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Abstract: A Shannon cipher can be used as a building block for the block cipher construction if it
is considered as one data block cipher. It has been proved that a Shannon cipher based on a matrix
power function (MPF) is perfectly secure. This property was obtained by the special selection of
algebraic structures to define the MPF. In an earlier paper we demonstrated, that certain MPF can be
treated as a conjectured one-way function. This property is important since finding the inverse of a
one-way function is related to an NP-complete problem. The obtained results of perfect security on
a theoretical level coincide with the NP-completeness notion due to the well known Yao theorem.
The proposed cipher does not need multiple rounds for the encryption of one data block and hence
can be effectively parallelized since operations with matrices allow this effective parallelization.
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1. Introduction

The modern design of block ciphers is based on the confusion–diffusion paradigm introduced by
Claude Shannon ([1]). A direct implementation of the above paradigm is a substitution–permutation
network (SPN), which is used for the block cipher construction when it is realized in multiple rounds,
each of which uses a different sub-key derived from the original key. This procedure is used for every
data block encryption when all data is divided into separate blocks.

One of the examples of the SPN realization for standardized symmetric block cipher creation
is the Data Encryption Standard (DES) adoption in 1977 ([2]). The corresponding block cipher was
proposed on this basis. In order to increase the security of the DES, which is only 64 bits key length
(while real security relies on 56 bits key length), the Tripple DES (TDES) algorithm was adopted by
the ANSI committee X9.F.1 in 1998. Since this algorithm was popular and widely used, some special
recommendations were accepted for the Triple Data Encryption Algorithm (TDEA) to modify the block
cipher in 2017 ([3]).

The other sound realization of the SPN is the design of a block cipher adopted as an Advanced
Encryption Standard (AES) ([4]).

We have restricted our consideration to a single data block encryption using the confusion–diffusion
paradigm. Then, this encryption can be considered as the Shannon cipher outlined in ([5]). If the Shannon
cipher is proved to be secure under certain conditions, then, on that basis, a secure block cipher can be
created. Hence, Shannon cipher can be interpreted as a building block for the block cipher construction.
The security of the Shannon cipher is considered in the sense of perfect security which is directly
related to the notion of pseudo-randomness ([5]).
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Perfect security, which is formulated in Lemma 1 in Section 4, is the “gold standard” in
cryptography. Many security proofs are based on the computational relaxation of perfect security.
The alternative definition of perfect security states that an encryption scheme is perfectly secure if
no adversary can succeed with a probability any better than one half. That is, an adversary cannot
be able to distinguish the encryption of one plaintext from the encryption of another. It is called
adversarial indistinguishability. On the other hand, adversarial indistinguishability is related to
pseudo-randomness. If an encryption key is chosen randomly and uniformly from the key space,
the ciphertext is pseudo-random and uniformly distributed on any message space.

Yao A., C. [6] revealed a fundamental relation between one-way functions (OWFs) and
pseudo-random generators. Yao A., C. theorem states that pseudo-random generators exist if and
only if OWFs exist ([6]). Hence the intriguing idea is to construct a computationally effective block
cipher using the one-way function (OWF). According to this, if the OWFs do exist, then a ciphertext is
pseudo-random. Until the century dilemma P vs. NP is not solved (and it is unclear if it can be ever
solved) it is believed that NP-complete problems can be accepted as the conjectured OWFs.

The notion of pseudo-randomness plays a fundamental role in cryptography, in general, and in
private-key encryption, in particular. Loosely speaking, a pseudo-random string is a string that
looks like a uniformly distributed string, as long as the entity that is “looking” runs in a polynomial
time. Just as indistinguishability can be viewed as a computational relaxation of perfect secrecy,
pseudo-randomness is a computational relaxation of true randomness.

The main reason of a Shannon cipher construction on the base of the MPF is that the MPF can be
interpreted as a conjectured OWF. This conjectured OWF based on the MPF was proposed earlier in
our papers ( [7–11]) for some cryptographic protocol construction.

Some solutions of MPF application in a cryptographic function construction were proposed
recently. In [12] the MPF is used for an asymmetric cipher construction, and in [13] for a digital signature
algorithm. The MPF represents a class of non-commuting cryptography that is in the particular interest of
a certain group of cryptographers. The linear algebra attack for cryptographic functions based on the
MPF is presented in [14]. This attack was prevented in our subsequent paper [11].

In general, the MPF can be defined over different algebraic structures. [15] demonstrates that
a conjectured OWF based on the MPF defined over a modified medial semigroup is NP-complete.
Hence there is some evidence that the MPF could also be used for the block cipher construction.

This paper presents a Shannon cipher based on the matrix power function defined over the
certainly-selected algebraic structures. The first result of a block cipher S-box construction using the
MPF is published in [16].

The proof that Shannon cipher based on the MPF defined over the certainly-selected algebraic
structures is perfectly secure is presented. A cipher with perfect secrecy is unconditionally secure
against a ciphertext-only attack.

Thus far, the main trend of the block cipher construction used the number of rounds for one data
block encryption to achieve a good confusion and diffusion, thus providing a required level of security.
These rounds are performed sequentially and therefore there is no ability to parallelize computations.

The proposed Shannon cipher is realized in one round using matrix operations. The matrix
operations in its turn can be effectively parallelized. So if we have two matrices of order n, then their
addition, multiplication and powering matrix by matrix can be effectively performed using n (or
integer fraction of n) parallel computations between n rows and n columns of operand matrices.
In such a case, these computational results are the entries of a new matrix. Afterwards, obtained
matrices are combined, forming a final matrix. Hence, the proposed Shannon cipher can be effectively
realized in multiprocessor computation devices.

2. Mathematical Background

Conventionally the field of integers with additive and multiplication operations modulo 3 is
denoted by Z3 = {0,1,2}. Subset of Z3 without zero element is denoted by Z3\0 = {1,2}. The third
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order subgroup of multiplication group Z∗7 = {1, 2, . . . , 6} with multiplication operation modulo 7 is
denoted by G3 = {1,2,4}.

Let S be any finite set. The uniformly and randomly chosen element s in S we denote by

s←rand(S).

Let f be a function

f : Z3→G3, (1)

with the following mapping

f(0) = 4, f(1) = 2, f(2) = 1. (2)

Evidently this mapping is one-to-one but not an isomorphism with respect to multiplication and
addition operations defined in Z3. Then there exists the inverse one-to-one mapping f−1 defined by
Equation (2).

Let Q = {qij} be a matrix with entries qij ∈ G3. Denote, in general, matrices X = {xij}, xij ∈ Z3

and Y ={yij}, yij ∈ Z3. All matrices are square and of order n. Symbolically, the matrix power function
(MPF) is defined in the following way:

XQY = C, (3)

where matrix C = {cij} is defined over G3.
Group G3 is named as a platform group and field Z3 as a power field. Then formally matrices Q

and C are defined over the group of direct product Gn×n
3 and matrices X, Y over Zn×n

3 .
Formally, the MPF is defined by the following relation

m

∏
t=1

m

∏
s=1

q
xis ·ytj
st = cij, i, j = 1, 2..., m. (4)

Then the MPF provides the following mapping

MPF : Zn×n
3 × Gn×n

3 × Zn×n
3 → Gn×n

3 , (5)

where C = {cij} and cij ∈ G3.
Let C1 = {c1,ij} be a matrix defined over Z3. Then mapping f defined in Equations (1) and (2) can

be separately applied to all entries of matrix C1, obtaining a mapping

F : Zn×n
3 → Gn×n

3 .

For all C1 ∈ Zn×n
3 we have

F(C1) = C2,

where C2 ∈ Gn×n
3 .

Mapping F just replaces all entries of matrix C1 = {c1,ij} to the entries of matrix C2 = {c2,ij}, where,
according to Equations (1) and (2), f (c1,ij) = c2,ij.

To construct symmetric cipher based on the MPF introduced by Equations (3)–(5) we need an
additional matrix, namely matrix M = {mij}, mij ∈ Z3 defining a message to be encrypted.

The symmetric encryption-decryption key K in our construction is represented by two invertible
matrices K=(X, Y). To satisfy security conditions, the matrix Y must be invertible and its entries are
randomly generated from the subset Z3\0, i.e., yij∈ {1, 2}. X is randomly generated from the subset Z3,
xij ∈ {0, 1, 2}.
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3. Shannon Cipher Construction Based on the Matrix Power Function (MPF)

Conventionally, the Shannon cipher is any deterministic cipher. It is defined over the key space K,
the message space M and the ciphertext space C.

Definition 1. The Shannon cipher SC is defined by the following triplet SC = (Gen, Enc, Dec), where

• Gen is a function of secret key K generation at random and uniformly distributed in K.
• Enc is the encryption function which takes as an input a key K in K and a message M in M and produces

as output a ciphertext C in C.
C = Enc(K, M).

• Dec is a decryption function that takes as input a key K in K and a ciphertext C in C and produces a
message M in M.

M = Dec(K, C).

The Shannon cipher is defined over (K,M,C) and with this notation we can write:

Enc : K×M→ C,

Dec : K× C→ M.

In general, it is assumed that M is a random variable distributed over the message space M,
however, it is not assumed that M is uniformly distributed over M. The key K is uniformly distributed
in K and is independent of M, while ciphertext C = Enc(K, M) is a random variable distributed over
the ciphertext space C.

The Shannon cipher is constructed for plaintext and ciphertext blocks defined by n× n matrices
M = {mij} and C = {cij}, respectively, over the field Z3 = {0, 1, 2}, where mij ∈ Z3 and cij ∈ Z3.
Hence the message space M consists of n× n matrices M and ciphertext space C of n× n matrices C
and both spaces are denoted by Zn×n

3 .
The key space K consists of two matrices X and Y composing a vector valued symmetric key

K = (X, Y), where X = {xij}, xij ∈ Z3 and Y = {yij}, yij ∈ Z3\0. Then the key space K is a direct
product of the spaces Zn×n

3 × Zn×n
3\0 . The additional requirement is that the matrix Y is an invertible

matrix.
The encryption operation for one data block M consists of the following three steps:

C1 = X + M;

C2 = F(X)�Y F(C1)
Y;

C = C3 = F−1(C2) + X., (6)

where + is a conventional matrix addition and � is the Hadamard product of matrices, i.e., matrix
entries are multiplied directly as it is done with a conventional matrix addition operation.

Symbolically, these steps can be expressed using three encryption functions Enc1, Enc2 and Enc3
in the following form

C1 = Enc1(X, M),

C2 = Enc2(X, Y, C1),

C3 = Enc3(X, C2).

Equations (6) can be rewritten in one single equation

C = C3 = F−1(F(X)�Y F(X + M)Y) + X.

The obtained cipher C is a matrix of order n defined over Z3 as a message matrix M.
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For the decryption we need to introduce an inverse matrix in Hadamard sense in Gn×n
3 . Let a

matrix T be in Gn×n
3 . Then the inverse matrix TA, in Hadamard sense, of a matrix T is such that

TA � T = T � TA = 1,

where 1 is a matrix consisting of all elements equal to 1 ∈ G3.
The decryption procedure is performed in a reverse order. Since matrix Y has its inverse in Zn×n

3\0 ,
while algebraic structures, namely, group G3 and field Z3, are symmetric, then

M = (F−1(Y−1[
(F(X))A � F(C− X)

]Y−1
)− X,

where F(X)A is an inverse matrix of matrix F(X) in Hadamard sense and � is the Hadamard product
of matrices.

By fixing a uniformly and randomly generated key K, two arguments of encryption function Enc(, )
can be interpreted as the following one-to-one permutation function ΠK(M) : Zn×n

3 → Zn×n
3 , where

ΠK(M) = Enc(K, M) = C,

ΠK−1(M) = Dec(K, C) = M.

Looking forward, we intend that the constructed Shannon cipher could be suitable to creating a
block cipher with one round per block M operation. The defined block length is |M| = |Zn×n

3 | = 3n2,
composed of digits in Z3. The main property required for this application is that ΠK should behave
like a random permutation. However, since a random permutation realization having a practically
acceptable block length is impractical, the notion of pseudo-random permutation is introduced.
Intuitively, we can call ΠK pseudorandom if for a randomly and uniformly chosen key K it is
indistinguishable from a function chosen uniformly at random from the set of all functions having the
same domain and range. For this reason, Shannon introduced the confusion–diffusion paradigm ([1]).

A direct implementation of the confusion–diffusion paradigm is a substitution–permutation
network ([17,18]). There are two confusion phases, namely C1 and C3 in Equation (6). The encryption
key for these operations is matrix X. The diffusion phase is realized for computing C2 in intermediately
encrypted data block F(C1) in Gn×n

3 .
In the next section we demonstrate that ΠK is a perfectly secure pseudo-random permutation.

4. Security Analysis

Let M0 be a fixed value in a message space M and C0 = Enc(K, M0) is in C. Referencing to [5] the
following Lemma can be formulated.

Lemma 1. An encryption scheme (Gen, Enc, Dec) over a message space M is perfectly secret if and only if for
every probability distribution over M, every message M ∈ M, and every ciphertext C ∈ C

Pr(C = C0|M = M0) = Pr(C = C0), (7)

which means that conditional probability is equal to unconditional probability and hence a ciphertext is
independent from the message.

Before proving the main theorem of perfect security we need to prove the following lemmas.

Lemma 2. If random variables z1, z2 are independent and uniformly distributed in Z3\0, and w is uniformly
distributed in G3 independent of z1 and z2, then distribution of z1 · z2 is uniform in Z3\0, and random variable
wz1·z2 has uniform distribution in G3.
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Proof. Since z1 is z2 are independent, we can easily write the following probabilities:

Pr(z1 · z2 = j) = ∑
j1·j2=j

Pr(z1 = j1, z2 = j2) = 2
(1

2

)2
=

1
2

, j = {1, 2},

where summation under j1 · j2 = j gives two possible combinations of j1, j2 ∈ Z3\0 (see contingency Table 1).

Table 1. Table of z1 · z2.

z1 z2 z1 · z2

1 1 1
1 2 2
2 1 2
2 2 1

According to the above, z1 · z2 is uniformly distributed in Z3\0.
Denote u = z1 · z2. Under the assumption of an independence we get the following probabilities

(that is also seen in Table 2):

Pr(wu = j) = ∑
jj2
1 =j

Pr(w = j1, u = j2) = 2
(1

6

)
=

1
3

, j = {1, 2, 4},

where summation under jj2
1 = j gives two pairs of j1, j2 (j1 ∈ G3, j2 ∈ Z3\0) to be equal to each j.

Table 2. Table of power function.

w u wu

1 1 1
1 2 1
2 1 2
2 2 4
4 1 4
4 2 2

These probabilities imply that distribution of wu is uniform in G3 and the lemma is proved.

Lemma 3. If random variables v1, v2, . . . vn are independent and uniformly distributed in G3, then the
distribution of v1v2 . . . vn is uniform in G3.

Proof. In case n = 2, this lemma is simply proven by contingency Table 3.

Table 3. Table of v1 · v2.

v1 v2 v1 · v2

1 1 1
1 2 2
1 4 4
2 1 2
2 2 4
2 4 1
4 1 4
4 2 1
4 4 2
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Or, in short,

Pr(v1 · v2 = j) = ∑
j1·j2=j

Pr(v1 = j1, v2 = j2) = 3
(1

9

)
=

1
3

, j ∈ G3,

where summation under j1 · j2 = j gives three possible combinations of j1, j2 ∈ G3.
We assume that the lemma holds for n = N:

Pr(v1v2 . . . vN = j) =
1
3

, j ∈ G3. (8)

It is sufficient to show that lemma is valid for n = N + 1, which follows directly from the
assumption of independent random variables and Equation (8):

Pr(v1v2 . . . vNvN+1 = j) = ∑
j1·j2=j

Pr(v1v2 . . . vN = j1)Pr(vN+1 = j2) = ∑
j1·j2=j

1
3
· 1

3
=

1
3

.

Hence the lemma is proven.

The Theorem of Perfect Security

Referencing to Lemma 1–3, we prove the following theorem.

Theorem 1. If a key K is chosen randomly and uniformly from K, the probability distribution of M over M is
arbitrary, the distributions of K and M over K and M are independent and given the encryption algorithm Enc,
the distribution of C over C is fully determined by the distributions over K and M, then the Shannon cipher in
Equation (6) based on MPF is perfectly secure.

Proof. Each element of matrix C1 in Equation (6) of order n takes the following form:

c1,ij = xij + mij, i, j ∈ {1, . . . , n}.

If xij are chosen at random and are uniformly distributed, and mij are random arbitrary distributed
values in Z3, then for all c10 ∈ Z3

Pr(c1,ij = c10) = Pr(xij = c10 −mij) =
1
3 ∑

m0∈Z3

Pr(mij = m0) =
1
3

. (9)

Probability in Equation (9) can be seen directly from the table of values (see Table 4).

Table 4. Table of c1,ij.

c10 m0 −m0 xij

0 0 0 0
0 1 2 2
0 2 1 1

1 0 0 1
1 1 2 0
1 2 1 2

2 0 0 2
2 1 2 1
2 2 1 0
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Conditional probabilities:

Pr(c1,ij = c10|mij = m0) = P(xij = c10 −m0) =
1
3

, (10)

because xij and mij are independent, and c10 −m0 ∈ Z3.
Equalities (9) and (10) prove, that

Pr(C1 = C10) = Pr(C1 = C10|M = M0) =
1
3

. (11)

Let us turn to matrix C2 of Equation (6). Denote the elements of matrix C2 of order n by:

c2,ij = f (xij)( f (c11))
y11y11( f (c21))

y12y11 . . . ( f (cnn))
ynnynn

= f (xij)( f (c11))
y1( f (c21))

y2( f (c12))
y3 . . . ( f (cnn))

yn·n , i, j ∈ {1, . . . , n},

where yij are chosen randomly and are uniformly distributed over Z3\0 and f (cij) ∈ G3. According to
Lemma 2, multiplication yij · ykl is uniformly distributed (in Z3\0) random value and all ( f (cij))

yk are
uniformly distributed in G3. For simplicity, denote yij · ykl = ys, s ∈ {1, . . . , n · n}.

Since c2,ij is the product of (n · n + 1) independent random variable from G3, Lemma 3 yields that
for all c20 ∈ G3 and i, j = 1, . . . , n:

Pr(c2,ij = c20) =
1
3

. (12)

Conditional probabilities of elements of matrix C2 are the following:

Pr(c2,ij = c20|c11 = c11,0, . . . , cnn = cnn,0)

= Pr(c2,ij = c20| f (c11) = z11,0, . . . , f (cnn) = znn,0) =
Pr(c2,ij=c20,z11=z11,0,...,znn=znn,0)

Pr(z11=z11,0,...,znn=znn,0)
,

(13)

here z∗ = f (c∗). Using the independence of matrices X, Y and C1:

Pr(c2,ij = c20, z11 = z11,0, . . . , znn = znn,0)

= P( f (xij) · z
y1
11 · · · · · z

yn·n
nn = c20, z11 = z10, . . . , znn = znn,0)

= P( f (xij) = c20(z
y1
10 · · · · · z

yn·n
nn,0)

−1, z11 = z11,0, . . . , znn = znn,0)

= ∑k1,...,kn·n∈Z3\0
P
(

f (xij) = c20(z
k1
10 · · · · · z

kn·n
nn,0)

−1,
n·n⋂
i=1

yi = ki,
n⋂

i,j=1
zij = zij,0

)
= 1

3 P(z11 = z10, . . . , znn = znn,0).

(14)

According to Lemma 3, expression (zy1
11 · ... · z

yn·n
nn ) takes values in G3.

The inverse variables are also in G3 (see Table 5).

Table 5. Table of inverse variables.

zy (zy)−1

1 1
2 4
4 2

Equalities (12)–(14) prove, that

Pr(C2 = C20) = Pr(C2 = C20|C1 = C10) =
1
3

, (15)
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that is, elements of matrix C2 are independent of the elements of matrix C1. Since matrix M is in the
expression of C1, matrix C2 is independent of M too.

The third equation in Equation (6) for each element of the matrix of order n can be rewritten in
the following form

c3,ij = f−1(c2,ij) + xij, i, j ∈ {1, . . . , n}.

Similarly as in Equations (9) and (10) we obtain that

Pr(C3 = C30|C2 = C20) = Pr(C3 = C30) =
1
3

. (16)

Thus, the elements of matrix C3 are independent of the elements of matrix C2. By this, C3 does
not depend on the value of M.

By taking equalities (11), (15) and (16) all together it is proved that Equation (7) holds. Hence we
have proved that the proposed Shannon cipher is perfectly secure.

5. Conclusions and Discussions

One realization of the Sahnnon cipher is proposed. It is based on the MPF defined over specially
selected algebraic structures, namely the finite field of integers Z3 and the subgroup G3 of group Z7 of
residue classes modulo 7. Due to this special selection, it is proved that the proposed Shannon cipher
is perfectly secure.

Such a cipher can be interpreted as one data block cipher consisting of n× n digits in Z3. The data
in this block is encoded by numbers {0, 1, 2}, i.e., by two bits. The obtained result can be extended
to the block cipher construction if the entire data is split into the different blocks of length of n× n
digits. Then we directly obtain the Electronic Code Book (ECB) mode of encryption and on this base,
the other known secure modes of encryption, e.g., Cipher Block Chaining (CBC), can be constructed.

This research proves that the proposed confusion–diffusion transformation provides perfect
security in a single round of operation. The distinguishing property of the proposed cipher is that it
does not require a number of round operations for one data block encryption.

The single round operation for a single data block encryption is based on matrix operations.
That is a result of the other distinguishing property, namely, that one block encryption can be carried
out by effectively parallelizing encryption computations. Since round operations in traditional ciphers
must be performed sequentially, the parallelization of round operations cannot be realized in such a case.

The matrix operations can be effectively parallelized. Let us assume we have two operand
matrices of order n. Then their addition, Hadamard product and powering matrix by matrix can
be effectively performed using n (or integer fraction of n) parallel computations between n rows
and n columns of operand matrices. The entries of the resulting matrix are computed in parallel
using operations between two n-dimensional vectors. For matrix addition or Hadamard product,
two vectors are added or multiplied representing two columns (or rows) of corresponding operand
matrices. For matrix powering by matrix, one base vector is powered by the other power vector
elementwise, and power operation results are multiplied together. The analogy of this operation
can be found in an inner product of two vectors, when addition is replaced with multiplication and
multiplication with exponentiation operations, respectively. This parallelization allows us to replace
the operations between matrices of order n to n operations between n-dimensional vectors.

For example, let us have a data block size represented by matrix of order n = 16. Such a data
block has 16× 16 = 256 elements encoded by the numbers {0, 1, 2}. Then, parallel computations can
be performed using 16, 8, 4 or even 2 microprocessors. Hence, the proposed Shannon cipher can be
effectively realized in multiprocessor computation devices.



Symmetry 2020, 12, 860 10 of 10

Author Contributions: Conceptualization, E.S. and K.L.; Methodology, E.S.; Investigation L.D.; Formal analysis,
L.D. and A.K.; Validation, A.K.; Supervision K.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no fund.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
2. Data Encryption Standard (DES). Federal Information Processing Standards Publication 197; United States

National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA,1977.
3. Special Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher. National Institute

of Standards and Technology (NIST) Publication; Revision 2; Department of Commerce, National Institute of
Standards and Technology (NIST): Gaithersburg, MD, USA, 2017; pp. 800–867.

4. Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197; United States
National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2001; Volume 197.

5. Boneh, D.; Shoup, V. A Graduate Course in Applied Cryptography. Available online: https://toc.cryptobook.
us/ (accessed on 31 March 2020).

6. Yao, A.C. Theory and applications of trapdoor functions. In Proceedings of the 23rd Annual Symposium on
Foundations of Computer Science, (sfcs 1982), Chicago, IL, USA, 3–5 November 1982; Volume 80–91.

7. Sakalauskas, E.; Listopadskis, N.; Tvarijonas, P. Key Agreement Protocol (KAP) Based on Matrix Power
Function. Information Science And Computing, Book 4 Advanced Studies in Software and Knowledge Engineering;
Institute of Information Theories and Applications FOI ITHEA: Sofia, Bulgaria, 2008; Volume 4, pp. 92–96.

8. Sakalauskas, E. The Multivariate Quadratic Power Problem Over Zn is NP-Complete. Inf. Technol. Control
2012, 41, 33–39. [CrossRef]
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