(ε2),

∂
↔
u
∂
↔
x
→

∂u
∂x + εηx(t, x, u, v) + O(ε2),

∂
↔
v
∂
↔
x
→

∂v
∂x + εϑx(t, x, u, v) + O(ε2),

∂2↔u

∂
↔
x

2 →
∂3u
∂x3 + εηxx(t, x, u, v) + O(ε2),

∂2↔v

∂
↔
x

2 →
∂2v
∂x2 + εϑxx(t, x, u, v) + O(ε2),

∂3↔u

∂
↔
x

3 →
∂3u
∂x3 + εηxxx(t, x, u, v) + O(ε2),

∂3↔v

∂
↔
x

3 →
∂3v
∂x3 + εϑxxx(t, x, u, v) + O(ε2), .

. . .

(22)

where ε << 1 is considered as a group parameter, τ, η, ϑ, ξ are infinitesimals. Total expression for ηx,
ηxx, ηxxx, ϑx, ϑxx and ϑxxx are:

ηx = Dx(η) − uxDx(ξ) − utDx(τ),
ηxx = Dx(ηx) − uxxDx(ξ) − uxtDx(τ),
ηxxx = Dx(ηxx) − uxxxDx(ξ) − uxxtDx(τ),
ϑx = Dx(ϑ) − vx Dx(ξ) − vt Dx(τ),
ϑxx = Dx(ϑx) − vxxDx(ξ) − vxtDx(τ),
ϑxxx = Dx(ϑxx) − vxxxDx(ξ) − vxxtDx(τ)

(23)

where Dx j = ∂
∂x j + u j

∂
∂u + v j

∂
∂v + u jk

∂
∂uk

+ v jk
∂
∂uk

+ . . ., j, k = 1, 2, 3, . . . and u j =
∂u
∂x j ,v j =

∂v
∂x j ,

u jk =
∂2u
∂x j∂xk , v jk =

∂2v
∂x j∂xk and so on.

V = ξ(t, x, u, v)
∂
∂x

+ τ(t, x, u, v)
∂
∂t

+ η(t, x, u, v)
∂
∂u

+ ϑ(t, x, u, v)
∂
∂v

(24)

V satisfies:

Pr(n)V(∆1)
∣∣∣
∆1=0 = 0 and Pr (n)V(∆2)

∣∣∣
∆2=0 = 0, n = 1, 2, . . . , (25)

here, Pr denotes the prolongation for the given vector and

∆1 := Dα
t u− F(t, x, u, ux, uxx, uxxx, v, vx, vxx, vxxx, . . .)

and
∆2 := Dα

t v−G(t, x, u, ux, uxx, uxxx, v, vx, vxx, vxxx, . . .)
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Now, by considering the usual structure of RL fractional operator, the transformations of system
(22) has been formed. We have

τ(x, t, u, v)
∣∣∣
t=0 = 0 (26)

By RL derivative, the α-th infinitesimal [50–52] with Equation (26) can be presented as follows:

η0
α = Dα

t (η) + ξDα
t (ux) −Dα

t (ξux) + Dα
t (Dt(τ)u) −Dα+1

t (τu) + τDα+1
t (u)

and
ϑ0
α = Dα

t (ϑ) + ξDα
t (vx) −Dα

t (ξvx) + Dα
t (Dt(τ)v) −Dα+1

t (τv) + τDα+1
t (v) (27)

where the Dα
t denotes the total fractional differential operator.

We have:

Dα
t ( f (t)g(t)) =

∞∑
m=0

(
α
m

)
Dα−m

t f (t)Dm
t g(t), α > 0 (28)

where (
α
m

)
=

(−1)m−1αΓ(m− α)
Γ(1− α)Γ(m + 1)

We also have

η0
α = Dα

t (η) − αDα
t (τ)

∂αu
∂tα
−

∞∑
n=1

(
α
n

)
Dn

t (ξ)D
α−n
t ux −

∞∑
n=1

(
α

n + 1

)
Dn+1

t (τ)Dα−n
t (u)

and

ϑ0
α = Dα

t (ϑ) − αDα
t (τ)

∂αv
∂tα
−

∞∑
n=1

(
α
n

)
Dn

t (ξ)D
α−n
t vx −

∞∑
n=1

(
α

n + 1

)
Dn+1

t (τ)Dα−n
t (v) (29)

We have:
dmg(h(t))

dtm =
m∑

k=0

k∑
r=0

(
k
r

)
1
k!
[−h(t)]r

dm

dtm [h(t)k−r]
dkg(h)

dhk
(30)

Now by using Equations (28) and (30) with f (t) = 1, we have

Dα
t (η) =

∂αη

∂tα
+ ηu

∂αu
∂tα
− u

∂αηu

∂tα
+
∞∑

n=1

(
α
n

)
∂nηu

∂tn Dα−n
t (u) + µ

and

Dα
t (ϑ) =

∂αϑ
∂tα

+ ϑv
∂αv
∂tα
− v

∂αηv

∂tα
+
∞∑

n=1

(
α
n

)
∂nϑv

∂tn Dα−n
t (v) + λ (31)

where

µ =
∞∑

n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α
n

)(
n
m

)(
k
r

)
1
k!

tn−α

Γ(n + 1− α)
(−u)r ∂

m

∂tm (uk−r)
∂n−m+kη

∂tn−m∂uk

and

λ =
∞∑

n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α
n

)(
n
m

)(
k
r

)
1
k!

tn−α

Γ(n + 1− α)
(−v)r ∂

m

∂tm (vk−r)
∂n−m+kϑ

∂tn−m∂vk

Thus, Equation (29) yields

η0
α =

∂αη
∂tα + (ηu − αDt(τ)) ∂

αu
∂tα − u∂

αηu
∂tα + µ

+
∞∑

n=1

[(
α
n

)
∂αηu
∂tα −

(
α

n + 1

)
Dn+1

t (τ)

]
Dα−n

t (u) −
∞∑

n=1

(
α
n

)
Dn

t (ξ)D
α−n
t ux,
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and
ϑ0
α = ∂αϑ

∂tα + (ϑv − αDt(τ)) ∂
αv
∂tα − u∂

αϑv
∂tα + λ

+
∞∑

n=1

[(
α
n

)
∂αϑv
∂tα −

(
α

n + 1

)
Dn+1

t (τ)

]
Dα−n

t (v) −
∞∑

n=1

(
α
n

)
Dn

t (ξ)D
α−n
t vx

(32)

4.2. Lie Symmetry

By third prolongation in Equations (1) and (2), we can obtain infinitesimals:

ξ = αxc2 + c1,
τ = 3tc2,

η = −2uαc2,
ϑ = −vαc2.

(33)

Lie algebra corresponding to infinitesimal symmetry of governing system is spanned by

V1 =
∂
∂x

(34)

V2 = xα
∂
∂x

+ 3t
∂
∂t
− 2uα

∂
∂u
− vα

∂
∂v

(35)

Now, corresponding to Equations (1) and (2), we have following infinitesimal generators given
as [7,8]

V = c1V1 + c2V2

4.3. Similarity Reduction

Case 2: The following characteristic equation can be obtained by using the infinitesimal generator in
Equation (35), given as

dx
xα

=
dt
3t

= −
du

2uα
= −

dv
vα

(36)

After solving Equation (36), the following similarity variable can be obtained, given as

X = xt
−α
3 (37)

u = F(X)t
−2α

3 (38)

v = G(X)t
−α
3 (39)

Theorem 1. The transformation (38) and (39) reduces Equations (1) and (2) to the following form of Ordinary
differential equations (ODEs) given as:

(
P

1− 5α
3 , α

3
α

F
)
(X) + FXXX +

3
2

GGXXX +
9
2

GXGXX − 6 FFX − 6FGGX −
3
2

FXG2 = 0 (40)

(
P

1− 4α
3 , α

3
α

G
)
(X) + GXXX − 6 GFX − 6FGX −

15
2

GXG2 = 0 (41)

with the Erdélyi-Kober operator Pτ,α
β :

(
Pτ,α
β F

)
:=

n−1∏
j=0

(
τ+ j−

1
β

X
d

dX

)(
Kτ+α,n−α
β F

)
(X) (42)
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and (
Pτ,α
β G

)
:=

n−1∏
j=0

(
τ+ j−

1
β

X
d

dX

)(
Kτ+α,n−α
β G

)
(X) (43)

where, the Erdélyi-Kober fractional integral operator can be expressed as:

(
Kτ+α,n−α
β F

)
(X) :=


1

Γ(α)

∞∫
1
(u− 1)α−1u−(τ+α)F

(
Xu

1
β

)
du, α > 0,

F(X), α = 0.
(44)

and (
Kτ+α,n−α
β G

)
(X) :=


1

Γ(α)

∞∫
1
(u− 1)α−1u−(τ+α)G

(
Xu

1
β

)
du, α > 0,

G(X), α = 0.
(45)

and

n =

{
[α] + 1, α ∈ N ,
α, α < N .

(46)

4.4. Conservation Laws of Time-Fractional Coupled JM Equations

Let us consider the following conservation vectors viz. C1 and C2 for the Equations (1) and (2),
which satisfies the conservation equations expressed as:

[Dt(C1) + Dx(C2)](1.1), (1.2) = 0 (47)

A Lagrangian of Equations (1) and (2) is:

L = ω(x, t)(Dα
t u + uxxx +

3
2 vvxxx +

9
2 vxvxx − 6uux − 6uvvx −

3
2 uxv2)

+γ(x, t)(Dα
t v + vxxx − 6uxv− 6uvx −

15
2 vxv2)

(48)

where, γ and ω are dependent variables.
By considering Equation (48), the action integral can be defined as:

t∫
0

∫
Ω

L(x, t, u, v, ω, γ, Dα
t u, ux, uxxx, Dα

t v, vx, vxxx)dx dt (49)

The Euler-Lagrangian operator is given by

δ
δu

=
∂
∂u

+ (Dα
t )
∗ ∂
∂Dα

t u
−Dx

∂
∂ux
−D3

x
∂

∂uxxx
(50)

and
δ
δv

=
∂
∂v

+ (Dα
t )
∗ ∂
∂Dα

t v
−Dx

∂
∂vx
−D2

x
∂
∂vxx

−D3
x

∂
∂vxxx

(51)

where (Dα
t )
∗ = (−1)n

tI
n−α
T Dn

t is the adjoint operator of Dα
t .

Euler Lagrange equations:
δL
δu

= 0, and
δL
δv

= 0 (52)

Considering the case of the independent variables t, x and the dependent variables v(x, t), u(x, t),
we have

X + Dt(τ)I + Dx(ξ)I = W1
δ
δu

+ W2
δ
δv

+ DtC1 + DxC2 (53)
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where δ
δu , δ

δv are the Euler-Lagrange operators and I is the identity operator, C1 and C2 are the conserved
vectors, and

So X is given as
X = ξ ∂

∂x + τ ∂∂t + η ∂
∂u + ϑ ∂

∂v + η0
α

∂
∂Dα

t u + ϑ0
α

∂
∂Dα

t v

+ηx ∂
∂ux

+ ηxxx ∂
∂uxxx

+ ϑx ∂
∂vx

+ ϑxx ∂
∂vxx

+ ϑxxx ∂
∂vxxx

(54)

Lie characteristic function W1 and W2 are:

W1 = η− τut − ξux

W2 = γ− τvt − ξvx

Here, for V1, we have following conserved vectors

W1 = −ux

W2 = −vx
(55)

Here, for V2, we have following conserved vectors

W1 = −2uα− xαux − 3tut

W2 = −vα− xαvx − 3tvt
(56)

In case of RL fractional differentiation in Equations (1) and (2), the components of the conserved
vector can be written as follows:

For W1 = −2uα− xαux − 3tut and W2 = −vα− xαvx − 3tvt, we have

C1 = τL + 0Dα−1
t (W1)

∂L
∂0Dα

t u + J
(
W1, Dt

∂L
∂0Dα

t u

)
+ 0Dα−1

t (W2)
∂L

∂0Dα
t v + J

(
W2, Dt

∂L
∂0Dα

t v

)
,

= ω 0Dα−1
t (−2uα− xαux − 3tut) + J((−2uα− xαux − 3tut),ωt)

+γ0Dα−1
t (−vα− xαvx − 3tvt) + J((−vα− xαvx − 3tvt),γt).

(57)

C2 = ξL + W1
[
∂L
∂ux

+ DxDx
(
∂L
∂uxxx

)]
+ W2

[
∂L
∂vx
−Dx

(
∂L
∂vxx

)
+ DxDx

(
∂L
∂vxxx

)]
+Dx(W1)

[
−Dx

(
∂L
∂uxxx

)]
+ Dx(W2)

[
∂L
∂vxx
−Dx

(
∂L
∂vxxx

)]
+ DxDx(W1)

(
∂L
∂uxxx

)
+ DxDx(W2)

(
∂L
∂vxxx

)
= 1

2 ((4αvxγx + 6αuxωx + 9tvtvxωx + 3xαv2
xωx + 6tωxuxt + 6tγxvxt + 9tvωxvxt

+2xα(ωxuxx + γxvxx) + 3xαvωxvxx − 2αvγxx − 6tvtγxx − 2xαvxγxx − 4αuωxx

−3αv2ωxx − 6tutωxx − 9tvxωxx − 2xαuxωxx + vvx(9αωx − 3xαωxx))

+γ(36αuv + 15αv3 + 12v(3tut + xαux) + 12u(3tvt + xαvx) + 15v2(3tvt + xαvx)

−6αvxx − 6tvxxt − 2xαvxxx) +ω(24αu2 + 18αuv2 + 12u(3tut + xαux)

+3v2(3tut + xαux) − 12αv2
x + 12uv(3tvt + xαvx) − 18tvxvxt − 8αuxx − 12αvvxx

−9tvtvxx − 9xαvxvxx − 6tuxxt − 9tvvxxt − 2xαuxxx − 3xαvvxxx))

(58)

5. Conclusions

Fractional logistic function technique is proposed for soliton solutions of fractional JM system.
Numerical simulation for solutions has been shown for analyzing the physical nature of obtained
solutions. Moreover, Lie group analysis technique is proposed for investigation of symmetry properties
and conservation laws for fractional Jaulent-Miodek system. Conservation laws for the system are
acquired by new theorem and formal Lagrangian. These analyses are relatively new and reliable for
finding exact solutions and constructing conservation laws with generating similarity solutions for the
FPDEs. Furthermore, this method enriches the solution of the equations, which is of great significance
for study of the FPDEs.
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