
Article

Research on the Task Assignment Problem
with Maximum Benefits in Volunteer
Computing Platforms

Ling Xu 1,2,*, Jianzhong Qiao 1, Shukuan Lin 1 and Xiaowei Wang 3

1 School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China;
qiaojianzhong@mail.neu.edu.cn (J.Q.); linshukuan@ise.neu.edu.cn (S.L.)

2 School of Software Engineering, Dalian University of Foreign Languages, Dalian 116044, China
3 School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China;

xiaoweiwang@mail.tsinghua.edu.cn
* Correspondence: xuling@dlufl.edu.cn; Tel.: +86-158-4097-5069

Received: 17 April 2020; Accepted: 21 May 2020; Published: 24 May 2020
����������
�������

Abstract: As a type of distributed computing, volunteer computing (VC) has provided unlimited
computing capacity at a low cost in recent decades. The architecture of most volunteer
computing platforms (VCPs) is a master–worker model, which defines a master–slave relationship.
Therefore, VCPs can be considered asymmetric multiprocessing systems (AMSs). As AMSs, VCPs are
very promising for providing computing services for users. Users can submit tasks with deadline
constraints to the VCPs. If the tasks are completed within their deadlines, VCPs will obtain the
benefits. For this application scenario, this paper proposes a new task assignment problem with the
maximum benefits in VCPs for the first time. To address the problem, we first proposed a list-based
task assignment (LTA) strategy, and we proved that the LTA strategy could complete the task with a
deadline constraint as soon as possible. Then, based on the LTA strategy, we proposed a maximum
benefit scheduling (MBS) algorithm, which aimed at maximizing the benefits of VCPs. The MBS
algorithm determined the acceptable tasks using a pruning strategy. Finally, the experiment results
show that our proposed algorithm is more effective than current algorithms in the aspects of benefits,
task acceptance rate and task completion rate.

Keywords: volunteer computing; task assignment; deadline constraints; maximum benefit;
asymmetric multiprocessing system

1. Introduction

As a type of distributed computing, volunteer computing (VC) is the use of idle computing
capacity that comes from volunteer digital devices, such as desktops, laptops and smartphones,
for large-scale scientific computing over volunteer computing platforms (VCPs). A well-known open
VCP is the Berkeley Open Infrastructure for Network Computing (BOINC) [1], and most VC projects
use BOINC, such as SETI@home [2], Climateprediction.net and Einstein@home. There are also VC
projects using other VCPs, such as Folding@home [3] and ATLAS@home [4]. Generally speaking,
the distributed computing system can be one of two types according to the architecture: a symmetry
multiprocessing system (SMS) or a asymmetric multiprocessing system (AMS) [5]. The AMS defines a
master–slave relationship, and the master processor schedules tasks to the slave processors. In contrast
to AMS, SMS has no master–slave relationship in processors. In fact, the architecture of most volunteer
computing platforms (VCPs) is a master–worker model, which defines a master–slave relation in
nodes [6]. Therefore, VCPs can be considered an asymmetric multiprocessing system (AMS).

Symmetry 2020, 12, 862; doi:10.3390/sym12050862 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym12050862
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/5/862?type=check_update&version=2

Symmetry 2020, 12, 862 2 of 25

Surveys show that early VC projects such as SETI@home attracted one million volunteers.
As there is no effective incentive mechanism at present, the volunteers have shrunk to
approximately 200,000 [1]. Therefore, VCPs face the challenges of recruiting and retaining more
volunteers. Presently, the performance of volunteer digital devices becomes more advanced.
Therefore, the potential computing power of VC is much larger than you intend. Besides, according to
the prior works [7,8], for the same computing power, the cost of Amazon cloud computing platforms
is 420 times that of VC. Therefore, recruiting and retaining more volunteers to participate in volunteer
computing will get huge computing power at a low cost. One method to recruit and retain volunteers
in VCPs is to use BOINC credits as a proof-of-work for blockchain systems or other commercially
distributed computing systems, and use the benefits issued by these systems, such as tokens, as rewards
for participating [1,9]. In this paper, we go one step further and propose an application scenario where
VCPs can provide computing services. Users pay an amount of money to use VCPs to compute their
tasks. If the VCPs complete a task within its deadline constraint, the VCPs will obtain an amount of
money and assign the benefits to volunteers.

On this basis, we propose research on the maximum benefits for VCPs. To solve the maximum
benefit problem, we need to select tasks from users to complete and assign tasks to appropriate
workers. From the perspective of VCPs, having the goal of a maximum benefit problem leads to an
interesting task assignment problem under the assumption that computing services from VCPs can
obtain financial benefits. How to assign tasks to appropriate workers has been extensively studied
in prior works [10–18]. In these prior works, some studies are static task scheduling algorithms
and others are dynamic task scheduling algorithms. Our study belongs to the second category.
Specifically, we focused on the following problem: assigning independent tasks under deadline
constraints dynamically and maximizing the benefits of VCPs.

Some prior works [19,20] studied dynamic task assignment under deadline constraints, but their
task assignment goals were different from our work. At the same time, they did not consider
the reliability. Usually, in distributed systems, reliability refers to the probability of executing
tasks successfully [21]. In this paper, the definition of reliability can be narrowed down to the
degree that VCPs can execute tasks correctly under the disturbance of the worker’s actual available
time. This is because, in VCPs, the available time of the workers is often disturbed, for instance,
by the non-VC application CPU load exceeding a threshold, which may cause the task to exceed its
deadline. Therefore, the VCP cannot complete the task correctly and achieve its matching benefit.
Thus, designing a task assignment algorithm that is reliable against the disturbance is an important
research. Consequently, we also considered the reliability when assigning tasks. Specifically, in this
paper, we adopted a list-based task assignment (LTA) strategy to reduce the impact of the disturbance.
We proposed a new task assignment algorithm, which aimed at maximizing the benefits of the VCPs
under deadline constraints and considering the reliability. The studies most related to our work are
the following [22,23].

In the work [22], the authors studied the problem of how to assign tasks when the disturbances
of the workers’ available times occurred and proposed two algorithms based on the heterogeneous
earliest-finish-time (HEFT) [10]. One was the HEFT with availability constraint (HEFT-AC) algorithm,
and the other was the HEFT AC with the unavailability (HEFT-ACU) algorithm. The goals of the
two algorithms were to minimize the makespan. The HEFT-AC algorithm mainly extended the HEFT
and allowed it to apply to the workers’ available times with availability constraints. The HEFT-ACU
algorithm’s basic idea was to reduce the impact of the disturbance by using two reputation parameters.
By using the method, the HEFT-ACU algorithm reduced the gap between the expected makespan and
the actual one and improved the performance of the scheduling. We noticed that the two reputation
parameters could not predict the availability time of a worker. Besides, they assigned the task with
shortest execution time to the worker with the best computational ability, which might cause a task
with a longer execution time to miss its deadline.

Symmetry 2020, 12, 862 3 of 25

To dynamically assign tasks under deadline constraints and the disturbances coming from the
uncertainty of distributed systems, the authors in [23] proposed a new task assignment algorithm
called maximum on-time completions (MOC). In the MOC algorithm, they defined the stochastic
robustness measure by using the stochastic task completion time. To maximize the number of tasks that
meet their individual deadlines, they discarded executing tasks that miss their deadline constraints by
considering two conditions: (1) executing tasks that cannot be discarded; (2) executing tasks that can
be discarded. However, their goal of task assignment was different from ours.

Motivated by this, in this paper, we extended the use of the reliability model proposed by
Xu et al. [24] and proposed a list-based task assignment (LTA) strategy. At the same time, we proved
the advantage of LTA strategy in scheduling tasks with deadline constraints and considering the
availability time of a worker being interrupted. The rationality of our work was to make full use
of the availability time of a worker and to reduce the disturbances in assigning through using an
LTA strategy. In this way, the expected maximum benefits from a task would be closer to the actual
maximum benefits.

The potential application of our work is cloud computing platforms. As is known to all,
cloud computing adopts a resource pool to provide computing services for a fee. Some cloud
computing platforms are centralized; i.e., the architecture is a master–worker model. The architecture
of our task assignment algorithm is also centralization (master–worker model). Simultaneously, our
task assignment goal is to maximize the benefit of the system. If the cloud computing platform adopts
our mechanism to schedule the tasks from users, the cloud computing platform can achieve more
benefits. Therefore, our task assignment algorithm could be used as a primary scheduling mechanism
for cloud computing. In this paper, we addressed the task assignment problem with the maximum
benefits in VCPs and proposed an efficient task assignment algorithm that takes into account the
reliability and tasks with deadline constraints. To summarize, the main contributions of this paper are
as follows:

(1) To the best of our knowledge, the task assignment problem with the greatest benefit in VCPs was
proposed for the first time in this paper, and we gave the evaluation criteria for the benefits.

(2) We proposed a new list-based task assignment (LTA) strategy while considering the reliability of
the VCPs, and we proved the LTA strategy could complete the task with a deadline constraint as
soon as possible.

(3) Based on the (LTA) strategy, we proposed a new task assignment algorithm while considering
the task deadline constraints.

(4) We evaluated the efficiency of the proposed algorithm based on the simulation experiments.
The experimental results showed that our proposed algorithm had a greater benefit than the
current algorithms.

The rest of this paper is organized as follows: In the next section, we review the related work.
In Section 3, we introduce the definition of the problems. In Section 4, we illustrate our task assignment
algorithm. In Section 5, we give the experimental results and the analysis of the proposed task
assignment algorithm. In Section 6, we conclude this paper.

2. Related Works

Task assignment in distributed computing refers to how to assign tasks to workers. For example,
if there are m tasks and n workers, there will be mn task assignment plans possible in distributed
computing. How to find the optimal solution from the task assignment plans according to a
certain assignment goal is a typical NP complete problem [25]. In recent years, many scholars
have done a great deal of work regarding the task assignment problem in distributed computing.
In this section, we summarize the prior works that are related to ours and classify them into two
categories: one category for static task assignment algorithms, and the other for dynamic task
assignment algorithms.

Symmetry 2020, 12, 862 4 of 25

2.1. Static Task Assignment Algorithms

The static task assignment algorithms have the task execution order and the task assignment
plan specified in advance, and the task execution order cannot be changed until all tasks have
been completed. In the past few decades, static task assignment algorithms have been extensively
studied and can be classified into two categories: heuristic-based and random-search-based
scheduling algorithms [10]. The random-search-based scheduling algorithms use the random search
strategy to find a suboptimal solution in the given problem space. Recently, studies demonstrated
that random-search-based scheduling algorithms had excellent performance in task assignment
problems. For example, genetic algorithms (GAs) [26–28] are typical random-search-based scheduling
algorithms. However, the computational complexity is often much higher than the heuristic-based
scheduling algorithms. The heuristic-based scheduling algorithms use certain heuristic rules to
find the solutions of task assignment problems, and they can be classified into three categories:
list scheduling algorithms (LSAs), clustering scheduling algorithms (CSAs) and task duplication
scheduling algorithms (TDSAs).

The basic method of the LSA [10,29–31] is to calculate the task priority according to specific
rules to build a task scheduling list, and to loop to execute the following two steps until all tasks are
scheduled: (1) fetch the first task from the task scheduling list; and (2) assign the selected task to the
processor that can compute it in the shortest time. For example, HEFT [10] and earliest deadline first
(EDF) [30] are classical LSAs. The main differences between them are that the ways of calculating
the task priority and processor assignment strategy are different. The CSA [32–34] is a scheduling
algorithm for an unbounded number of processors, which has three major phases: the task clustering
phase, the mapping task clusters to processors phase and the task execution phase.

The first phase merges tasks with high communication overhead into the same cluster, and
the number of clusters must be less than the number of processors. The second phase assigns
tasks in the same cluster to the same processors. The last phase computes the tasks according to
certain rules. A TDSA [35–37] reduces the communication overhead between tasks by assigning tasks
redundantly to different processors. Although the TDSA reduces the communication overhead, it
increases the computation overhead. Therefore, it is mainly used for task scheduling with a high
communication overhead.

In the above three categories of algorithma, the LSA has the best performance, and is simple to
implement with a low computational complexity [10]. Therefore, as a baseline algorithm, it is often
extended and applied to many application scenarios. This paper is a substantially extended version of
the LSA. However, the disadvantage of the LSA is that it does not adequately consider the dynamic of
distributed computing. Motivated by this, based on the LSA, we proposed a dynamic task assignment
algorithm called maximum benefit scheduling (MBS), that can dynamically adjust the task scheduling
order of the scheduling list. In contrast to the LSA, we adopted a new pruning strategy to determine
the acceptance of newly-arrived tasks, and adjust the task scheduling list dynamically. In practical
applications, tasks are usually dynamically updated; therefore, our algorithm has wide applicability.
In the next section, we introduce the related works regarding dynamic scheduling algorithms in detail.

2.2. Dynamic Task Assignment Algorithms

In a static task assignment algorithm, we cannot schedule tasks until we know all task
dependency in advance. However, we cannot know all task dependency in advance under practical
applications. For example, conditional branching is a program structure that can cause uncertainty.
For conditional branching, we cannot determine the successor tasks until the algorithm has been
executed. Therefore, it is necessary to design an efficient task assignment algorithm that can assign
tasks dynamically while the application is being executed. Usually, these kinds of algorithms are
called dynamic task assignment algorithms. In contrast to the static task assignment algorithms,
the dynamic task assignment algorithms have the task execution order and the task assignment
plan determined dynamically according to the application’s execution [38–40]. To execute parallel

Symmetry 2020, 12, 862 5 of 25

programs more efficiently in VCPs, many scholars have proposed many dynamic task assignment
algorithms [16,18,41] in recent decades.

In prior works, the goal was either to maximize the number of task completions or to minimize
the makespan. For example, based on a genetic algorithm, Estrada et al. [41] proposed a dynamic task
assignment algorithm in a volunteer computing system to maximize the number of task completions.
To automatically generate scheduling policies, the algorithm considered a large number of possible
scheduling strategies and used if-then-else rules to create large-space searches for each scheduling
strategy. Guler et al. [16] proposed a dynamic task assignment algorithm under the constraints
of the power price, and their goal was also to maximize the number of task completions. In the
paper [18], the authors proposed a dynamic algorithm which used the estimation of the spot-check
rate to minimize the makespan. These works are different from ours, as our goal is to maximize the
benefit of the VCPs.

These works did not consider deadline constraints. For the deadline constraints, there are
also some prior works [17,42], but they did not consider the reliability. Ghafarian et al. [17]
proposed a cloud-aware workflow scheduling algorithm. In their algorithm, they first partitioned a
workflow into sub-workflows to minimize the data dependencies and scheduled these sub-workflows
to the volunteers according to the proximity of resources and the load balancing policy.
Second, they estimated the execution time of each sub-workflow, if the sub-workflow missed its
deadline, they would consider re-scheduling of the sub-workflow in the public cloud resources.
Finally, they proved their algorithm can increase the percentage of workflow within its deadline.
Their algorithm can increase the percentage of workflow within its deadline, but they need to use the
public cloud resources, which may influence the reliability of computing. Xu et al. [42] proposed two
algorithms called deadline preference dispatch scheduling (DPDS) and improved dispatch constraint
scheduling (IDCS). The goal of the two algorithms was to maximize the number of completed tasks,
which is different from our goal. Moreover, the two algorithms did not consider the reliability.

For the reliability, there are also many prior works [22–24]; however, their optimization goals are
different from ours. The works [22,23] have been described before, so we do not reiterate them here.
Xu et al. [24] proposed two algorithms with the goal of minimizing the maksepan of tasks, which is
different to our goal. In summary, the existing algorithms cannot solve the dynamic task assignment
problem under the disturbance of availability time, and the goals of existing algorithms are different
from our algorithm, which aims to maximize the benefit of VCPs. Motivated by this, in this paper,
we proposed a dynamic task assignment algorithm that considered deadline constraints and improved
the reliability on the basis of the LTA strategy proposed in this paper, as the goal of our algorithm was
to maximize the benefit of VCPs.

3. Problem Description

In this section, we describe the task assignment problem. For the ease of description,
Table 1 summarizes the main notations used in this paper.

In this paper, we mainly focused on the task assignment problem with the maximum benefit.
Following prior works [17,22,23,43], we assumed that there was a server and nodes (workers) in a
VCP. The server is responsible for receiving and assigning tasks from users, and the nodes compute
the tasks and return their results to the server. Usually, the parameters of the tasks from the users are
known in advance, such as deadline constraints, benefits, and computing costs, and the server can
further divide the large task from users into small tasks [44]. At the same time, when a node joins
in a VCP, the expected availability time of the node is known in advance, and it is often disturbed,
as mentioned before.

For the ease of understanding the task assignment problem, we denote a task set in VCPs by the
set T = {t1, t2, . . . , t|T|}. Following the prior work [43], we suppose that each task ti can be completed
by a node nj or nodes in VCPs. In addition, for different tasks, we assume that the nodes provide the

Symmetry 2020, 12, 862 6 of 25

same computing power. A node-set is denoted by the set N = {n1, n2, . . . , n|N|}. Next, we give the
definitions for the tasks and nodes as follows:

Table 1. The descriptions of the main notation.

Notation Definition

T The set of tasks
T
′

The acceptable task set
ti The ith task of the set T
|T| The number of tasks in the set T
N The set of nodes
nj The jth node of the set N
|N| The number of nodes in the set N
hj The node nj contributes hj hours

nj.trust The trust value of the node nj
ti.cost The completion time needed of ti

ti.bene f it The benefit of completing ti within its deadline
ti.deadline The deadline of ti

B The total benefit of VCPs
B.ideal The ideal total benefit of VCPs

λ The compensation coefficient
Rangen[la, lb] The confidence interval of the node nj

ration The ratio of the actual availability time of node n to its expected availability time
probabilityn The probability of different ratios

D(nj) The total time assigned to the node nj

Definition 1 (Task). Task ti is a four dimensional array that is denoted by (id, ti.cost, ti.deadline, ti.bene f it).
The id represents the order of the tasks joined; ti.cost represents the time that a node needs ti.cost hours to
complete ti and the unit of ti.cost is an hour; ti.deadline represents the deadline constraint of ti and the unit
of ti.deadline is also an hour. If ti is executed at time l1, the deadline constraint of ti represents that ti must
be completed at l1 + ti.deadline; otherwise the task is not completed; ti.bene f it represents the benefit from
completing ti within the deadline constraints, and the unit of ti is cents.

For example, as shown in Figure 1a, t1.cost = 2, which means that the node nj will take two hours
to complete the task t1. The deadline constraint of task t1 is two hours and begins at time l1, which
means that task t1 must be completed before l1 + 2. The benefit of t1 is 100, which means that the VCP
will obtain 100 cents, if t1 has been completed before the deadline constraints.

Definition 2 (node). Node nj is a double dimension array, which is denoted by (id, hj). The hj represents
the expected availability time of the node nj is hj hours, and id represents the order of the node join in VCPs.

For example, as shown in Figure 1b, h2 = 4 means the availability time of node n2 is four hours.

T ti.cost

t1 2

3

1

2

6

5

t3

t4

t5

t6

t2

ti.benefit

100

120

80

110

300

200

ti.deadline

2

1

3

1

4

4

(a)

N hj

n1 4

4

3

4

3

n2

n3

n4

n5

nj.trust

70%

30%

60%

50%

40%

(b)

Figure 1. Task set and node set at time l1. (a) Task set at time l1; (b) node set at time l1.

Symmetry 2020, 12, 862 7 of 25

The goal of our task assignment was to maximize the benefit for the VCPs under the available
resource constraints and deadline constraints of the tasks. The available resource constraint was
as follows:

D(nj) ≤ hj, (1)

where D(nj) represents the total time assigned to the node nj. Equation (1) ensures that the total time
assigned to the node nj must be less than or equal to the expected available time.

There may be many tasks submitted to a VCP in a period. The submitted tasks are denoted by
set T, and the acceptable task set is denoted by T’. For any task, t′i of T, if it can be completed within
its deadline constraints, it is called a positive benefit; otherwise, it is called a negative benefit. For a
negative benefit of task ti’, the VCP needs to compensate λ ti.benefit. Therefore, the total benefit
denoted by B of the VCP is defined as follows:

B = ∑
t′i∈T′ ,t′i is a positive bene f it

t′i.bene f it− ∑
t′i∈T′ ,t′i is anegative bene f it

λt′i.bene f it (0 ≤ λ ≤ 1). (2)

The nodes that participated in the VCPs are not always available, for instance, due to the non-VC
application CPU load exceeding its threshold, which interrupts the expected available time of a node.
For the task with deadline constraint, the disturbance may cause the task to miss its deadline, which will
cause the VCP to not obtain the benefit for completing the task. Therefore, the disturbance will mean
that the actual benefit is less than the expected benefit, which is a main challenge in maximizing the
benefit for the VCPs. To address this challenge and reduce the impact of the disturbance, in this paper,
we use a new task assignment strategy based on a list, which ensures the expected maximum benefit is
approximated to the actual benefit.

4. Algorithm Description

In this section, we first introduce a new list-based task assignment (LTA) strategy (Section 4.1),
and then we introduce a task assignment algorithm with a maximum benefit based on the LTA strategy
in detail (Section 4.2).

4.1. The List-Based Task Assignment (LTA) Strategy

For ease of understanding the LTA strategy, we introduce our definitions as follows:

Definition 3 (List). For a task set T, list L is a permutation of tasks in set T. List L specifies the execution
order of the tasks. Specifically, for a given list L, L = {t1, t2, . . . , t|T|}, ∀ti ∈ L(0 < i < |T|); then COM(ti) <
COM(ti + 1), where COM(ti) is the makespan of ti.

For a given list L, we proposed a new list-based task assignment (LTA) strategy, which contained
three phases:

• Phase 1: The LTA strategy first fetches the first task of the list L and then assigns it to the
appropriate node. Specifically, during the task assignment, nodes are not always available due
to the reasons mentioned before, which makes the actual benefit to VCPs less than the expected
benefit. Although the available time of a node is grouped by a large number of discrete time
intervals, a statistical analysis shows that it is possible to obtain a relatively accurate availability
interval using probabilistic law [22,24,45]. Based on this, in the LTA strategy, we first select the
time interval when the node remains available to assign tasks, and we adopt the confidence
interval proposed by Xu et al. [24] to predict the time interval. The definition of the confidence
interval is as follows:

Symmetry 2020, 12, 862 8 of 25

Definition 4 (Confidence Interval). The confidence interval of a node nj at time l1 is denoted by
Rangej[la, lb], which means that nj can remain available before time la and may be unavailable at any time
in the time interval [la, lb].

Briefly, the upper bound of the confidence interval about node nj was hj, and the lower bound
of the confidence interval can be calculated by interpolation. Specifically, we counted the actual
availability time and the expected availability time of nj nearly 100 times and obtained ratios of
the actual availability time and expected availability time about nj, and presence probabilities
of different ratios, as shown in Figure 2a. In Figure 2a, ration represents the ratio of the actual
availability time of nj to the expected availability time and the probabilityn represents the presence
probability of the different ratios.

Therefore, according to Figure 2a, for any given hj of nj, the lower bound of the confidence
interval and the presence probability of different actual availability times can be calculated by
interpolation. For example, if the expected availability time of nj is 4 h, then according to Figure 2a,
the lower bound of the confidence interval of nj is 2 h. Similarly, we can determine any node
in the VCPs according to interpolation, and the confidence intervals of the nodes at time l1 are
shown as Figure 2b.

<=50%
probabilityi

<=50% 100%

90%

80%

70%

60%

<=50%
probabilityi

<=50% 100%

90%

80%

70%

60%

60%

70%

80%

90%

ratioi

50%100%

(a)

V Confidence interval

v1 Range1[3.4,4]

Range2[2.6,4]

Range3[2.2,3]

Range4[3,4]

Range5[2,3]

V Confidence interval

v1 Range1[3.4,4]

Range2[2.6,4]

Range3[2.2,3]

Range4[3,4]

Range5[2,3]

v2

v3

v4

v5

(b)

Figure 2. The statistics of the actual availability time and expected availability time of the node nj

and confidence intervals of the nodes at time l1. (a) Statistics of the actual availability time and expected
availability time of the node nj; (b) confidence intervals of nodes at time l1.

• Phase 2: According to the definition of the list, task ti + 1 could not be executed until that task
ti was completed. Therefore, to make full use of the computing resources in VCPs, during the
assigning task ti, we divided it into |N| equal task slices and assigned these task slices to nodes in
the VCPs, and the size of each task slice was ti.cost/|N|. Specifically, we supposed that task ti was
executed at time m, and the confidence interval of node n was Rangen[la, lb]. During assigning
these task slices, for each node n in the VCPs, if m + ti.cost/|N| ≤ la; then all the nodes could
complete the task slice and assign the task slice whose size was ti.cost/|N| to each node n.
Otherwise, we assigned the task slice whose size was la − ti.cost/|N| to each node n, and we
added the rest of task ti to the head of the list and stopped assigning tasks to node n.

• Phase 3: Finally, if the list L is null, we assume that all tasks have been completed; if all time
intervals of nodes keep available have been assigned, and there are still uncompleted tasks,
the LTA strategy would not stop selecting time intervals until all nodes disconnect or tasks
are completed.

For example, given a task set T and a node set N, as shown in Figure 1, the confidence intervals
of the nodes are as shown in Figure 2a, and the given list L = {t2, t4, t1, t3, t5, t6}. Suppose the current
time m = l1 = 0. According to the LTA strategy:

Symmetry 2020, 12, 862 9 of 25

Step one: We first assign task t2. For any node in VCPs, m + t2.cost/|N| < la, so all nodes can
complete t2, and m is updated to 0.6. Since m < t2.deadline, the VCPs can complete task t2 and obtain
the benefit.

Step two: Next, we assign task t4. For any node in VCPs, m + t4.cost/|N| < la; thus, all nodes can
complete t4, and m is updated to 1. Since m < t4.deadline, the VCPs can complete task t4 and obtain
the benefit.

Step three: We continue to assign task t1. For any node in the VCPs, m + t1.cost/|N| < la, so all
nodes can complete t1, and m is updated to 1.4. Since m < t1.deadline, the VCPs can complete task t1

and obtain the benefit.
Finally, According to the LTA strategy, we continually select tasks in the list to assign until the

node N is null or the list is null.
The specific task assignment is shown in Figure 3. According to Figure 3, we can know that the

tasks t2, t4, t1, t3 can be completed and that task t6 cannot be completed, and we cannot determine
whether VCPs can complete t5. For uncompleted tasks, such as t6, the VCPs may need to compensate
the user. Therefore, accepting such tasks will reduce the benefit of VCPs. Next, we give the definition
of a valid list.

Definition 5 (Valid List). For a task set T, list L is a permutation of tasks in set T, and list
L = {t1, t2, . . . , t|T|} specifies the execution order of the tasks. For a given list L, if the VCPs are used the LTA
strategy to assign tasks, ∀ti ∈ L(0 < i < |T|), COM(ti) < ti.deadline, then list L is a valid list.

Next, we prove the advantage of the LTA strategy in assigning tasks with deadline constraints.

timeo
1 2 3 4 5

n1

n2

n3

n4

n5

0.6 1.4 1.6 2.2 2.6 3.4

node

Time that node can keep
available assigned to task t4

Time that node can keep
available assigned to task t2

Time that node can keep
available assigned to task t1

Time that node can keep
available assigned to task t3

Time that node can keep
available assigned to task t5

Time that node may be
unavailable assigned to task t5

Figure 3. The specific task assignment of the list-based task assignment (LTA) strategy.

Theorem 1. For a given task set T and a given list L, using the LTA strategy to assign tasks can guarantee:
for any task ti in set T, the task ti can be completed in the shortest time, satisfying the definition of list L.

Proof of Theorem 1. To facilitate the calculation in the proof process, we suppose that the expected
available time provided by all nodes is equal to the actual available time. Given a list
L = {t1, t2, . . . , t|T|} and the current time m, at which the VCPs start calculating task t1, and list
L specifying: any task ti that cannot be executed until all tasks tk(1 ≤ k < i) have been completed.
Therefore, the earliest makespan of task ti is m + ∑i∈[1,k] ti.cost/|N|. If the LTA strategy is used

Symmetry 2020, 12, 862 10 of 25

for assignment, the earliest makespan of task ti is also m + ∑i∈[1,k] ti.cost/|N|. The theorem can
be proven.

Given a list L, according to the Theorem 1, the LTA strategy proposed in this paper
has an advantage in the completion time when scheduling tasks with deadline constraints.
Therefore, using the LTA strategy cannot guarantee that all tasks in the list are completed within
their deadline constraints; however, other strategies also cannot guarantee that all tasks are completed
within their deadline constraints. Otherwise, the task list is not a valid list.

4.2. The Maximum Benefit Scheduling (MBS) Algorithm

For a task set T and a given a list L, all tasks may not be completed using the LTA strategy,
as shown in Figure 3. For example, for the task t5, it is impossible to determine whether it can be
completed. Therefore, accepting a task such as t5, not only causes a waste of system computing
resources but also may reduce the benefits of the VCPs. To maximize the benefits of the VCPs, to
quickly determine the set of tasks that can be accepted and to find a valid list of tasks, the MBS
algorithm based on the LTA strategy was proposed in this section. The MBS algorithm is a task
assignment algorithm for a limited number of volunteer nodes, which has three major phases: (1) a
task order computing phase for computing the task execution order of all tasks; (2) a task selection
phase for selecting the accepted tasks, i.e., constructing a valid list; and (3) a task assignment phase for
scheduling each accepted task based on the LTA strategy.

A task order computing phase: The MBS algorithm first sorted the tasks in descending order
according to the benefit ratio; i.e., a task with a greater benefit ratio would be scheduled first. As the
computing power of the VCPs is typically limited, the more intuitive method of calculating the benefit
ratio is the benefit per unit time. However, large tasks and emergency (short deadline) tasks can also
affect the benefits of the VCPs. Therefore, when we calculated the benefit ratio, we mainly considered
three aspects as follows:

(1) As the computing power of the VCPs is limited, the benefit ratio of the task mainly used the
benefit per unit time.

(2) If a task is too large, computing it will affect receiving other tasks, which may reduce the benefits
of the VCPs. Therefore, we should consider penalizing such large tasks when calculating the task
benefit ratios.

(3) If the deadline constraint of a task is too small, it is easy to miss its deadline constraint, which may
affect the benefits of the VCPs. Therefore, we should consider punishing such emergency tasks
(short deadline) when calculating the benefit ratio of the task.

After considering the above three factors, the benefit ratio of task ti can be calculated as follows:

BR(ti) =
ti.bene f it

ti.cost× Lj(ti)× Dj(ti)
(3)

where BR(ti) represents the benefit ratio of the task ti, and Lj(ti) and Dj(ti) represent the punishment
coefficients of large tasks and short-deadline tasks, respectively. Next, we will introduce the calculation
of them in detail.

For a task ti in task set T, if the calculation cost is larger than the average calculation cost of all the
tasks in task set T, it is a large task; otherwise, we do not consider it a large task. Therefore, the definition
of the Lj(ti) is as follows:

Lj(ti) =

 1 +
ti.cost− T.cost

ti.cost
ti is a large-task

1 ti is not a large-task
(4)

Symmetry 2020, 12, 862 11 of 25

where T.cost represents the average calculation cost of all the tasks in the task set T,

and T.cost =
∑ti∈T ti.cost
|T| .

For a task ti in the task set T, if the deadline constraints are smaller than the middle time of all
the tasks in task set T, it is an emergency task; otherwise, we do not consider it an emergency task.
Therefore, the definition of the Dj(ti) is as follows:

Dj(ti) =

 1 + | ti.deadline− T.deadline
ti.deadline

| ti is a emergency task

1 ti is not a emergency task
(5)

where T.deadline represents the middle time of all the tasks in the task set T,

and T.deadline =
ti.deadlinemax

2
and ti.deadlinemax are the largest deadline constraints of the

tasks in task set T.
For example, a given task set T at time l1 is shown in Figure 1a. We can calculate T.cost ≈ 3.17

and T.deadline = 2. As the calculation costs of tasks t5 and t6 are larger than T.cost ≈, task t5 and t6

are large tasks. In addition, the deadline constraints of tasks t2 and t4 are smaller than T.deadline;
therefore, tasks t2 and t4 are emergency tasks.

According to Equations (3) and (4), Dj(t1) = 1, Dj(t2) = 2, Dj(t3) = 1, Dj(t4) = 2, Dj(t5) = 1 and
Dj(t6) = 1; Lj(t1) = 1, Lj(t2) = 1, Lj(t3) = 1, Lj(t4) = 1, Lj(t5) ≈ 1.47 and Lj(t6) ≈ 1.37. Therefore,

according to Equations (3)–(5), BR(t1) =
t1.bene f it

t1.cost× Lj(t1)× Dj(t1)
=

100
2× 1× 1

= 50. Similarly, we

can calculate the benefit ratio of the other tasks in task set T, as shown in Figure 4.

T ti.cost

t1 2

3

1

2

6

5

t3

t4

t5

t6

t2

ti.benefit

100

120

80

110

300

200

ti.deadline

2

1

3

1

4

4

BR(ti)

50

20

80

27.5

34.01

29.29

Figure 4. The benefit ratio of each task in task set T.

A task selection phase: To select the accepted tasks and construct a valid list, we used the MBS
algorithm to propose theorems as follows:

Theorem 2. For a given valid list L = {t1, t2, . . . , t|T|}, the current time m = 0 and a new task tnew,

if
tnew.cost
|N| + COM(ti) > ti.deadline, then a new list L’, which is constructed by inserting a new task tnew in

any position of the interval [1, i], is not a valid list.

Proof of Theorem 2. The earliest completion time of the task tnew is
tnew.cost
|N| ; therefore, inserting

a new task tnew in any position of the interval [1, i] will cause task ti to not be completed within
its deadline constraint. A new list L′ constructed by inserting a new task tnew is not a valid list.
The theorem can be proven.

Symmetry 2020, 12, 862 12 of 25

Theorem 3. For a given valid list L = {t1, t2, . . . , t|T|}, and a new task tnew,

if
tnew.cost
|N| + COM(ti) > tnew.deadline, then a new list L’, which is constructed by inserting a new

task tnew in any position of the interval [i + 1, |T| + 1] is not a valid list.

Proof of Theorem 3. Suppose that we can insert a new task tnew in any position of the interval

[i + 1, |T|+ 1]; then, the earliest completion time of the task tnew is
tnew.cost
|N| + COM(ti).

Clearly, task tnew cannot be completed within its deadline constraint. Therefore, a new list L’, which is
constructed by inserting a new task tnew in any position of the interval [i+1, |T|+1], is not a valid list.
The theorem can be proven.

According to the Theorems 2 and 3, we can select the accepted tasks and construct a valid list.
Specifically, the function called EffectiveList, which can construct a valid list, is described in detail in
Algorithm 1. Next, we illustrate the implementation of Algorithm 1. Examples are shown as follows:

Algorithm 1 The EffectiveList function (Nl , Tl , m, L).

Input: node set Nl , task set Tl = {t1, t2, . . . , t|T|}, current time l = m, the current valid list L.
Output: valid list set E|T|.

1: Calculate the benefit ratio of each task in task set Tl according to the Equations (3)–(5).
2: Construct the new task set Tl’in descending order according to the benefit ratio of tasks in task

set Tl .
3: E0 = {L} // E0 is a valid list set
4: for each t′i ∈ T′l (i ≥ 1) do

5: Ei = ∅
6: for each L′ ∈ Ei−1 do

7: Find the head position b and tail position e where t′i can be inserted according to Theorems 2

and 3.
8: if b ≤ e then

9: for each j ∈ [b, e] do

10: Insert task t′i into the position j of the effective list L′ to construct a new list L′′,

and calculate the completion time of task t′i according to the LTA strategy.
11: if L′′ is a valid list then

12: Insert L′′ into Ei
13: end if
14: end for
15: end if
16: end for
17: if Ei = ∅ then

18: Ei = Ei−1
19: end if
20: end for
21: return valid list set E|T|.

Given a benefit ratio of each task in task set Tl1 at time l1, as shown in Figure 4, on this basis,
we can construct the new task set T′l1 = {t3, t1, t5, t6, t4, t2} in descending order according to the benefit
ratio of the tasks in task set Tl . For ease of calculation, we suppose the current times l1 = 0 and L = ∅.

Step one: According to line 5 of Algorithm 1, we first select task t3 and determine whether it can
be accepted. According to line 7 of Algorithm 1, we can know L′ = ∅ at the moment. According to
Theorems 2 and 3, the head position b and tail position e where t′i can be inserted is 1; i.e., b = e = 1.

Symmetry 2020, 12, 862 13 of 25

Therefore, L′′ = {t3}. According to the LTA strategy, it can be known that COM(t3) =
t3.cost

5
= 0.2, and

COM(t3) < l1 + t3.deadline. Therefore, L′′ = {t3} is a valid list, and E1 = {{t3}}.
Step two: Next, we select task t1 and determine whether it can be accepted. According to the

line 7 of Algorithm 1, we can know L′ = {t3} at the moment. According to Theorems 2 and 3, the
head position b and tail position e are 1 and 2, respectively; i.e., b = 1, e = 2. Suppose that task t1

can be inserted in position 1; then L′′ = {t1, t3}. According to the LTA strategy, it can be known

that COM(t1) =
t1.cost

5
= 0.4, and COM(t3) = COM(t1) +

t3.cost
5

= 0.6. As both tasks t1 and t3

can be completed within their deadline constraints, L′′ = {t1, t3} is a valid list and E2 = {{t1, t3}}.
Suppose that task t1 can be inserted in position 2; then L′′ = {t3, t1}. According to the LTA strategy,

it can be known that COM(t3) =
t3.cost

5
= 0.2, and COM(t1) = COM(t3) +

t1.cost
5

= 0.6. As both tasks

t1 and t3 can be completed within their deadline constraints, L′′ = {t3, t1} is a valid list and E2 is equal
to {{t1, t3}, {t3, t1}} at the moment; i.e., E2 = {{t1, t3}, {t3, t1}}. Similarly, it can be known that the
final valid list set E|T| is equal to {{t5, t1, t3}, {t1, t5, t3}, {t1, t3, t5}, {t5, t1, t1}, {t3, t5, t1}, {t3, t1, t5}}.

A task assignment phase: In this phase, the MBS algorithm selects a valid list from E|T| and
schedules each task of the valid list based on the LTA strategy.

However, in practical applications, nodes can join and exit freely, and new tasks are allowed
to insert. Therefore, to assign tasks dynamically, the MBS algorithm sets a monitoring mechanism,
which cannot be triggered until meeting the following two conditions simultaneously:

(1) There are new nodes or tasks arriving at the VCPs;
(2) There are no tasks that are being executed.

The MBS algorithm selects tasks that can be accepted according to Theorems 2 and 3 and assigns
tasks according to the LTA strategy, which first selects the time interval to assign tasks, and the
time interval keeps nodes available. Based on this, all accepted tasks can be completed within their
deadline constraints. Therefore, we did not consider the node’s exit calculation when setting the
monitoring mechanism. To improve the utilization of the computing resources and the performance of
the algorithm, in the future, we will consider it. After the monitoring mechanism is triggered, the MBS
algorithm recalls the EffectiveList function to select the tasks and assigns the selected tasks according
to the LTA strategy. The MBS algorithm is described in detail in Algorithm 2.

Next, we illustrate the implementation of the Algorithm 2. Examples are shown as follows:
For example, for the ease of calculation, a given task set Tl and a node set Nl

at time l are shown in Figure 1, and the current time l = m = 0; then, the MBS
algorithm calls the function EffectiveList (Nl, Tl, l), and we can obtain the valid list set
E|T| = {{t5, t1, t3}, {t1, t5, t3}, {t1, t3, t5}, {t5, t1, t1}, {t3, t5, t1}, {t3, t1, t5}}. Suppose that the MBS
algorithm selects the valid list L = {t1, t3, t5} to assign. According to line 5 of the MBS algorithm,
we first assign task t1. According to line 6 of the MBS algorithm, the task slice of task t1 is l′,

and l′ =
t1.cost
|Nl |

= 0.4. For all nodes, since m + l′ < la, the task slice whose size is 0.4 is assigned to

n1, n2, n3, n4, n5. COM(t1) = 0.4 < t1.deadline, and thus t1 has been completed. At the moment, m is
updated to 0.4 and B = 100. Next, we continuously select task t3 to assign. According to line 6 of the

MBS algorithm, the task slice of task t3 is l′, and l′ =
t3.cost
|Nl |

= 0.2.

For all nodes, as m + l′ = 0.6 < la, the task slice whose size is 0.2 is assigned to n1, n2, n3, n4, n5.
COM(t3) = 0.6 < t3.deadline, so t3 has been completed. At the moment, m is updated to 0.6 and
B = 180. Next, we continuously select task t5 to assign. According to line 6 of the MBS algorithm,

the task slice of task t5 is l′, and l′ =
t5.cost
|Nl |

= 1.2. For all nodes, since m + l′ = 1.8 < la, the task

slice whose size is 1.2 is assigned to n1, n2, n3, n4, n5. COM(t5) = 1.8 < t5.deadline, so t5 has been
completed. At the moment, m is updated to 1.8 and B = 480.

Symmetry 2020, 12, 862 14 of 25

For the ease of calculation, we supposed that there were two new tasks that arrived at time l = 1
and that there are no new nodes or tasks that arrived at other times. The specific parameters of the
new tasks that arrived at the time l = 1 are shown in Figure 5.

Algorithm 2 The MBS algorithm.

Input: node set Nl , task set Tl = {t1, t2, . . . , t|T|}, current time l = m, the current valid list L.
Output: the benefit of VCPs B

1: Wait until the monitoring mechanism is triggered
2: Call the EffectiveList function(Nl , Tl , m, L)
3: Select a valid list L set from E|T|
4: while L 6= ∅ and Nl 6= ∅ do

5: Take the first task t′ from list L
6: l′ = t′.cost/Nl // calculate the size of task slice
7: for each n ∈ Nl do

8: if la > m + l′ then

9: add < n, l′ > to T.assign //T.assign represents the task assignment plan
10: t′.cost = t′.cost− l′
11: else

12: add < n, la −m > to T.assign
13: t′.cost = t′.cost− (la −m)
14: delete node n from Nl
15: end if
16: end for
17: m = m + l′
18: if t′.cost == 0 then

19: delete task t′ from L
20: B = B + t′.bene f it
21: end if
22: end while
23: return B

T ti.cost

t7 5

4t8

ti.benefit

300

250

ti.deadline

4

3

BR(ti)

48

62.5

Figure 5. New tasks that arrived at time l = 1.

As task t5 is being executed at the time l = 1, the monitoring mechanism of the MBS algorithm
cannot be triggered until task t5 is completed. The task t5 was completed at time l = 1.8, and the
monitoring mechanism of the MBS algorithm was triggered at the time l = 1.8. After the monitoring
mechanism is triggered, the MBS algorithm recalls the function EffectiveList (Nl , Tl , l) to calculate the
valid list set. According to line 4 of the Algorithm 1, we can know E0 = ∅.

According to line 5 of Algorithm 1, we first select task t8 and determine whether it can be accepted.
According to line 7 of Algorithm 1, we can know L′ = ∅ at the moment. According to Theorems 2
and 3, the head position b and tail position e where t′8 can be inserted are 1; i.e., b = e = 1. Therefore,
L′′ = {t8}. According to the LTA strategy, it can be known that COM(t8) = 3.2, and COM(t8) < 1 +
t8.deadline. Therefore, L′′ = {t8} is a valid list, and E1 = {{t8}}.

Next, we select task t7 and determine whether it can be accepted. According to line 7 of
Algorithm 1, we can know L′ = {t8} at the moment. According to Theorems 2 and 3, the head
position b and tail position e where t′8 can be inserted are 1 and 2, respectively; i.e., b = 1, e = 2.

Symmetry 2020, 12, 862 15 of 25

Suppose that task t7 can be inserted in position 1; then L′′ = {t7, t8}. According to the LTA strategy,

it can be known that COM(t7) =
t1.cost
|N| + COM(t8) > 1 + 3.2 > 1 + t8.deadline. As task t8 cannot be

completed within its deadline constraint, task t7 cannot be inserted in position 1. Suppose that task t7

can be inserted in position 2; then L′′ = {t8, t7}. According to the LTA strategy, it can be known that

COM(t7) =
t1.cost
|N| + COM(t8) = 5 + 3.2 > 1 + t7.deadline. As task t7 cannot be completed within its

deadline constraint, task t7 cannot be inserted in position 2.
Based on the above analysis, we can know that the VCPs can accept task t8 to assign; the specific

task assignment is shown as Figure 6. As shown in Figure 6, we can know that tasks t1, t3, t5, t8 can be
completed within their deadline constraints, and the benefit B of the VCPs is 720.

timeo
1 2 3 4 5

n1

n2

n3

n4

n5

0.6 1.8 2.2 2.6 3.2

node

0.4

Time that node can keep
available assigned to task t1

Time that node can keep
available assigned to task t3

Time that node can keep
available assigned to task t5

Time that node can keep
available assigned to task t8

Figure 6. The specific task assignment of the maximum benefit scheduling (MBS) algorithm.

5. Experimental Evaluation

In this section, we evaluate the performance of our proposed algorithm through simulation
experiments. Specifically, we used a static task set, a dynamic task set and different average connection
speed to compare the proposed algorithm with MOC algorithm [23], HEFT-AC and HEFT-ACU [22]
as mentioned before. The simulation experiment environment consisted of one server node and fifty
sub nodes. All nodes were configured with Intel Core i7 4790 CPU@3.4 GHz, 8 GB DDR3 memory,
1 TB hard disk and a Windows 10 operating system. At the same time, we adopted the interpolation
method to obtain the confidence interval of each subnode.

5.1. Experimental Results and Analysis on Static Task Sets

In the experiment of this section, we tested the performance of proposed algorithm on static
task sets. Specifically, we used three common tasks: word frequency statistics, inverted index and
distributed Grep. The input files, the data and dump files, were provided by Wikipedia (the main
contents are entries, templates, picture descriptions, basic meta-pages, etc.). In the experimental results
and analysis on static task sets, we mainly considered the influences of the three main parameters
as follows:

• The task set scale; i.e., the number of tasks included in the task set T.

Symmetry 2020, 12, 862 16 of 25

• The average size of tasks in task set T, denoted by S, which was measured by the number of input
file fragments. Specifically, in our experiment, ∀ti ∈ T, the size of the task ti was a random value
of the interval [0.5S, 2.5S].

• The average deadline constraints of tasks in T, denoted by D. Specifically, in our experiment,
∀ti ∈ T, the deadline constraint of the task ti was a random value of the interval [0.8D, 1.6D].

In addition, in our experiment, ∀ti ∈ T, the average deadline constraint of the task was a random
value of the interval [800, 1600], ti.bene f it was a random value of the interval [400, 600] and λ = 0.5.
Table 2 shows the default values and ranges of the main parameters.

Table 2. Experimental default parameters.

Parameter Default Value Range

Average size of tasks (MB) 128 64–320
Task set scale 50 20–100

Average deadline constraints(s) 1000 800–1600

In this paper, we considered the benefit of the VCPs to be the primary performance index.
In addition, we also used the task completion rate and the task acceptance rate to measure the
performance of the algorithm more comprehensively. Specifically, the task completion rate and task
acceptance rate are defined as follows:

task completion rate =
the number o f completion tasks within deadline constraints

the number o f the accepted tasks
, (6)

task acceptance rate =
the number o f accepted tasks
the number o f the task set T

. (7)

The proposed algorithm is the first algorithm to provide the maximum benefit from independent
tasks with deadline constraints in VCPs. Although there are some similar prior works, they solved
different problems. For comparison, on the one hand, we chose the MOC algorithm as the comparison
algorithm, which is one of the latest works designed for independent tasks with deadline constraints
in distributed systems and is more effective than many typical algorithms. However, the goal of
the MOC algorithm mainly focuses on the number of completed tasks, and it does not consider the
benefit in VCPs; thus, we adjusted it to deal with the assignment with benefits in VCPs so that we
could compare the results with our proposed algorithm. On the other hand, we chose the HEFT-AC
and HEFT-ACU algorithms as the comparison algorithms, which are the latest ones designed for
independent tasks in VCPs under the disturbance that occurred. However, the goals of the two
algorithms mainly focus on the makespan of tasks, and they do not consider the benefit in VCPs;
thus, we adjusted them to deal with the assignment with benefits so that we could compare the results
with our proposed algorithm. The three algorithms [22,23] have been described before, so we do not
reiterate them here. Besides, to more comprehensively evaluate the performance of the proposed
algorithm, we introduced the ideal benefit,; i.e., the VCPs could compute a timeout task without
any compensation.

Specifically, for any task set T, the current time is l1 and the task set T′ = is arranged in descending
order according to the benefit ratio of each task. The ideal benefit of the VCPs is defined as finding the
m tasks so that the completion time of the mth task is just greater than l1 + tm.deadline, and then the
ideal benefit can be defined as follows:

B.ideal =

m−1

∑
i=1

ti.bene f it +
N.remain

tm.cost
N.remain < tm.cost

m

∑
i=1

ti.bene f it N.remain ≥ tm.cost

(8)

Symmetry 2020, 12, 862 17 of 25

where N.remain represents the rest computing resources of the VCPs after completing the (m− 1)th
task, and it can be defined as follows:

N.remain =
|N|

∑
i=1

hj − COM(tm−1). (9)

According to the definition above, B.ideal is an ideal value. For example, the task set and node set
at time l1 are shown in Figure 1, and the task set is arranged in descending order of the benefit ratio to
obtain T′ = t3, t1, t5, t6, t4, t2. Suppose l1 = 0 , according to the above definition of the ideal value of
the benefit; then, it can be known that m is 5. Thus, according to Equations (8) and (9), we can know
that B.ideal = 80 + 100 + 300 + 200 + 110 = 790 .

5.1.1. The Impact of the Average Size of Tasks

In this experiment, we tested the benefit, task acceptance rate and task completion rate under the
different average sizes of tasks. Specifically, the task set scale was set to 50 and the average deadline
constraint was set to 1000 s. We varied the average size of tasks from 64 to 320 MB. Figure 7 shows
the experimental results. In Figure 7, we noticed that, regardless of the different average sizes of
tasks, the performances of MBS and MOC were better than those of HEFT-AC and HEFT-ACU. This is
because HEFT-AC and HEFT-ACU did not consider the deadline constraints of tasks, which caused
some tasks to miss their deadline constraints. We also noticed that, with the average size of tasks
increased, the four algorithms’ benefit and task acceptance rate decreased. The reason is that the
computing power of the VCPs consisted of the bounded nodes, when the average size of the tasks
increased, task acceptance rates gradually decreased. Another reason is that, when the average size of
the tasks increased, the node will be idle until the task data are stored. Therefore, the benefit and task
acceptance rate decreases.

As shown in Figure 7a, B.ideal represented the ideal benefit of the system. In Figure 7a,b, VCPs
had a lesser benefit and lower task acceptance rate using the MOC than by using our proposed
algorithm MBS, and the benefit of our proposed algorithm was closer to the ideal benefit. The reason
is that the MBS algorithm, based on the LTA strategy, could complete tasks faster than the MOC.
At the same time, MOC mapped the task with the lowest completion time to the computer with
maximum robustness each time, which cannot guarantee the benefit of the task is significant. Besides,
HEFT-ACU outperforms HEFT-AC; this is because that HEFT-ACU considered the disturbance of the
nodes, which could complete more tasks on time than HEFT-AC.

In Figure 7c, we tested the impacts of the average tasks on the task completion rate of the
algorithm. The task completion rate did not change significantly when the average size of the task
increased. The MBS algorithm could almost complete all accepted tasks. As MOC discarded the tasks
that missed the deadline, the task completion rate of MOC was lower than MBS. Besides, as HEFT-AC
and HEFT-ACU did not consider the deadline constraints, the task completion rate was lower than
MBS and MOC. As can be seen from Figure 7b,c, MBS performed better than MOC in both the task
acceptance rate and the task completion rate, which is also the reason why MBS had a greater benefit.

Symmetry 2020, 12, 862 18 of 25

0
2
4
6
8

10
12
14
16

64 128 192 256 320

b
e

n
e

fi
t(

1
0

3
)

average size of tasks(MB)

HEFT-AC HEFT-ACU MOC MBS B.ideal

(a)

0

20

40

60

80

100

64 128 192 256 320

ta
sk

 a
cc

e
p

ta
n

ce
 r

at
e
（

%
）

average size of tasks(MB)

HEFT-AC HEFT-ACU MOC MBS

(b)

0

20

40

60

80

100

120

64 128 192 256 320

ta
sk

 c
o

m
p

le
ti

o
n

 r
at

e
（

%
）

average size of tasks(MB)

HEFT-AC HEFT-ACU MOC MBS

(c)

Figure 7. The impacts of average sized tasks on the performances of the algorithms: (a) The impact
of the average size of the tasks on the benefit. (b) The impact of the average size of the tasks on the task
acceptance rate. (c) The impact of the average size of the tasks on the task completion rate.

5.1.2. The Impact of the Average Deadline Constraints of Tasks

In this experiment, we tested the benefit, task acceptance rate and task completion rate under the
different average deadline constraints. Specifically, the task set scale was set to 50, and the average
size of tasks was set to 128 MB. We varied the average deadline constraints of tasks from 800 s to
1600 s. Figure 8 shows the experimental results. As can be seen from Figure 8, with the increase of the
average deadline constraints of the tasks, the performances of the four algorithms gradually increased.
The reason is that, with the increase of the average deadline constraints of the tasks, more tasks could
be completed before their deadline constraints. We also noticed that MBS and MOC performed better
than HEFT-AC and HEFT-ACU. The reason is that MBS and MOC will not compute tasks that missed
the deadline. In contrast to MBS and MOC, despite the task missing its deadline, HEFT-AC and
HEFT-ACU still computed it. Therefore, the performance of HEFT-AC and HEFT-ACU is lower than
MBS and MOC. However, the task completion rate did not change significantly when the average
deadline constraints of the tasks increased.

Symmetry 2020, 12, 862 19 of 25

0

4

8

12

16

800 1000 1200 1400 1600

be
ne

fit
 (1

03)

average deadline constraints(s)

HEFT-AC HEFT-ACU MOC MBS B.ideal

(a)

20

40

60

80

100

800 1000 1200 1400 1600

ta
sk

 a
cc

ep
ta

nc
e

ra
te

(%
)

average deadline constraints(s)

HEFT-AC HEFT-ACU MOC MBS

(b)

40

60

80

100

120

800 1000 1200 1400 1600

ta
sk

 c
om

pl
et

io
n

ra
te

 (%
)

average deadline constraints(s)

HEFT-AC HEFT-ACU MOC MBS

(c)

Figure 8. The impacts of the average deadline constraints on the performances of the algorithms:
(a) The impact of the average deadline constraints on the benefit. (b) The impact of the average
deadline constraints on the task acceptance rate. (c) The impact of the average deadline constraints on
the task completion rate.

5.1.3. The Impact of the Task Set Scale

In this experiment, we tested the benefit, task acceptance rate and task completion rate under
the different task set scale. Specifically, the average deadline constraint was set to 1000 s, and the
average size of tasks was set to 128 MB. We varied the task set scale (i.e., the number of tasks) from
20 to 100. Figure 9 shows the experimental results. We noticed that MBS outperforms the other three
algorithms. As can be seen from Figure 9a, when the number of tasks increased, the benefits did not
significantly change. As the computing power of nodes was absolute in a period, the benefits did not
change substantially. We also observed that MBS and MOC outperformed the other two algorithms.
The reason is that MBS and MOC considered deadline constraints, which could compute more tasks
than the two algorithms.

As shown in Figure 9b,c, when the number of tasks increased, the task acceptance rate and task
completion rate decreased. The reason is that the deadline constraints and total computing power
did not change. Therefore, the accepted tasks of VCPs did not change. Therefore, the task acceptance
rate decreased. Besides, for MOC, with the number of tasks increased, more tasks wait on each
computer; thus, the arriving tasks will miss their deadline constraints. Therefore, the task completion
rate decreased, and it is lower than the MBS.

Symmetry 2020, 12, 862 20 of 25

0
2
4
6
8

10
12
14
16

20 40 60 80 100

be
ne

fit
(1

03)

task set scale

HEFT-AC HEFT-ACU MOC MBS B.ideal

(a)

0

20

40

60

80

100

120

20 40 60 80 100

ta
sk

 a
cc

ep
ta

nc
e

ra
te

(%
)

task set scale

HEFT-AC HEFT-ACU MOC MBS

(b)

0

20

40

60

80

100

120

20 40 60 80 100

ta
sk

 co
m

pl
et

io
n

ra
te

(%
)

task set scale

HEFT-AC HEFT-ACU MOC MBS

(c)

Figure 9. The impacts of the task set scale on the performances of the algorithms: (a) The impact of the
task set scale on the benefit. (b) The impact of the task set scale on the task acceptance rate. (c) The
impact of the task set scale on the task completion rate.

5.2. Experimental Results and the Analysis on Dynamic Task Sets

To validate the time efficiency of our proposed algorithm, we tested the performance on a
dynamic set of applications under the same computing power, average size of tasks, and task set scale.
The average size of tasks was 64 MB; task set scale is 50; the average deadline constraint of the task was
a random value of the interval [800, 1600], and ti.bene f it was a random value of the interval [400, 600].
In the experiment, the system was monitored every 10 min to obtain the benefit of the VCPs, the task
acceptance rate and task completion rate.

Figure 10 shows the experimental results. The experimental results show that the benefit, the
task acceptance rate and the task completion rate of MBS outperform the others algorithms during
the same time period. The reason is that MBS can complete tasks as soon as possible based on the
LTA strategy and dynamically assign the tasks with a maximum benefit-ratio each time. In particular,
the MBS algorithm’s benefit and task acceptance rate in the first 10 min was higher than the MOC
algorithm, and this is mainly because all the nodes could be used directly at the beginning. However,
in other periods, the nodes needed to compute the uncompleted tasks from the previous period.
Therefore, the benefit and the task acceptance rate of the VCPs are then lower than in the first 10 min.

Symmetry 2020, 12, 862 21 of 25

0

2

4

6

10 20 30 40 50

be
ne

fit
(1

03)

time(min)

HEFT-AC HEFT-ACU MOC MBS

(a)

0

20

40

60

80

100

120

10 20 30 40 50

ta
sk

 a
cc

ep
ta

nc
e

ra
te

(%
)

time(min)

HEFT-AC HEFT-ACU MOC MBS

(b)

0

20

40

60

80

100

120

10 20 30 40 50

ta
sk

 co
m

pl
et

io
n

ra
te

(%
)

time(min)

HEFT-AC HEFT-ACU MOC MBS

(c)

Figure 10. Performance comparisons of the algorithms on the dynamic task set: (a) Comparison
of the benefit of the VCPs. (b) Comparison of the task acceptance rate. (c) Comparison of the task
completion rate.

5.3. Experimental Results and the Analysis on Average Connection Speed

To validate the time efficiency of our proposed algorithm, we tested the performance of the
proposed algorithm in dynamic task sets under the same computing power, average size of tasks and
task set scale. Specifically, the average size of tasks was 64 MB, task set scale was 50, the average
deadline constraint of the task was a random value of the interval [800, 1600] and ti.bene f it was a
random value of the interval [400, 600]. We varied the average connection speed from 1Mbps to
100 Mbps. The experimental results are averaged over 100 runs.

As we expected, Figure 11 shows that MBS outperforms the comparison algorithms in the same
statistics time. In addition, we observed that MBS and MOC perform better than HEFT-AC and
HEFT-ACU in benefit, task acceptance rate and task completion rate. The reason is that MBS and MOC
assigned tasks enough time to meet tasks’ deadline constraints by a pruning strategy and dropping
tasks, respectively. We observed that with average connection speed increases, the performance of the
four algorithms improved. The reason is that, when the average connection speed increases, it will
take less time for tasks to store their required data into the assigned computers. Therefore, the number
of accepted tasks and completed tasks on time will increase; thus, the benefit and task acceptance
rate will increase. However, the task completion rate did not change significantly when the average
connection speed.

Symmetry 2020, 12, 862 22 of 25

0

2

4

6

8

10

1 10 20 50 100

be
ne

fit
(1

03)

average connection speed(Mbps)

HEFT-AC HEFT-ACU MOC MBS

(a)

0

20

40

60

80

100

120

1 10 20 50 100

ta
sk

 a
cc

ep
ta

nc
e

ra
te

(%
)

average connection speed(Mbps)

HEFT-AC HEFT-ACU MOC MBS

(b)

0

20

40

60

80

100

120

1 10 20 50 100

ta
sk

 co
m

pl
et

io
n

ra
te

(%
)

average connection speed(Mbps)

HEFT-AC HEFT-ACU MOC MBS

(c)

Figure 11. Performance comparisons of the algorithms with different average connection
speeds: (a) Comparison of the benefits of the VCPs. (b) Comparison of the task acceptance rates.
(c) Comparison of the task completion rates.

6. Conclusions

In this paper, to maximize the benefit of the VCPs under considering the reliability, first, we
proposed a new list-based task assignment (LTA) strategy, which adopted a reliability model proposed
in prior work to predict the time interval that the node can keep available. The LTA strategy considered
the deadline constraints of tasks, and we proved that the LTA strategy could complete the task with a
deadline constraint as soon as possible. Secondly, on this basis, we proposed a new task assignment
algorithm, called MBS, that can maximize the benefits of the VCPs while considering the deadline
constraints of tasks. In the MBS algorithm, we first proposed the method of calculating the benefit
ratio of tasks; then, we proposed Theorems 2 and 3 and adopted them to select tasks, and we assigned
each selected task based on the LTA strategy. Finally, we conducted simulation experiments to prove
that our proposed algorithm was more effective than the current algorithms in terms of the benefits,
task acceptance rate and task completion rate. As a basic scheduling strategy, our algorithm can be
used in other distributed computing applications, such as cloud computing. In the future, we will
integrate VC with other distributed computing systems and consider other constraints of VCPs in task
scheduling, such as energy constraints.

Author Contributions: L.X. designed and wrote the paper; J.Q. supervised the work; L.X. performed
the experiments; S.L. and X.W. analyzed the data. All authors have read and approved the final manuscript.

Funding: This work was supported by the National Social Science Foundation of China (number 15BYY028)
and Dalian University of Foreign Languages Research Foundation (number 2015XJQN05).

Acknowledgments: We thank Qiang Zhang for his help in the revision of this manuscript.

Conflicts of Interest: The authors declares no conflict of interest.

Symmetry 2020, 12, 862 23 of 25

References

1. Anderson, D.P. BOINC: A Platform for Volunteer Computing. arXiv 2019, arXiv:1903.01699.
2. Anderson, D.P.; Cobb, J.; Korpela, E.; Lebofsky, M.; Werthimer, D. SETI@home: An experiment

in public-resource computing. Commun. ACM 2002, 45, 56–61. [CrossRef]
3. Beberg, A.L.; Ensign, D.L.; Jayachandran, G.; Khaliq, S.; Pande, V.S. Folding@home: Lessons from Eight Years

of Volunteer Distributed Computing. In Proceedings of the 2009 IEEE International Symposium on Parallel
& Distributed Processing, Rome, Italy, 23–29 May 2009.

4. Adambourdarios, C.; Wu, W.; Cameron, D.; Lancon, E.; Filipčič, A. ATLAS@Home: Harnessing Volunteer
Computing for HEP; IOP Publishing: Bristol, UK, 2015.

5. Jiang, J. C.; Wang, T. Q . An Operating System Architecture Design for Heterogeneous Multi-Core Processor
Based on Multi-Master Model. Adv. Mater. Res. 2011, 187, 190–197. [CrossRef]

6. Filep, L. Model for Improved Load Balancing in Volunteer Computing Platforms. In Proceedings
of the European, Mediterranean, and Middle Eastern Conference on Information Systems, Limassol, Cyprus,
4–5 October 2018; pp. 131–143.

7. Ostermann, S.; Iosup, A.; Yigitbasi, N.; Prodan, R.; Fahringer, T.; Epema, D. A Performance Analysis of EC2
Cloud Computing Services for Scientific Computing. In Proceedings of the International Conference on
Cloud Computing, Bangalore, India, 21–25 September 2009; Springer: Berlin/Heidelberg, Germany, 2009.

8. Kondo, D.; Javadi, B.; Malecot, P.; Cappello, F.; Anderson, D. Cost-benefit analysis of Cloud Computing
versus desktop grids. In Proceedings of the IEEE International Symposium on Parallel and Distributed
Processing, Rome, Italy, 23–29 May 2009.

9. Gridcoin. The Computation Power of a Blockchain Driving Science and Data Analysis. 2018. Available
online: https://gridcoin.us/assets/img/whitepaper.pdf (accessed on 6 November 2019).

10. Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]

11. Ding, S.; Wu, J.; Xie, G.; Zeng, G. A hybrid heuristic-genetic algorithm with adaptive parameters for
static task scheduling in heterogeneous computing system. In Proceedings of the 14th IEEE International
Conference on Embedded Software And Systems, Sydney, Australia, 1–4 August 2017; pp. 761–766.

12. Boveiri, H. R.; Khayami, R. Static Homogeneous Multiprocessor Task Graph Scheduling Using Ant Colony
Optimization. Ksii Trans. Internet Inform. Syst. 2017, 11, 3046–3070.

13. Zhou, N.; Qi, D.; Wang, X.; Zheng, S. A static task scheduling algorithm for heterogeneous systems based on
merging tasks and critical tasks. J. Comput. Methods Sci. Eng. 2017, 17, 1–18. [CrossRef]

14. Liu, T.; Liu, Y.; Song, P. DScheduler: Dynamic Network Scheduling Method for MapReduce in Distributed
Controllers. In Proceedings of the IEEE International Conference on Parallel Distributed Systems,
Wuhan, China, 13–16 December 2017.

15. Anderson, D.P.; McLeod, J. Local scheduling for volunteer computing. In Proceedings of the 2007 IEEE
International Parallel and Distributed Processing Symposium, Rome, Italy, 26–30 March 2007; pp. 1–8.

16. Guler, H.; Cambazoglu, B.B.; Ozkasap, O. Task allocation in volunteer computing networks under monetary
budget constraint. Peer Netw. Appl. 2015, 8, 938–951. [CrossRef]

17. Ghafarian, T.; Javadi, B. Cloud-aware data intensive workflow scheduling on volunteer computing systems.
Future Gener. Comput. Syst. 2015, 51, 87–97. [CrossRef]

18. Miyakoshi, Y.; Yasuda, S.; Watanabe, K.; Fukushi, M.; Nogami, Y. Dynamic Job Scheduling Method
Based on Expected Probability of Completion of Voting in Volunteer Computing. In Proceedings of the
Second International Symposium on Computing and Networking, Hokkaido, Japan, 8–11 December 2015;
pp. 2132–2140.

19. Canon, L.C.; Chang, A.K.W.; Robert, Y.; Vivien, F. Scheduling Independent Stochastic Tasks Under Deadline
and Budget Constraints. In Proceedings of the International Symposium on Computer Architecture and
High Performance Computing, Lyon, France, 24–27 September 2018; pp. 33–40.

20. Chuprat, S; Salleh, S. A deadline-based algorithm for dynamic task scheduling with precedence constraints.
In Proceedings of the Conference on Iasted International Multi-Conference: Parallel and Distributed
Computing and Networks, Innsbruck, Austria, 13–15 February 2007; ACTA Press: Calgary, AB, Canada, 2007.

http://dx.doi.org/10.1145/581571.581573
http://dx.doi.org/10.4028/www.scientific.net/AMR.187.190
https://gridcoin.us/assets/img/whitepaper.pdf
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.3233/JCM-170755
http://dx.doi.org/10.1007/s12083-014-0301-3
http://dx.doi.org/10.1016/j.future.2014.11.007

Symmetry 2020, 12, 862 24 of 25

21. Yin, P.Y.; Yu, S.S.; Wang, P.P.; Wang, Y.T. Task allocation for maximizing reliability of a distributed system
using hybrid particle swarm optimization. J. Syst. Softw. 2007, 80, 724–735. [CrossRef]

22. Essafi, A.; Trystram, D.; Zaidi, Z. An efficient algorithm for scheduling jobs in volunteer computing platforms.
In Proceedings of the Parallel Distributed Processing Symposium Workshops (IPDPSW), Phoenix, AZ, USA,
19–23 May 2014; pp. 68–76.

23. Salehi, M.A.; Smith, J.; Maciejewski, A.A. Stochastic-based robust dynamic resource allocation
for independent tasks in a heterogeneous computing system. J. Parallel Distrib. Comput. 2016, 97, 96–111.
[CrossRef]

24. Xu, L.; Qiao, J.; Lin, S.; Qi, R. Task Assignment Algorithm Based on Trust in Volunteer Computing Platforms.
Information 2019, 10, 244. [CrossRef]

25. Kang, Q.; He, H.; Wei, J. An effective iterated greedy algorithm for reliability-oriented task allocation in
distributed computing systems. J. Parallel Distrib. Comput. 2013, 73, 1106–1115. [CrossRef]

26. Omara, F.A.; Arafa, M.M. Genetic algorithms for task scheduling problem. J. Parallel Distrib. Comput. 2010,
70, 13–22. [CrossRef]

27. Wu, A.S.; Yu, H.; Jin, S.; Lin, K.; Schiavone, G. An incremental genetic algorithm approach to multiprocessor
scheduling. IEEE Trans. Paral. Distrib. Syst. 2004, 15, 824–834. [CrossRef]

28. Page, A.J.; Naughton, T.J. Framework for Task Scheduling in Heterogeneous Distributed Computing Using
Genetic Algorithms. Artif. Intell. Rev. 2005, 24, 415–429. [CrossRef]

29. Chai, S.; Li, Y.; Wang, J.; Wu, C. A List Simulated Annealing Algorithm for Task Scheduling on
Network-on-Chip. J. Comput. 2014, 9, 176–182. [CrossRef]

30. Li, J.; Luo, Z.; Ferry, D.; David, F.; Agrawal, K.; Gill, D.; Lu, C. Global EDF scheduling for parallel real-time
tasks. Real Time Syst. 2015, 51, 395–439. [CrossRef]

31. Zhou, N.; Qi, D.; Wang, X.; Zheng, Z.; Lin, W. A list scheduling algorithm for heterogeneous systems based
on a critical node cost table and pessimistic cost table. Concurr. Comput. Pract. Exp. 2017, 29, 1–11. [CrossRef]

32. Liu, W.; Li, H.; Du, W.; Shi, F. Energy-Aware Task Clustering Scheduling Algorithm for Heterogeneous
Clusters. In Proceedings of the IEEE/ACM International Conference on Green Computing and
Communications; ACM: New York, NY, USA, Chengdu, China, 4–5 August 2011; pp.34–37.

33. Maurya, A.K.; Tripathi, A.K. ECP: A novel clustering-based technique to schedule precedence constrained
tasks on multiprocessor computing systems. Computing 2019, 101, 1015–1039. [CrossRef]

34. Kanemitsu, H.; Hanada, M.; Nakazato, H. Clustering-Based Task Scheduling in a Large Number of
Heterogeneous Processors. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 3144–3157. [CrossRef]

35. Tang, X.; Li, K.; Liao, G.; Li, R. List scheduling with duplication for heterogeneous computing systems.
J. Parallel Distrib. Comput. 2010, 70, 323–329. [CrossRef]

36. Bansal, S.; Kumar, P.; Singh, K . An improved duplication strategy for scheduling precedence constrained
graphs in multiprocessor systems. IEEE Trans. Parallel Distrib. Syst. 2003, 14, 533–544. [CrossRef]

37. Hu, M.; Luo, J.; Wang, Y.; Veeravalli, B. Adaptive Scheduling of Task Graphs with Dynamic Resilience.
IEEE Trans. Comput. 2017, 66, 17–23. [CrossRef]

38. Nayak, S.K.; Padhy, S.K.; Panigrahi, S.P. A novel algorithm for dynamic task scheduling. Future Gener.
Comput. Syst. 2012, 28, 709–717. [CrossRef]

39. Juarez, F.; Ejarque, J.; Badia, R.M. Dynamic energy-aware scheduling for parallel task-based application in
cloud computing. Future Gener. Comput. Syst. 2018, 78, 257–271. [CrossRef]

40. Andrew, J.; Thomas, J. Dynamic Task Scheduling using Genetic Algorithms for Heterogeneous Distributed
Computing. In Proceedings of the 19th International Parallel and Distributed Processing Symposium
(IPDPS 2005), Denver, CO, USA, 4–8 April 2005.

41. Estrada, T.; Flores, D. A.; Taufer, M.; Teller, P. J.; Kerstens, A.; Anderson, D. P. The Effectiveness of
Threshold-Based Scheduling Policies in BOINC Projects. IEEE International Conference on E-science and
Grid Computing, Auckland, New Zealand, 24–27 October 2006; IEEE Computer Society: Washington, DC,
USA, 2006.

42. Xu, L.; Qiao, J.; Lin, S.; Zhang, W. Dynamic Task Scheduling Algorithm with Deadline Constraint in
Heterogeneous Volunteer Computing Platforms. Future Internet 2019, 11, 121. [CrossRef]

43. Sakai, T.; Fukushi, M. A Reliable Volunteer Computing System with Credibility-based Voting.
J. Inform. Process. 2016, 24, 266–274. [CrossRef]

http://dx.doi.org/10.1016/j.jss.2006.08.005
http://dx.doi.org/10.1016/j.jpdc.2016.06.008
http://dx.doi.org/10.3390/info10070244
http://dx.doi.org/10.1016/j.jpdc.2013.03.008
http://dx.doi.org/10.1016/j.jpdc.2009.09.009
http://dx.doi.org/10.1109/TPDS.2004.38
http://dx.doi.org/10.1007/s10462-005-9002-x
http://dx.doi.org/10.4304/jcp.9.1.176-182
http://dx.doi.org/10.1007/s11241-014-9213-9
http://dx.doi.org/10.1002/cpe.3944
http://dx.doi.org/10.1007/s00607-018-0636-3
http://dx.doi.org/10.1109/TPDS.2016.2526682
http://dx.doi.org/10.1016/j.jpdc.2010.01.003
http://dx.doi.org/10.1109/TPDS.2003.1206502
http://dx.doi.org/10.1109/TC.2016.2574349
http://dx.doi.org/10.1016/j.future.2011.12.001
http://dx.doi.org/10.1016/j.future.2016.06.029
http://dx.doi.org/10.3390/fi11060121
http://dx.doi.org/10.2197/ipsjjip.24.266

Symmetry 2020, 12, 862 25 of 25

44. Bazinet, A.L.; Cummings, M.P. Subdividing Long-Running, Variable-Length Analyses Into Short,
Fixed-Length BOINCWorkunits. J. Grid. Comput. 2016, 14, 1–13. [CrossRef]

45. Javadi, B.; Kondo, D.; Vincent, J.M. Discovering statistical models of availability in large distributed systems:
An empirical study of seti@ home. IEEE Trans. Parallel Distrib. Syst. 2011, 22, 1896–1903. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10723-015-9348-5
http://dx.doi.org/10.1109/TPDS.2011.50
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Static Task Assignment Algorithms
	Dynamic Task Assignment Algorithms

	Problem Description
	 Algorithm Description
	The List-Based Task Assignment (LTA) Strategy
	The Maximum Benefit Scheduling (MBS) Algorithm

	Experimental Evaluation
	Experimental Results and Analysis on Static Task Sets
	The Impact of the Average Size of Tasks
	The Impact of the Average Deadline Constraints of Tasks
	The Impact of the Task Set Scale

	Experimental Results and the Analysis on Dynamic Task Sets
	Experimental Results and the Analysis on Average Connection Speed

	Conclusions
	References

