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Abstract: It is a very important but difficult task to seek explicit variational formulations for nonlinear
and complex models because variational principles are theoretical bases for many methods to solve or
analyze the nonlinear problem. By designing skillfully the trial-Lagrange functional, different groups
of variational principles are successfully constructed for two kinds of coupled nonlinear equations
in shallow water, i.e., the Broer-Kaup equations and the (2+1)-dimensional dispersive long-wave
equations, respectively. Both of them contain many kinds of soliton solutions, which are always
symmetric or anti-symmetric in space. Subsequently, the obtained variational principles are proved to
be correct by minimizing the functionals with the calculus of variations. The established variational
principles are firstly discovered, which can help to study the symmetries and find conserved quantities
for the equations considered, and might find lots of applications in numerical simulation.

Keywords: variational principle; calculus of variations; Broer-Kaup equations; (2+1)-dimensional
dispersive long-wave equations

1. Introduction

Partial differential equations (PDEs) are usually used to model different phenomena in nonlinear
sciences, ranging from physics to mechanics, biology, chemistry, meteorology, ocean, and so on [1–3].
Additionally, numerous mathematical techniques have been developed to explore the approximate or
exact solutions [3–25]. Variational-based methods, such as Ritz technique [13], variational iteration
method [14–18], and variational approximation method [19–25] et al., have been and continue to be
useful and effective tools for nonlinear analysis. For example, the soliton solutions and their dynamics of
lots of nonlinear equations were accurately captured by the variational approximation method [19–25],
which always substitutes some ansatzes into the obtained Lagrange functional, and find the variational
parameters by solving the corresponding Euler-Lagrange equations. When contrasted with other
numerical or analytical methods, variational-based methods show a lot of advantages. Firstly, they can
be used in investigating practical problems from a global perspective and provide physical insight
into the nature of the solutions. Secondly, they can help to study the symmetries and conserved
quantities for the discussed nonlinear problems. Last but not least, the obtained solutions are the
best among all possible trial-functions and require much less strong local differentiability of variables
than the methods that directly solve PDEs. Because variational principles are the theoretical bases
for many kinds of variational methods, it is very important but difficult to seek explicit variational
formulations for nonlinear and complex models usually expressed by the nonlinear PDEs. It is an
inverse problem to directly find variational principles from a set of known equations by calculus rules
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of variations. Recently, many scientists have made many attempts and great success for constructing
different kinds of variational principles in various fields such as fluid dynamics, meteorology, ocean,
mathematical biology, solid state physics, optics, and plasma physics, and so forth [19–36]. In this paper,
different groups of variational principles are established for the Broer-Kaup equations [37,38] and
the (2+1)-dimensional dispersive long-wave equations [39–41], respectively, which contains various
solitary waves. Additionally, the solitary waves are always symmetric or anti-symmetric in space.
Although the Broer-Kaup equations and (2+1)-dimensional dispersive long-wave equations considered
in this paper have been extensively studied for a long time by some scientists [37–41], but, up to now,
variational principle for them has not been dealt with. Therefore, finding variational principles for
them is of great value and maybe helpful for harbor and coastal designs.

2. Variational Principles for the Broer-Kaup Equations

The nonlinear coupled Broer-Kaup equations are widely applied in shallow water wave modeling,
which are also important and famous in physical fluids, statistical physics, nonlinear optical fiber
communication, plasma physics, and so on [37,38,42–44]. The equation studied in this part is given,
as following {

ut + uux + vx = 0
vt + ux + uxv + uvx + uxxx/4 = 0

(1)

where u = u(x, t) and v = v(x, t) denotes the wave horizontal velocity and wave height, respectively,
and both of them are dimensionless variables [37,38]. In the above equation, uux, uxv and uvx are
nonlinear terms, while uxxx represents the dispersive term. If we introduce the variable transformations:{

u = −w
v = η− 1−wx/2

(2)

Equation (1) becomes {
wt −

1
2 (w

2 + 2η−wx)x = 0
ηt − (wη+ 1

2ηx)x = 0
(3)

which is the famous integrable Broer-Kaup equations. Using the Darboux transformation method
and homogeneous balance method, respectively, many kinds of soliton solutions are obtained [37,38].
However, up to now, variational principles for both Equations (1) and (3) are not discovered. Equation (1)
can also be expressed in the conservative forms: ut + ( u2

2 + v)x = 0
vt + (u + uv + uxx/4)x = 0

(4)

It is obvious that finding Lagrangian representations for the above given equations is a nontrivial
problem. Additionally, it is necessary to replace original wave variables by their representation as
derivatives of potential fields. According to the first equation in (4), a potential function Φ can be
introduced, as following

Φx = u
Φt = −(v + u2/2)

(5)

so that the first equation in Equation (4) is automatically satisfied. Similarly, in the light of the second
equation in Equation (4), another potential function Π can also be introduced, being defined as:

Πx = v
Πt = −(u + uv + uxx/4)

(6)

and the second equation in Equation (4) is automatically satisfied. We will construct different groups
of variational principles (VPs), according to the field Equations (5) and (6), respectively.
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For establishing the variational principles, whose Euler-Lagrange equations will be equivalent to
the Broer-Kaup equations, we can firstly set a trial-functional in the following form:

J =
x

Ldxdt (7)

where L is the trial-Lagrange functional. In view of Equations (4) and (5), we design that the L can be
written as following

L = vΦt + (u + uv + uxx/4)Φx + F(u, v) (8)

which is not a standard Lagrangian. Additionally, F is an unknown functional of velocity u and wave
height v and their derivatives. There are many alternative methods for constructing the trial-functional,
see References [19–32]. The considerable merit of the above trial-Lagrange functional (8) is whose
stationary condition with respect to Φ leads to the following Euler-Lagrange equation:

∂L
∂Φ
−
∂
∂x

(
∂L
∂Φx

) −
∂
∂t
(
∂L
∂Φt

) = 0 (9)

In view of Equations (8) and (9) is identical to the second one in the Broer-Kaup Equation (1).
Subsequently, by calculating the stationary conditions of Equation (8) with respect to u and v,
respectively, we obtain:

∂L
∂u
−
∂
∂x

(
∂L
∂ux

) −
∂
∂t
(
∂L
∂ut

) +
δF
δu

= 0 (10)

∂L
∂v
−
∂
∂x

(
∂L
∂vx

) −
∂
∂t
(
∂L
∂vt

) +
δF
δv

= 0 (11)

where δF
δu and δF

δv is called the Frechet’s variational derivative [19–30] of F. By using Equations (8), (10)
and (11) can be rewritten, as follows:

Φx + vΦx +
Φxxx

4
+
δF
δu

= 0 (12)

Φt + uΦx +
δF
δv

= 0 (13)

We hope to find such an F, so that Equations (12) and (13) turn out to be the field Equation (5).
Accordingly, after substituting Equation (5) into Equations (12) and (13), we get:

δF
δu

= −u− uv−
uxx

4
(14)

δF
δv

= v−
u2

2
. (15)

From the above Equations (14) and (15), we can identify F successfully, as follows

F =
v2
− u2

− u2v
2

+
u2

x
8

(16)

or

F =
v2
− u2

− u2v
2

−
uuxx

8
. (17)

After substituting the expressions (16) or (17) into (8), respectively, two different trial-Lagrange
functionals can be generated. Furthermore, by substituting the trial-Lagrange functionals into the
expression (8), we finally get the first group of variational principles for the Broer-Kaup equations,
which read

J(u, v,Φ) =
x

[vΦt + (u + uv + uxx/4)Φx + (v2
− u2

− u2v)/2 + u2
x/8]dxdt (18)
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and
J(u, v,Φ) =

x
[vΦt + (u + uv + uxx/4)Φx + (v2

− u2
− u2v)/2− uuxx/8]dxdt. (19)

The established variational principles provide conservation laws in an energy forms and may
find lots of applications in numerical simulation of Equation (1). In the following, we will prove the
obtained variational principles correct. By making anyone of the above functionals, Equations (18) and
(19), stationary with respect to three independent functions u, v, and Φ severally, we can obtain three
different Euler-Lagrange equations:

δΦ : − vt − (u + uv + uxx/4)x = 0 (20)

δu : (1 + v +
1
4
∂2

∂x2 )(Φx − u) = 0 (21)

δv : Φt + uΦx + v−
u2

2
= 0 (22)

in which δΦ, δu, and δv is the first-order variation for Φ, u, and v. Obviously, the Equation (20) is
equivalent to the second one in Equation (1) or Equation (4). Because the Equation (21) must be
established in all definition domains, we conclude that Φx = u, which is identical to the first equation
in (5). Substituting Φx = u into Equation (22) leads to Φt = −(v + u2

2 ), which is identical to the second
equation in (5). Hence, successfully, we proved the obtained variational principles (18) and (19) correct.

In the following, we will establish the second groups of variational principles for the Broer-Kaup
equations. By using the potential function Π defined in Equation (6), the trial-Lagrange functional can
be skillfully designed in the following form

L = uΠt + (v +
u2

2
)Πx + F(u, v) (23)

which is not a standard Lagrangian. Additionally F is an unknown functional of velocity u and wave
height v and their derivatives. Obviously, the stationary condition of L with respect to Π results in:

∂L
∂Π
−
∂
∂x

(
∂L
∂Πx

) −
∂
∂t
(
∂L
∂Πt

) = 0 (24)

In view of (23), (24) is equivalent to the first equation in (1) or (6). Furthermore, by calculating the
stationary condition of L with respect to u and v, respectively, we get:

Πt + uΠx +
δF
δu

= 0 (25)

Πx +
δF
δv

= 0 (26)

According to Equations (6), (25) and (26) become:

δF
δu

= u +
uxx

4
(27)

δF
δv

= −v (28)

From the above Equations (27) and (28), we can identify F easily, as follows:

F =
u2
− v2

2
−

u2
x

8
) (29)

or
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F =
u2
− v2

2
+

uuxx

8
. (30)

Substituting (29) or (30) into (23), two new trial-Lagrange functionals are produced. Eventually,
we can obtain the second group of variational principles for the specific Broer-Kaup equations,
denoted as

J(u, v,Π) =
x

[uΠt + (v +
u2

2
)Πx +

u2
− v2

2
−

u2
x

8
]dxdt (31)

and

J(u, v,Π) =
x

[uΠt + (v +
u2

2
)Πx ++

u2
− v2

2
+

uux

8
]dxdt (32)

Proof. According to calculus rules of variations, we can obtain a set of Euler-Lagrange equations
by making anyone of the above functionals, Equations (31) and (32), stationary with respect to three
independent functions Π, u, and v.

δΠ : − ut − (v +
u2

2
)

x
= 0 (33)

δu : Πt + uΠx + u + uxx/4 = 0 (34)

δv : Πx − v = 0 (35)

in which δΠ, δu, and δv is the first-order variation of Π, u, and v, respectively. Obviously, equation
(33) is equivalent to the first equation in Equation (1) or Equation (4). From Equation (35), we have
Πx = v, which is identical to the first equation in (6). Substituting Πx = v into Equation (34) yields
Πt = −(uv + u + uxx/4), which is equivalent to the second equation in (6). Successfully, we prove the
second group of variational principles (31)-(32) correct. The above variational principles can help us to
study the symmetries and conserved quantities for the Broer-Kaup equations, and can be applied to
the corresponding numerical simulations. �

3. Variation Principles for the (2+1)-Dimensional Dispersive Long-Wave Equations

The dispersive long-wave equations can describe many kinds of solitary waves in shallow water,
which have completely different formulations [39–41,45–48]. In this part, we will establish variational
principles for the integrable equations, given as following:{

ut − uxx − 2uxv− 2uvx = 0
vty + vxxy − 2uxx − 2vxvy − 2vvxy = 0

(36)

where u = u(x, y, t) and v = v(x, y, t) are the two-dimensional field of wave velocity and height,
respectively, and both of them are dimensionless variables [39–41]. Some solitary wave solutions
are obtained for Equation (36) by a simple transformation and homogeneous balance method [40].
Additionally, the exact solutions are also derived through combining the extended F/G-expansion
method and variable separation method, such as the bright and dark dromion solution and the periodic
solitary wave solutions [41]. However, up to now, variational principles for (36) are not established.
Because finding Lagrangian formulations for Equation (36) is a nontrivial problem, it is necessary to
replace original variables by their representation as derivatives of potential fields. Equation (36) can be
rewritten in the following forms:  ut − (ux + 2uv)x = 0

[vt + (vx − v2)x]y − 2uxx = 0 (37)

According to the special structures of the second equation in (37), two potential functions Φ and
Ψ can be introduced skillfully, being defined as



Symmetry 2020, 12, 850 6 of 10

Φx = v
Φt = v2

− vx + 2Ψx

Ψy = u
(38)

so that the second equation in (37) is automatically satisfied.
At first, the trial-functional can be given as following:

J(u, v,Φ,Ψ) =
y

Ldxdydt (39)

where L is the trial-Lagrange functional to be determined. In view of Equations (37) and (38), we design
that the L can be written as

L = uΦt + uΦxx − 2uvΦx + F (40)

which is not a standard Lagrangian. Additionally, F is an unknown functional free of Φ, that is, only
dependent on u, v, Ψ , and their derivatives. Obviously, the stationary condition of L with respect to Φ
leads to:

∂L
∂Φ
−
∂
∂t
(
∂L
∂Φt

) −
∂
∂x

(
∂L
∂Φx

) −
∂2

∂x2 (
∂L
∂Φxx

) = 0 (41)

After substituting Equation (40) into Equation (41), we get

− ut + uxx + (2uv)x = 0

which is completely identical to the first equation in Equation (37).
Subsequently, by calculating the stationary condition of L with respect to u and v, respectively,

we obtain:
∂L
∂u

+
δF
δu

= 0 (42)

∂L
∂v

+
δF
δv

= 0 (43)

and δF
δu , δF

δv is called the Frechet’s variational derivative. By using Equations (40), (42) and (43) can be
rewritten, as follows:

Φt +Φxx − 2vΦx +
δF
δu

= 0 (44)

− 2uΦx +
δF
δv

= 0 (45)

Our aim is to find such an F, so that Equations (44) and (45) are identical to the field equations of
(38). Substituting the first and second equation of (38) into (44) and (45) yields:

δF
δu

= v2
− 2Ψx (46)

δF
δv

= 2uv (47)

From the Equations (46) and (47), F can be determined, as follows

F = uv2
− 2uΨx + F1 (48)

Substituting (48) into (40), the trial-Lagrange functional is updated as:

L = uΦt + uΦxx − 2uvΦx + uv2
− 2uΨx + F1 (49)

and F1 is a functional to be determined, only of Ψ and/or its derivatives. Furthermore, by calculating
the stationary condition of the above new trial-Lagrangian L with respect to Ψ , we obtain:
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2ux +
δF1

δΨ
= 0 (50)

We search for such an F1, so that Equation (50) becomes the last field equation of (38). Substituting
the last one of Equation (38) into (50) yields:

δF1

δΨ
= −2Ψxy (51)

From the above Equation (51), F1 is identified as two different forms:

F1 = ΨxΨy (52)

or
F1 = −ΨΨxy. (53)

Substituting the expressions (52), (53) into (49) leads to two new trial-Lagrange functionals.
Furthermore, we obtain the variational formulations for the (2+1)-dimensional dispersive long-wave
equations (36), which read:

J(u, v,Φ,Ψ) =
y

[uΦt + uΦxx − 2uvΦx + uv2
− 2uΨx +ΨxΨy]dxdydt (54)

and
J(u, v,Φ,Ψ) =

y
[uΦt + uΦxx − 2uvΦx + uv2

− 2uΨx −ΨΨxy]dxdydt. (55)

Proof. According to calculus rules of variations, we obtain the following Euler-Lagrange equations by
minimizing anyone of the above functionals, Equations (54) and (55) with respect to four independent
functions Φ, Ψ , u, and v.

δΦ : − ut + uxx + (2uv)x = 0 (56)

δΨ : 2(u−Ψy)x = 0 (57)

δu : Φt +Φxx − 2vΦx + v2
− 2Ψx = 0 (58)

δv : − 2uΦx + 2uv = 0 (59)

in which δΦ, δΨ , δu,and δv is the first-order variation of Φ, Ψ , u, and v, respectively. Evidently,
Equation (56) is equivalent to the first one in Equation (36) or Equation (37). From the Equation (57),
we have Ψy = u, which is identical to the third one in (38). From Equation (59), we haveΦx = v, which
is identical to the first one in (38). Substituting Φx = v into Equation (58) yields Φt + vx − v2

− 2Ψx = 0,
which is equivalent to the second equation in (38). Successfully, we prove the variational principles
(54), (55) correct. The above variational principles can be used to study possible solution structures
for solitary waves by using variational approximation method [19–25], and understand the physical
relations and interactions between velocity and wave height for the (2+1)-dimensional dispersive
long-wave equations that are considered in this paper. �

4. Conclusions

In the second and third parts, different groups of variational principles have been successfully
constructed for the Broer-Kaup equations and the (2+1)-dimensional dispersive long-wave equations,
respectively, by the calculus of variations and designing skillfully trial-Lagrange functionals.
Subsequently, the obtained variational principles have proved correct by minimizing the corresponding
functionals. From the results of analysis, it is concluded that the variational principle for the nonlinear
equations studied in this paper is not unique, but it has many different integral formulations. According
to the obtained variational principles, on one hand, we can study possible solution structures for
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solitary waves, and deeply understand the physical relations and interactions between horizontal
velocity and wave height. On the other hand, they also provide hints for numerical algorithms, then the
Equations (1) and (36) can be solved numerically by the variational-based methods. In the analytical
analysis and numerical simulations, it is of great importance to choose an appropriate variational
principle according to practical needs. Our work in the future will focus on the dynamics of soliton in
the Broer-Kaup Equation (1) and the (2+1)-dimensional dispersive long-wave Equation (36), by the
variational approximation method using the established variational principles in this paper.

It is noteworthy that all the Lagrangians determined in this paper are neither standard nor
non-standard Lagrangians in the strict sense, but more close to the standard ones. As we all know,
there are two major families of Lagrangians, the so-called standard and non-standard Lagrangians.
The former is typically expressed as the difference between terms that can be identified as the kinetic
and potential energy, while the latter are entitled non-natural and they can take different forms, such
as exponential forms, logarithmic forms, and power-law function, etc. [49–60]. The non-standard
Lagrangians play a significant role in many kinds of equations, such as the nonlinear second-order
Riccati equations and the nonlinear differential equation with Lienard type, and the dissipative
systems [49–60]. Additionally, for all of the equations, standard Lagrangians become invalid. However,
the problem of the exploration and the application of non-standard Lagrangians are still open, and
demand lots of deep research. In the past several years, many scientists have made many attempts
and great success for studying and applications of non-standard Lagrangians in various fields [49–60].
All of the Lagrangians established in this paper are evidently not the standard Lagrangians, because no
obvious identification of the kinetic and potential energy terms can be made. On the hand, from the proof
process, we successfully derive all of the original nonlinear equations from the Lagrangians, without
using any other constraints. Accordingly, the obtained Lagrangians are also not the non-standard
Lagrangians. Hence, we can conclude that the Lagrangians constructed in this paper belong to neither
standard types nor non-standard ones technically.
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