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Abstract: As online social networks play a more and more important role in public opinion,
the large-scale simulation of social networks has been focused on by many scientists from sociology,
communication, informatics, and so on. It is a good way to study real information diffusion in a
symmetrical simulation world by agent-based modeling and simulation (ABMS), which is considered
an effective solution by scholars from computational sociology. However, on the one hand, classical
ABMS tools such as NetLogo cannot support the simulation of more than thousands of agents. On the
other hand, big data platforms such as Hadoop and Spark used to study big datasets do not provide
optimization for the simulation of large-scale social networks. A two-tier partition algorithm for
the optimization of large-scale simulation of social networks is proposed in this paper. First, the
simulation kernel of ABMS for information diffusion is implemented based on the Spark platform.
Both the data structure and the scheduling mechanism are implemented by Resilient Distributed
Data (RDD) to simulate the millions of agents. Second, a two-tier partition algorithm is implemented
by community detection and graph cut. Community detection is used to find the partition of high
interactions in the social network. A graph cut is used to achieve the goal of load balance. Finally,
with the support of the dataset recorded from Twitter, a series of experiments are used to testify the
performance of the two-tier partition algorithm in both the communication cost and load balance.

Keywords: social network simulation; ABMS; Spark; two-tier partition algorithm

1. Introduction

With the development of Internet technology, Facebook, Twitter, WeChat, Weibo, and other social
network applications have developed rapidly. As of 31 December 2018, Facebook had 2.32 billion
monthly active users, with an average of 1.52 billion daily active users in December 2018. According to
the annual data report of WeChat in 2018 [1], up to September of this year, there were 1.0825 billion
active online users every month, and the daily information delivery volume of WeChat reached
45 billion times. The rapid development of all kinds of social media makes the use of the Internet has
had a profound change, from the simple information search and browsing to the establishment and
maintenance of online social relations, information creation, communication, and sharing based on
social relationships. Social networks have penetrated every aspect of our life [2]. The role of social
relationships in information diffusion, guidance for individuals, media influence, and promoting
attitude or behavior change are influenced by social networks [3]. Research on social networks can be
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summarized into three types: the structural characteristics and evolution mechanism of social networks,
the formation and interaction of group behaviors in social networks, and the law and evolution of
information diffusion in social networks [4]. However, the coverage of current mainstream media
is widespread, and corresponding social network nodes are massive, complex in structure, and the
calculation of whether nodes transmit information is complicated. Relevant theories in the fields of
psychology, communication, and complex networks are difficult to be directly applied in quantitative
researches. As a result, agent-based modeling and simulation (ABMS) [5] is one of the most popular
methods to solve these problems in a symmetry simulation world. In ABMS, every node in the social
network is mapped into an agent. As all the agents follow human behavioral mode, a social network
evolves during the running of the simulation. Under certain conditions, a specific emergence may
occur, reflecting the evolution of real society. In this symmetrical way, real-world data can be used to
revise the information diffusion in the symmetrical simulation world, and at the same time, through
the study of information diffusion in the symmetrical simulation world, we can intervene in real-world
information diffusion.

The applications of ABMS tools, such as NetLogo, Repast, and Swarm, are very popular in
the fields of sociology, communication, and psychology [6-9]. However, these simulation tools are
designed with more consideration of generalization, and the flexibility and scalability are limited;
in particular, the performance is not acceptable in large-scale simulation. Although Repast has an
HPC(High Performance Computing) version, which is for high performance computing, it is not
optimized for social network simulation. Repast HPC is suitable for modeling general agent-based
complex systems, but complex networks themselves have characteristics that are different from general
complex systems, such as small-world characteristics, scale-free characteristics, etc. At the same time,
the propagation calculations in complex networks have special fast calculation requirements related
to networks such as node degrees, clustering coefficients, and community structure. Therefore, as a
generic ABMS tool, Repast HPC does not directly support the fast calculation of these characteristics of
complex networks. Although Repast HPC is well known in the implementation of large scale ABMS, it
hadn’t been proven to perform well in the simulation of large-scale complex network propagation.
Thus, large-scale social network simulation is a problem worth studying.

Large-scale social network simulation is used to study information diffusion and topology changes
in the network through the modeling and simulation of large-scale social networks. The amount of
data involved is huge, and various difficulties are faced in the actual studies.

e Difficulties in the storage, management, and analysis of big data. For large-scale social networks,
such as WeChat and Weibo, the scale of data is very large—usually hundreds of millions or
even billions. It is difficult to manage such unstructured data based on traditional file storage or
relational databases. When the network scale is too large, the time consumption of connectivity is
not acceptable in the traditional relational database, let alone in the analysis and calculation of
network indexes such as node degree, cascades, and so on.

e Difficulties with the implementation of the simulation of large-scale social networks.
Existing high-performance simulation engines, including MPI-based(Message Passing Interface)
simulation tools, GPU-based(Graphic Processing Unit) simulation engines [10], and so on, cannot
obtain high performance in the simulation of large-scale social networks because of the strong
correlations in the network. Too many interactions among nodes decrease the performance greatly,
especially when the nodes are distributed in different machines.

With the advent of the era of big data [11], many big data platforms such as Hadoop and Spark
have been spawned. With the support of these technologies, it is easy to analyze big data by the
efficient management and application of clusters, cloud environments, etc. [12,13]. These platforms
can also support the simulation of the social networks obtained from big data. This paper proposes a
method to implement a large-scale social network simulation based on Spark, and the optimization
based on the network structure is also given to improve the performance of the simulation. The rest of
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this paper is organized as follows. Section 2 gives the current research on large-scale social network
simulation; Section 3 introduces how to build the large-scale social network simulation using the Spark
platform; Section 4 presents the optimization of the social network simulation based on the network
structure; the effectiveness of the optimization method is testified by the experiments in Section 5;
the conclusion and areas for future work are given in Section 6.

2. Related Works

There are many studies on agent modeling based on existing tools, such as NetLogo, Swarm,
MASON, and Repast [14,15]. NetLogo, with its heritage as an educational tool, stands out for its ease of
use and excellent documentation. However, the performance of large models is hard to bear. Usually,
only hundreds of agents are supported. For example, Anuj and Caroline et al. proposed an agent-based
model to predict the performance of different residential distributed solar models with respect to the
stakeholders’ objectives [16]. Swarm is relatively small and well-organized while providing a fairly
complete set of tools. However, it cannot support a large-scale simulation either. It is fast for simple
models but slow for complex ones. MASON could be a good choice for experienced programmers
working on computationally intensive models. However, it is nonstandard and sometimes confusing
terminology is given. Repast is certainly the most complete Java platform, but it is not suitable for
large-scale simulation [9]. The scale of agents developed in Repast is usually less than 1 million
because of performance. For example, in reference [17], Griffin and Stanish developed an agent-based
model using the Repast agent-based modeling toolkit. They took 500,000 agents for this model in total.
In reference [18], Mock and Testa developed an agent-based model of predator—prey relationships
between transient killer whales and threatened marine mammal species in Alaska based on Repast for
about 200,000 agents. Existing agent-based modeling tools cannot support the large-scale simulation
of information diffusion well.

Based on Hadoop, Kangsun Lee et al. designed ARLS (After-action Reviewer for Large-scale
Simulations), a tool for analyzing simulation results, and used MapReduce to batch process simulation
log files to accelerate the analysis of the simulation results [19]. Reference [20] proposed an agent-based
modeling method based on Hadoop; the MapReduce programming model was used to implement the
simulation kernel. Hadoop automatically realized the underlying load balance and fault tolerance.
Compared with the traditional simulation tools, this framework greatly improves the performance
and scalability of the simulation. References [21,22] applied Hadoop in the simulation of molecular
dynamics and power systems. He Liang et al. proposed a large-scale Online Social Network (OSN)
worm simulation based on MapReduce. The OSN worm propagation process was divided into different
stages and MapReduce was used to construct the corresponding map and reduce algorithms [23].
However, because the programming model of Hadoop is relatively simple, and the hard disk needs to
be read and written frequently during the operations, the above large-scale simulation research based
on Hadoop still has many limitations in performance.

With the improvement of the Spark ecosystem, Spark has gradually become the most popular big
data framework. Chuan Ai et al. [24] implemented the propagation simulation of large-scale social
networks based on Spark’s graph computing library GraphX and the Pregel algorithm. The performance
of the simulation kernel was increased greatly GraphXis Apache Spark’s API (Application Programming
Interface) for graphs and graph-parallel computation, with a built-in library of common algorithms.
The networks are organized and managed in the form of nodes and edges. Pregel is a bulk synchronous
parallel computing model (BSP model). The simulation of propagation is abstracted as a series
of supersteps. Nodes in each superstep pass messages to each other and the nodes update the state
according to the messages received previously and their state update mechanism. The large-scale
social network simulation method based on Pregel is simple and fast. However, because Pregel is
tightly packaged, users can analyze the simulation process and results only after the simulation is
completed, and state transformations cannot visually be observed during the simulation. As a result,
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the difficulties faced by actual large-scale social network simulations lie in the whole process from data
management to the analysis of the simulation results.

Based on the problems discussed above, this paper proposes a large-scale social network simulation
framework based on Spark. The built-in components in the Spark ecosystem are used to support data
management, data analysis, and simulation experiments in a large-scale social network simulation.

3. The Spark-Based Large-Scale Simulation of Information Siffusion in Social Networks

3.1. The Infrastructure of Simulation

The infrastructure of the Spark-based large-scale simulation of information diffusion in social
networks designed in this paper is shown in Figure 1. The simulation framework is composed
of three layers. From the bottom up, they are the hibernate layer, the scheduling layer, and the
execution layer. The hibernate layer is used for the big data storage of large-scale social networks in
HDFS (Hadoop Distributed File System). The scheduling layer is responsible for job scheduling and
distribution, distributing large-scale social network simulation and analysis jobs to different nodes in
the cluster. The execution layer is the top layer, which is composed of a data analysis module and a
simulation kernel. The simulation kernel is the core part of the large-scale social network simulation
framework based on Spark. Based on the data interaction characteristics and the characteristics of
large-scale social networks, the optimization of the simulation kernel is proposed to further accelerate
the execution of a large-scale social network simulation.

The Infrastructure of Spark Based Large Scale Simulation of Information Diffusion on Social

Network
Spark Based Large Scale Social Optimization based on
Network Data Mining Network Structure
Performance
Execution Optimization
Spark .
Layer Sani MLib GraphX Q: Spark Based Large Scale
N Simulation of Information
V| Diffusion on Social Network

i i

Scheduling YARN
Layer

Hibernate
Layer HDFS

Figure 1. The infrastructure of a Spark-based large-scale simulation of information diffusion in a
social network.

The large-scale social network simulation based on Spark is the core module that supports
the execution of the agent-based simulation on distributed clusters. The agent model and the
implementation of the simulation kernel on Spark are illustrated below.

3.2. The Agent Model

This paper uses ABMS to model information diffusion in large-scale social networks. Each agent
represents a node in the social network. In a large-scale social network diffusion simulation, information
is transmitted between nodes in the network according to a certain mechanism. In this paper, the SIR
(Susceptible Infected Recovered) model is used for the large-scale social network diffusion simulation.
First, the definition of the agent model is given as follows:

<ID, ASN, S, I, R, M>. 1)
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ID represents the unique identifier of the agent; ASN represents the set of out-degree neighbors,
that is, the set of agents to whom the current agent will send messages. S, I, and R are the states of
the agents. S means susceptible—it represents the agent who has not received the message or has
received the message but the message is not enough to attract his attention; I means infected—it
represents the agent who has received the message and would like to forward this message to his
neighboring agents; R means recovered, which is always after S and never transforms to other states
again—it represents the agent who does not care about the message and will never send this message
to his neighboring agents. M is the message transmitted by the agent.

The behavior of the agent follows the mechanism of the SIR model. The SIR model is essentially
the process by which an infected node infects its neighboring susceptible nodes and the self-immune.
As for information diffusion in large-scale social networks, the switching of the model states is shown
in Figure 2. The left side of the figure shows a simple case of a four-agent network. Al, A2, A3, and A4
stand for the agent ID. The letters in the circle represent the agent state. The states of Al and A2 are ],
which means that they have received the message and will forward the message. The A3 status is S,
indicating that if he receives the message, he may turn to I. A4 is R, which means that he is immune
to this message and does not care or will not forward it. Because A3 is a neighbor of A1, when Al
forwards the message, A3 will receive the message and transform to the I state according to a certain
probability. Meanwhile, A1 will also automatically transform to the R state according to a specific
probability. The state switching process is shown on the right side of Figure 2.

(1A
Al o A3 Infectefi
(R)A4 A3

Figure 2. The state switch of the SIR model.

State Switch

3.3. The Implementation of a Simulation Kernel in Spark

A simulation kernel is composed of the calculation of agents and the scheduling algorithm. As the
simulation kernel is implemented in Spark, it is necessary to partition the social network reasonably and
design the scheduling algorithm based on the Spark programming model. As a result, the Spark data
structure, Resilient Distributed Data (RDD), is used to organize the large-scale social network, and the
Spark programming model is also used to build the processing flow of the simulation kernel. Actually,
the functions of the simulation kernel are implemented by a series of operations and transformations
on the social network model stored in RDD in the cluster. Each computing node in the cluster performs
local computing on a part of the network stored in the node and then aggregates to achieve parallel
computation. Therefore, the design of a large-scale social network simulation kernel based on Spark can
be divided into two parts: the design of the data structure and the design of the scheduling algorithm.

3.3.1. The Design of Data Structure

Data in Spark is stored, transformed, and calculated in the form of RDD. The broadcast variables
and accumulators to process global data are also designed to optimize the simulation performance.
Therefore, in the design of the data structure of the simulation kernel, it is necessary to consider the
design of the RDD involved in the simulation process firstly, then broadcast variables and accumulators
are considered too.

RDDis divided into two types: <Key> and <Key, Value>, which are used to organize different types
of data. In a large-scale social network simulation, the data includes nodes and edges in the network,
messages generated during the simulation, and temporary variables involved in the calculation process
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of the model. The main data structures of the simulation kernel and their descriptions are shown in
Table 1.

Table 1. The sesign of the data structure.

Name Stored Information Data Type Description
AgentStateRDD Agent state <Key,Value>RDD Record the state change of agent
AgentLinkListRDD Neighboring Agents of Agent <Key,Value>RDD Record the neighboring agents list of agent
MsgRDD Message <Key,Value>RDD Record the messages list received by agent
Infected AgentBroadcast Infected Agent Broadcast Record infected agents
Infected AgentRDD Infected Agent <Key,Value>RDD Record infected agents

The descriptions of the data structures are detailed below.

(1) AgentStateRDD

AgentStateRDD records the state information of Agents. The RDD is in the form of <Key, Value>.
Key is the agent number, and value is the state of the agent. As mentioned in Section 3.2, the agent
state includes three types—S, I, and R—in the SIR model.

(2) AgentLinkListRDD

AgentLinkListRDD records the list of neighboring agents. The key of AgentLinkListRDD is the
agent number, and value is the list of neighboring agents. In the existing large-scale social network
research, the links in the network are mostly stored in the form of edges. However, the storage of edges
has certain problems. In large-scale social networks, agents have many connected edges, and each node
corresponds to many neighboring agents. For example, young users of WeChat have an average of
128 friends. The edges corresponding to each user have an average of 128 pieces of data, and the start
number will be recorded 128 times. In Sina Weibo, some verified influencers may have tens of millions
of fans. Managing edge information in this form will inevitably bring data redundancy. In addition, in
the simulation agents will send information to neighboring agents as needed, which requires frequent
iterative access to the agent edge information.

Based on the above problems, the links between agents are stored in the form of the neighboring
agents list of the agent, AgentLinkListRDD. All neighboring agents can be easily obtained by the start
number in AgentLinkListRDD, which can greatly improve the efficiency of the simulation operation.

(3) MsgRDD

MsgRDD records all messages generated during the simulation. Each message represents an
infection event between two agents. In the event, the target agent is the agent that receives the message,
and the message needs to be passed to the target agent to update the state of the target agent. Therefore,
set the key as the target agent number, and the content of the message and other information are
recorded in the value.

(4) Infected AgentBroadcast and Infected AgentRDD

Both Infected AgentBroadcast and Infected AgentRDD are the data structures used to record infected
agents during the simulation. In the SIR model, each infected agent sends messages to its neighboring
agents to infect them. This operation needs to link the infected agent and AgentLinkListRDD.
The linking is really time-consuming when the scale of information diffusion is large. At first, the
Infected AgentRDD is designed in the form of <Key, Value>, where key is the agent number. In Spark,
the Infected AgentRDD and the AgentLinkListRDD are connected through the same key to obtain
MsgRDD. However, it was actually found that in the Spark programming model, the join operation
needed to cache a large amount of data and the operation efficiency was low. Furthermore, it was
found that in the initial stage of information diffusion on social networks, the number of infected
agents was small. Performing a join operation, in this case, led to unnecessary computation, so the
two data structures, Infected AgentBroadcast and Infected AgentRDD, were designed to manage the
infected Agents together. When a large number of agents were infected, Infected AgentRDD was used
to connect with AgentLinkListRDD, and when the number of agents was not large, the broadcast
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variable Infected AgentBroadcast was set in each computing node. Thus, the communications were
reduced greatly during the simulation.

3.3.2. Scheduling Mechanism

The design of the data structure basically includes the management of data and variables involved
in the simulation process. However, for a large-scale social network simulation based on Spark,
the scheduling mechanism needs to be converted into the operations of RDD. In the diffusion of
information in large-scale social networks, messages are sent and received very frequently. The topology
of large-scale social networks is also changing rapidly. Therefore, it is more efficient to use a time
step-based method to schedule the simulation, and the changes of the network are observed within a
certain time interval. The workflow of scheduling is shown in Figure 3. Because data is organized and
managed in the form of RDD in Spark, an RDD operation task is allocated to computing nodes first,
and the next operation is performed when the tasks on all computing nodes are completed. This mode
implements the time synchronization of the agents in the simulation. On this basis, the large-scale social
network simulation process can be divided according to time steps. In a simulation step, information is
diffused based on the message passing and state updating of agents, which are actually the generations
of MsgRDD and the update operations of AgentStateRDD.

Time Adance

A 4

Initialization Send Message Update Agents
Load Social Network and (> Find Infected Agents Update Agents
Initial Infected Sources and Send Message according to Message

Figure 3. Simulation flow chart.

The simulation flow in each simulation step is represented as the RDD conversion flow frame
shown in Figure 4.

Computation in Each Simulation Time Step

Generate Events and Send Message
" Find Infected Agents RDD |
| AgentStateRDD l |
|
|

v

|
|
: | InfectedNode |

|
r Generate Events | l |
:I AgentLinkListRDD | | InfectedAgent | | AgentStateRDD | |

Figure 4. The computation in each simulation time step.

The corresponding simulation logic inside the dotted box in the figure is implemented in
RDD operator, which is the core module in Spark programming. The reasonable design of the
RDD operator can greatly reduce the execution time of the work and improve the performance of
the simulation. The message-passing mechanism and state-updating mechanism in the RDD operator
are detailed below.
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The Design of the Message Passing Mechanism

Within each simulation step, each infected agent sends a message to its neighboring agent with a
certain rate according to the parameter settings. This message-passing mechanism is implemented by
the two RDDs: AgentStateRDD and AgentLinkListRDD. In addition, MsgRDD is generated by these
two RDDs.

First, the filter operator is used to find the infected agents from AgentStateRDD according to
the node state, then the infected agent is obtained. Then, the usage of the broadcast solution is
determined by the number of nodes in the infected agent mentioned in Section 3.3.1. If necessary,
broadcast the Infected AgentBroadcast to each computing node. Next, each computing node obtains
the local Infected AgentBroadcast list and processes the AgentLinkListRDD through the filter operator
according to the list and filters out all possible message source agents and their neighboring agents.
If the broadcast is not required, connect Infected AgentRDD and AgentLinkListRDD to obtain the
possible message source agents and their neighboring agents. Then, according to the model parameters
initially set, select the target agents and then generate MsgRDD through the FlatMap operation in Spark.
Finally, the join operator is used to connect MsgRDD with AgentStateRDD, which means that the agent
has received the messages. Then, merge the current state of all agents with the received messages;
the messages are processed and the states of the agents are updated accordingly.

The Design of the State Update Mechanism

It can be seen from Figure 4 that the state switching in the agent model is to update the next
state based on the current state with the received messages. The join operator in Spark is used to
connect MsgRDD with AgentStateRDD, which means that the agents receive messages. Because the
entire RDD is processed at the same time in Spark, the updating of the agent state is not operated
during the message-receiving stage. Then, the ReduceByKey operator is used to aggregate all the
messages received by a single agent and process messages according to the different agent state stored
in AgentStateRDD. Agents with state I and R drop the messages. Agents with state I determine whether
it is necessary to update the node state to R themselves. Agents with state S process the messages
(infection events) and set the latest state according to the model parameters. Finally, all agents return
the latest updated state to RDD. During the state update stage of the model, Spark’s join operator is
used to connect MsgRDD to AgentStateRDD for calculation. The join operator is a time-consuming
operator because it involves matching the key values between different RDDs. The key values are
matched one by one and then calculated. During the matching process, the partition of the RDDs also
has a great impact on the calculation time.

When the connected agents are partitioned in the same computing node, the join operator is
relatively simple, which means that the network communication and data passing are not necessary.
When the connected agents are partitioned in different computing nodes, a large amount of
communication is required. Data corresponding to the same key are should be transmitted together
before calculation. According to the derived relationship of RDD, the parent RDD of MsgRDD is
AgentLinkListRDD. Thus, the MsgRDD also follows the partitioning of AgentLinkListRDD—that is,
the message data sent by the same computing node is processed in the same partition. MsgRDD is
connected to AgentStateRDD in the message-passing mechanism. The partition of AgentStateRDD
is determined by the agent number corresponding to the agent state. Obviously, MsgRDD and
AgentStateRDD are not always partitioned together. Figure 5 uses two computing nodes as examples
to illustrate the impact of whether MsgRDD and AgentStateRDD are partitioned together or not.

In the example shown in Figure 5, the cluster is composed of two computing nodes, which are
represented by dashed boxes. The network involved in the calculation contains only two agents
(A1, A2). The RDD:s are allocated to the two computing nodes for calculation according to the different
key values.
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Case 1 Case 2
Agent States Agent States
AgentStateRDD AgentStateRDD
<UserID,State> <UserID,State>
(A
: i i : i i ! Computing i | uting Node 2 i
| | AgentStateRDD | | | | AgentStateRDD |! | | AgentStateRDD | | | | AgentStateRDD | !
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: Al->A2 - A2->A2 ! : A2->Al L A2->A2 !
D - == ~ N
Message List Message List
MsgRDD MsgRDD
<TargetID,Msg> <TargetID,Msg>

Figure 5. The sifferences in communication cost caused by the different partitions of MsgRDD
and AgentStateRDD.

MsgRDD should be connected to AgentStateRDD in order to update AgentStateRDD. In these
two cases, AgentStateRDD follows the partition of AgentLinkListRDD. Case 1 on the left indicates
that MsgRDD follows the partition of AgentStateRDD according to the message sender. For example,
MsgRDD (A1l > A2) is located in the same computing node with AgentStateRDD (A1). Case 2 on the
right indicates that MsgRDD is re-partitioned according to the message receiver. For example, by being
re-partitioned, MsgRDD(A1- > A2) is located in the same computing node as AgentStateRDD (A2).
MsgRDD (A1- > A2) and AgentStateRDD (A2) can be combined together to update the AgentStateRDD
of A2. In case 1, MsgRDD (A1l- > A2) needs to combine with AgentStateRDD (A2) by communication,
while this is not needed in case 2. Thus, when the states of the agents are updated, the data
communications (indicated by bold arrows in the figure) for the two cases are quite different.

In case 1, since the message received by Al is distributed to two computing nodes respectively,
in addition to the local calculation, the message received by Al on computing node 2 needs to be passed
to computing node 1 to perform the calculation. Similarly, the message received by A2 on computing
node 1 needs to be passed to computing node 2. When the number of agents and computing nodes are
not large, the data communications are acceptable. However, when the size of the network reaches 1
billion and the number of computing nodes is hundreds, a large number of communications among
different computing nodes in the cluster are needed and it becomes time-consuming. In case 2, because
the state and the received messages of the same agent can be assigned to the same computing node,
no other data passing is required at this step. Thus, compared to case 1, the performance of the
simulation is improved. As a result, MsgRDD is re-partitioned before connecting MsgRDD and
AgentStateRDD in the state update mechanism of agents in order to improve the performance of
the simulation.

As mentioned before, the partition is a key factor in the performance of the large-scale social
network simulation. The performance differs greatly in the different partitions. As a result, the two-tier
optimization based on the network structure is described in detail in the next section.

4. Optimization

Compared with the large data analysis, the large number of interactions between agents will
inevitably bring huge communication consumption between computing nodes in a large-scale social
network simulation. Spark is a memory-based distributed computing framework, and the performance
of Spark is closely related to the usage efficiency of the distributed clusters. The cost of network
communication and the load balance of computing nodes are the two key points in the performance of
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the simulation. Minimizing communication consumption while ensuring load balance can greatly
improve the performance.

4.1. Figures, Tables, and Schemes

According to the partitioning strategy, the simulation kernel designed in this paper improves
the performance of simulation by distributing the social network to different computing nodes in
the cluster. As mentioned before, almost all the calculation of the simulation kernel is composed
of message passing and agent state updating in each simulation step. During the message passing,
the interconnected network agents produce message transmissions. The message passing becomes
the communication among computing nodes if the source agent and target agent are partitioned
in different computing nodes. The scale of communication changes greatly in different partition
strategies. An example of nine agents is used in Figure 6 to illustrate how communications are
determined by the partition strategy. The social network in Figure 6 contains nine network agents, A0
to A8. The directional arrows between the nodes represent the connection relationship between the
agents (friend relationship in the social network). The agents are partitioned in two RDDs, and Hash
partitioning is used based on the agent number.

Social Network

‘@
%* :

Figure 6. The structure of the social network.

Assuming that all agents in the network can send messages to their next Aaent, Figure 7 gives the
data flow diagram in the message passing.

According to the partitioning strategy, Partition0 processes agent A0, A2, A4, A6, and AS,
and Partition2 processes Agent Al, A3, A5, and A7. Then, this process is divided into the map stage
and the reduce stage. The map stage traverses the AgentLinkList to generate the <Key, Value> of the
target and source agents. Then, the output of the map is sorted by key after shuffle and sent to the
computing nodes of reduce. The reduce side also partitions according to the same partitioning strategy,
combines the data transmitted by shuffle, and generates a list of messages received by each target
agent in MsgRDD. The arrows in the shuffle stage in the figure represent the data-passing route. It can
be seen that, according to the current partitioning strategy, in this case it will generate a maximum of
16 cross-partition communications during a simulation step. When the network scale increases greatly,
the number of edges in the network may reach tens of billions. The communication consumption
caused by an unreasonable partitioning strategy may make the simulation impossible. This is because
the characteristics of the social network were not taken into account in the partitioning, and the closely
connected agents were divided into different partitions.

If the partition strategy is modified and the closely connected network nodes are allocated to
the same partition, the data flow diagram shown in Figure 8 is obtained. Compared with the Hash
partition in Figure 7, it can be seen that the message passing during the simulation is concentrated
inside the partition in the changed partition. Thus, in the social network simulation, as many messages
as possible should be passed inside the same computing node. In a cluster or cloud environment,
different computing nodes may be deployed in different physical locations and network environments.
Therefore, the cost of communication across partitions is much higher than the cost of communication
within a partition. Using the partitioning strategy of Figure 8 to concentrate communication within the
partition will reduce the communication consumption greatly.
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However, the actual social network structure is complex, and it is not easy to assign all the
connected agents to the same partition. Therefore, the core goal of the partition algorithm is to allocate
the closely related agents to the same partition, if possible. At the same time, load balance should also
be considered for the reasonable calculation of partitions in the cluster. The partition based on network
structure is detailed in the next section.

4.2. The Partition Based on Network Structure

4.2.1. The Principle of the Two-Tier Partition

An agent in a social network is the smallest calculating unit in a large-scale social
network simulation. The calculation includes checking the agent state, sending messages to
neighboring agents, and updating the agent state. Assume that the network is divided into K
partitions, {P1, P, ... Px}. Each partition, P;, needs to manage N; agents {Vi], Vi)« Vijree ey UiN,-}- Each
agent v;; has w;; neighbors. The neighbors of an agent can be divided into the same partition as v;; and
a different partition from v;;, and their sizes are represented by w;;~ and w;;*, respectively.

For a large-scale social network simulation, the behavior of agents in the network is very simple.
It can be considered that the computing load of each node when processing a message is the same,
and the number of messages received by an agent is determined by the state and number of its
neighboring agents. The state of the neighboring agents changes with simulation time, while the
number of neighboring agents is always constant during the simulation. Statistically speaking, the
number of messages received by a node is positively related to the number of its neighbors. Therefore,
in each simulation step, the computational load Lp, to be processed on a partition Pi is positively
related to the sum of the neighboring agents of all agents in the partition. The communication between
partitions is determined by the relationship and state of agents in different partitions. When an
infected agent sends messages to its neighboring agents, a message communication between different
partitions will be generated if the target agents are allocated in a different partition. Therefore, the total
communication, C, between different partitions at a certain time is closely related to the current state of
each agent in the partition and the state of its neighboring agents. C cannot be predicted in advance,
but statistically, C is proportional to the number of connected edges across the different partitions.
As a result, a partition algorithm for large-scale social networks is proposed in this paper to reduce
the amount of communication, C, between partitions, based on ensuring the load, Lp,, is balanced for
all the partitions. In other words, under the constraint of load balance, an optimal network-cutting
algorithm is found to minimize the network communication among computing nodes, and the network
size of segmentation is N.

Consider the social network as a graph, the agents in the social network as the nodes in the graph,
and the relationships between the nodes in the social network as the edges. The social network graph is
divided into K sub-graphs of the same size; minimizing the number of the edges that are cut during the
segmentation process is a typical application of the graph-cut algorithm [25]. However, the graph-cut
problem is an NP(Non-deterministic Polynomial) problem. Although there have been many studies on
graph cut, the current online social networks with a scale of over a billion is still a difficult problem.
Partitioning directly based on the graph-cut algorithm is obviously time consuming, and cannot meet
the requirements of performance improvement. At the same time, the goal of the graph-cut algorithm
is to divide a given network into several parts of almost equal scale, while ignoring the structural
characteristics of the graph and the similarity between nodes. It is not reasonable to directly use graph
cut in the partition of the simulation of large-scale social networks.

Additionally, the community-detection algorithm is used to find nodes of similar structures in the
network and then aggregate the nodes into communities. At the same time, in social networks the
community shows the characteristics of close internal connection and sparse external connection [26,27].
Social networks can be divided into several independent sub-networks. The division of the network
based on the community can not only preserve the characteristics of the network structure but also
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reduce communication in the network. However, the result of the divisions in the community cannot
guarantee load balance among the various communities.

Taking the advantages and disadvantages of the graph-cut algorithm and community-detection
algorithm into consideration, a two-tier partition algorithm is proposed in this paper. The principle
of the partition algorithm is shown in Figure 9. Through community detection, the large-scale
social network is simplified into a network composed of several communities, which reduces the
scale of the network. In addition, it ensures a reduction in communication while maintaining the
characteristics of the network structure. Then, the graph-cut algorithm is used to partition based on
the simplified network to ensure load balance among the partitions. Since the input of the graph cut is
the simplified network, the efficiency of the graph cut will be greatly improved. Finally, a partition
case can be obtained that ensures load balance while preserving the network structure characteristics
and reducing network communications to a certain extent. The community detection and graph cut
are detailed next, then the implementation of the two-tier partition algorithm is also illustrated in the
following subsections.

Original Social Network Community Detection

-

Network Partition Social Network Simplification
@/ @ CLVS:W 2W 10
< . @ C2:V5W 2;W" 8
@ _ @ C3:V4W 3;W 6
7/\2 @ C4:V3;W 3;W 3

Figure 9. The principle of the two-tier partition algorithm.

4.2.2. Community Detection

Community is one of the most important characteristics of a complex network. Communities can
be regarded as equal and independent sub-parts of the network [28], which represent user organizations
with close internal connections and sparse external connections in a social network. In the process
of network simplification, communities can be used to represent nodes in the simplified network.
The community-detection algorithm is used to segment a large-scale social network into several
communities, which ensures that the result of the segmentation is tightly connected internally and
sparsely externally connected. Therefore, a relatively smaller number of edges are cut during the
network simplification.

The community detection algorithms can be divided into non-overlapping community-discovery
algorithms and overlapping community-discovery algorithms, which are used to detect whether
there are overlapping nodes in the community in the network. The purpose of our work is to
distribute the nodes into different partitions; each node only exists in one computing partition.
Thus, non-overlapping community-discovery algorithms are selected in our work. The research on
non-overlapping community discovery includes an optimization algorithm based on modularity,
a community-discovery algorithm based on spectral analysis, a community-discovery algorithm based
on label propagation, and so on. Girvan and Newman et al. proposed the GN(Girvan Newman)
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algorithm [29]. In order to improve the GN algorithm, Newman proposed a fast algorithm which greatly
reduced the time complexity of the GN algorithm [30]. Based on Newman’s fast algorithm, Clauset et al.
proposed the CNM (Clauset-Newman-Moore) algorithm [31], which used a heap data structure to store
and calculate the modularity of the updated network. The above algorithms are community-discovery
algorithms based on modularity which have a high computational complexity and cannot solve
the problem of different community sizes in large-scale social networks. A community-discovery
algorithm based on spectral analysis [32] uses the Laplace transformation to represent the graph and
then uses the eigenvector of its Laplacian matrix on clusters to get communities. This algorithm also
has the problem of high computational complexity when dealing with large-scale social networks.
The label-propagation algorithm updates the state of nodes in the network through the propagation
of several tags in the network and divides the communities according to the final state value of the
nodes [33]. This algorithm is suitable for community detection in large-scale complex networks, and
the computational complexity is low.

In the label-propagation algorithm, each node in the network is given a label value during
initialization, and the label values are propagated continuously in the network according to the
network structure. In each iteration, the label value of the node is updated by the largest number
of label value owned by its neighboring nodes. In the iteration process, the nodes that are closely
related will finally converge into groups with the same label value. According to the label value of
the nodes, the network can be divided into corresponding communities. In the initialization stage,
the label-propagation algorithm needs O(n) time, where 1 is the number of nodes in the network.
In the iterative process of label propagation, each step takes O(m) time, where m is the number
of nodes connected to this node. Compared with other community detection algorithms, the time
complexity of the Fast-Newman algorithm is O((m + n)n), while that of the CNM algorithm is
O(nlog?n). The performance of the label-propagation algorithm is excellent in the community
detection of large-scale networks.

In this paper, the label-propagation algorithm is selected as the community-detection algorithm in
the simplified network. M communities are obtained, {C1,C»,...,C;,...,Cym}, and each community
C; contains N; nodes. Then, a simplified large-scale social network is constructed based on the M
communities. The simplified network consists of M nodes, {C1,Cy,...,C;,...,Cpm}. The size of the
node W; is defined as the number of edges of all nodes within the community, and the edge between
nodes ¢;; is defined as the connection between the node C; and node C;.

Ni
W,' = ZZU] (2)
j=1
61']' = {(Z),Z,Z)b>|V(Z)ﬂ,Z)b), U4 € Ci,vb (S C]} (3)

4.2.3. Graph Cut

The graph-cut algorithm is a common method to deal with load balance. The algorithm cuts a
graph into sub-graphs of the same size with the specified number and minimizes the number of edges
removed in cutting. For load balance, the multi-path cut algorithm [34] proposed by Kernighan and
Lin is a kind of graph-cut algorithm. In the multi-path cut algorithm, a graph G with n nodes is defined;
the size of each node in the graph is represented by w;. For the given parameter K, the graph G is cut
into K parts of the same size. The size of each part is the sum of the sizes of the nodes contained in the
part. Based on the large-scale social network simplified by community detection, the goal of this paper
is to cut the network into K partitions with the same load, ensuring that the communications among
the partitions are as small as possible.

In the classical multi-path cut algorithm, a node with the size of p is regarded as a community
composed of p nodes with size 1, and edges with high weight are added to this community to ensure
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that the community will not be split in the cutting. However, it cannot guarantee that the communities
are not cut in the case of communities with many kinds of sizes in this paper. At the same time,
the classical multi-path cut algorithm needs to iterate many times to find the global optimal solution
when K > 3 and the time complexity of the algorithm is far greater than O(N?log, N). Considering the
above problems, Cheol H. Lee et al. proposed an efficient multi-path cut algorithm. In this algorithm,
the problems are transformed into the problem of seeking the maximum K times cutting of the graph.
Then, the generic algorithm is used to solve the problem. The complexity of the improved algorithm is
O(leIz), where |V] is the number of nodes in the subpart of the graph.

In the two-tier partition algorithm proposed in this paper, the multi-path cut algorithm is used
to cut the simplified network graph composed of communities. The simplified network G contains
M nodes, {C1,Cy,...,C;,...,Cym}l. Each node represents a community, and the community contains
n; nodes, {vﬂ,v,-z, coe s Vijy -/Uini}- The size of the nodes corresponds to the load of the nodes, Lc,;.
The simplified network is divided into K partitions,{P;, Py,...Px}. Each partition P; contains S;
communities, and the corresponding partition load, Lp,, is the sum of all the community loads in

the partition.
i
Lci o Z w,vj (4)
i=1
Si
L, =Y Lc, )
=1

According to Equations (3)—(5) can be obtained—that is, the load on each partition is directly
proportional to the number of neighboring nodes of all the nodes in the communities distributed in the
partition. Lc, is defined as the size of the node in the simplified network, and the goal of the multi-path
cut algorithm of the simplified network is to ensure that Lp, is the same for each partition.

The edge in the simplified network is defined as ¢;;, and the simplified network is cut into K
partitions with a similar load by cutting edges with the least cost. E;~ and E; are used to represent
the inner edges of partition, P;, and the edges out of the P;. The corresponding communication
consumption C after cutting is as shown in Equation (8):

E;” = {eplCq € P;, Cp € Pj} (6)
E;t = {ew|Cq € P;,Cy & Pi) ()
K
C= ﬁ-z E}. 8)
i=1

As mentioned before, the graph cut is transformed into the finding of an optimal network partition
algorithm under the constraint of load balance (Equation (10)) so as to minimize the communications
between computing nodes (Equation (9)). The problem of cutting an original N agents social network
is transformed into the problem of cutting a simplified M nodes network, and M << N.

K
minNC = 5-2 EF ©)
i=1

K
Y. Lp,
i=1

st¥ie (1...K),Lp, < Bmax = (1+¢) (10)

As a result, the two-tier partition algorithm of the large-scale social network is divided into
two stages. The first stage is the community detection based on the label-propagation algorithm, and
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the second stage is the graph cut of the simplified network. Finally, the partition results are obtained.
The details of the implementation of the two-tier partition algorithm are illustrated in the next section.

4.2 .4. The Flow of Two-Tier Partition

The flow of the algorithm consists of three steps: community detection, network simplification,
and network cutting. The pseudocode is shown in Table 2.

Table 2. The pseudocode of the two-tier partition algorithm.

Algorithm the Two-tier Partition

Input: Adjacent set N = {ny,ny,...,n,}; n; represents the neighbor list of vertex i.
K, K represents the number of partitions.
Output: P = {p1,p2,...,pn}, p;i represents the index of located partition for vertex i.
1. C ={Cq,Cy,...Cy} « find community of all vertexes with LPA(N)
. for each community do
statistic compute load of all vertexes in this community as cl;
end
. CL = {cly,cly,...clp}
. for each edge in N do
construct community relation of source community and target community from CL
end
. CR « statistic community relations
10. SN(VC, EC) « construct simplify network with CL and CR
11. P «GraphPartition(SN,K)

© PN U W N

First, communities are obtained by the label-propagation algorithm. Second, the load on each
community and the connections between the communities are calculated, and a simplified network is
obtained. Third, the multi-path cut algorithm is used to cut the simplified network, then the partitions
of the social network are output.

The time complexity of the label propagation algorithm is O(m + n), where m is the number of
edges and 7 is the number of agents. The time complexity of the simplification is O(mM). The time
complexity of the cutting is O(KM?), where M << n. Compared with the time complexity of direct
graph cut O(Kn?), the calculation of the two-tier partition algorithm is reduced greatly.

5. Experiments

In this section, two groups of experiments are designed to testify the improvement of the
optimization of the simulation kernel based on the two-tier partition algorithm.

5.1. Experiments of Performance in Different Scales

In order to analyze the performance of the simulation kernel, a network following the power-law
distribution is generated to test the proposed algorithm. The size of the network increases from
1000 to 1,000,000, and the minimum degree of the node is 100, while the minimum degree of the
100-node network is 99. The size of the nodes and the number of edges in the networks are listed in
Table 3. The experiments are executed in a workstation with a CPU of Intel Xeon 24 core processor;
the frequency of each core is 2.60 G and the size of the memory is 128 G.

Table 3. The scale of the synthesized social network.

Order of Magnitude of Network Size Hundred Thousand Ten Thousand Hundred Thousand Million
The number of nodes 100 1000 10,000 100,000 1,000,000
The number of edges 1143 10,739 111,392 112,0837 11,183,970

Due to the limited network scale that traditional simulation tools and platforms can support,
the large-scale social network information diffusion simulation framework based on Pregel designed
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by Chuan Ai et al. [18] is selected for the comparison with the simulation kernel implemented in
this paper. As described before, the SIR model is used as an example in the experiments. The initial
infection number is set as 10, the infection probability is set as 0.05, and the recovery probability is set
as 0.02. The experiments under two simulation frameworks are executed 50 times and the mean values
are shown in Figure 10.

60

— & - Pregel
—*¥— Spark

50

40

Simulation Time(s)
w
o

N
o

Num of Nodes(10%)

Figure 10. The comparison of results between the Spark-based simulation of information siffusion and
the Pregel-based simulation.

As can be seen from Figure 10, there are almost no differences in performance between the
two simulation frameworks. However, because of the tight encapsulation of Pregel, the simulation
framework based on Pregel cannot perform statistical analysis of the temporary data generated by each
simulation step in the simulation process. Actually, in order to analyze the mechanism of the diffusion
process, the changes of all agents and edges should be recorded. Although the time consumption
for the recording of temporary data is counted, the simulation kernel based on Spark designed in
this paper still achieves the same level of computing performance as Pregel. In each simulation step,
the infections of agents are recorded and output along with the simulation.

The simulation time recorded in the experiment includes the statistics of the time of the number
of infected and recovered agents in each step. Figure 11 shows a sample of the statistical results of
the number of infected and recovered agents in the experiments. In the case of similar performance,
the simulation kernel proposed in this paper is flexible in programming and the real-time data statistics
are supported, so time is saved in the results analysis.

In the large-scale social network simulation application, the real-time statistics of the data in the
simulation process is of great significance. For example, when the information diffusion simulation in
the large-scale social network is used to support decisions about rumor management, different rumor
management strategies could be simulated in a short time. Through the real-time data statistics,
the effect of rumor management policies can be observed clearly during the simulation. The most
optimal policy can be selected for decision-making as soon as possible.



Symmetry 2020, 12, 843 18 of 23

<10°
8 T T T T
— & - Infected Nodes
7 —¥— Recovered Nodes
6 ”

Num of Nodes(10%)
SN

sl p
2t ’

1F JP, ¥
0 wwggﬁxc&x&xg%&%***:wM
0 5 10 15 20 25 30

Simultaion Time
Figure 11. The count of infected and recovered agents.
5.2. Experiments of Two-Tier Partition

In order to verify the performance improvement of the two-tier partition algorithm, the empirical
data from SNAP (Stanford Network Analysis Project) are used to design a series of experiments.
The dataset from Twitter records a large-scale social network which has 81,306 users and 1,768,149
directed edges. Four different partition algorithms are designed to test the performance of the
algorithms: (1) partition with Hash algorithm (Hash Partition); (2) partition with multi-path cut
algorithm (Graph Partition); (3) simplify the network with the label propagation algorithm, and then
partition the simplified network with the Hash algorithm (Community Hash); (4) simplify the network
with the label propagation algorithm, and then partition the simplified network with a = the multi-path
cut algorithm (Community Graph).

The parameters of the SIR model in agents are set in the experiments. The infection rate is set
as 0.001, while the recovery probability is set as 0.01. A group of 10 agents is randomly selected as
the initial infection sources to simulate the information diffusion in the social network from Twitter.
Fifty simulation experiments are carried out for each partition algorithm, and the communications and
loads of the partitions in the simulation are compared.

Figure 12 shows the comparison between the cross-partition communications and inter-partition
communications of four different partition algorithms. In the figure, the solid line represents the
cross-partition communication, the dotted line represents inter-partition communication, and the top
left to bottom right corresponds the Hash Partition, Graph Partition, Community Hash, and Community
Graph. It can be seen from the figure that in the partition mode of Hash Partition and Graph Partition,
the cross-partition communications exceed the inter partition communications. However, when the
community-detection algorithm is used to simplify the network, the inter-partition communications
are obviously more numerous than cross-partition communications. This shows that community
detection reduces communication across partitions greatly.

Figure 13 shows the comparisons of the communications of four different partition algorithms.
The number of cross-partition communications is given at the top of the figure, while the number of
communications between the partitions is given at the bottom. It can be seen that in the Hash Partition,
the amount of cross-partition communications is the most, the amount of inter-partition communications
is the least, and the communication consumptions are also the largest. Compared with the Hash
Partition, the cross-partition communications of Graph Partition are reduced, but it still accounts for
a higher proportion in the total communication. Although the Graph Partition cuts as few edges as
possible, due to the need for the load balance of partitions, the consumptions are still large. It can be
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seen that the simplification of the network by using the community-detection algorithm significantly
reduces cross-partition communications. In the latter two partition algorithms, the inner-partition

communications are far greater than the cross-partition communications.
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Figure 12. The communications in four partitions.
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Figure 13. The comparisons of the communication of four partitions.

Due to the influences of random factors in the simulation, the amount of communication in
various partition algorithms is different. For further comparison, the proportion of cross-partition
communications in the total communication of various partition algorithms is listed in Table 4.
It can be seen that the Graph Partition reduces the proportion of cross-partition communication by
about 35% compared with the Hash Partition. However, the load balance should be considered
in the Graph Partition. After using the community-detection algorithm, the community Hash and
community both perform well in reducing cross-partition communications, which are less than 10% of
the total communications. Because community detections are usually achieved before the simulation,
the performance of latter partition algorithms is influenced.
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Table 4. The communications in four partitions.

Partition Algorithm Hash Partition Graph Partition Community Hash Community Graph
The proportion of crqss—partltlon 87.9% 53.3% 7 8% 7 6%
communication
The proportion of inter-partition 121% 46.7% 92.2% 92.4%
communication

The load of different partitions, LP, is recorded in the simulation. Figure 14 shows the comparisons
of the partition loads of four different algorithms. It can be seen that the number of agents allocated to
each partition after the Hash Partition is almost the same. Although the number of the neighboring
agents of each agent is different, when the scale of the network is large, the Hash Partition can still
acquire a good load balance. The Graph Partition can achieve better results by considering the load
balance while reducing communications. When community detection is applied, the sizes of the
communities located in different partitions are different. This is not good for the load balance of
partitions. The Community Hash of the simplified network brings an obviously unbalanced load.
The Community Graph improves this to a certain extent.
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Figure 14. The comparisons of load in four partitions.

Figure 15 shows the load imbalance of the partitions of the four partition algorithms. It can be seen
that the Hash Partition is the best in terms of load balance. The Community Graph gives a relatively
better performance compared to Graph Partition and Community Hash.

Based on the analysis of the experimental results of the four partition algorithms, their features
can be concluded below. Hash Partition is easy to use because the algorithm is embedded inside Spark.
The load balance of this partition is good, but the network communications are huge in the
simulation. Agents with frequent interactions in the social network are randomly assigned to
different partitions. The cross-partition communications are much larger than the inter-partition
communications. When different computing nodes in the cluster are located in different network
locations, the communication consumption cannot be afforded.

Graph Partition reduces cross-partition communications to a certain extent, and the performance
is not bad in load balance. However, when the scale of the social network is large, the graph-cut
algorithm has a high time complexity, and the time computation of cutting cannot be accepted.

The application of community-detection algorithms reduces the cross-partition communications
significantly. Almost 90% of the communication is within the partitions in the simulation, which reduces
the communication consumption greatly. However, how the simplified network is allocated to different
partitions has a great influence on the load balance. Due to the various sizes of the communities,
Hash Partition brings a great imbalance, followed by large quantities of waiting time in the calculation.
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The proposed two-tier partition algorithm of low time complexity not only effectively reduces the
cross-partition communications, but also guarantees load balance between the partitions. In addition,
according to the characteristics of the network, the calculation of edge weights in the graph-cut
algorithm can be customized to achieve load balance in different social networks.
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Figure 15. The imbalances of load in four partitions.
6. Conclusions and Future Work

The large-scale social network simulation is an important means to study the topology
characteristics, evolution rules, and information diffusion characteristics of large-scale social networks.
ABMS is a “bottom-up” modeling and simulation paradigm. Using ABMS to simulate large-scale social
networks can model individuals to evolve the overall characteristics of social networks through the
interaction between individuals. However, with the continuous development of the Internet, the scale
of social networks has become larger and larger. Mainstream large-scale social networks even contain
hundreds of millions of network nodes, and each node has hundreds of neighboring nodes. In the
process of ABMS, a large number of agents need to be modeled and simulated, and the interactions
between agents are very complex. There exist many difficulties in data access, data processing,
and simulation. However, if the whole social network is replaced by the sampled network or
synthesized network, the accuracy of simulation cannot be guaranteed. Therefore, this paper proposes
a large-scale social network simulation framework based on Spark, which improves the performance
of simulation using two aspects. First, through the Spark programming model, a large-scale social
network simulation kernel based on Spark is implemented, which greatly expands the processing
capacity and computing performance. Second, according to the characteristics of huge communications
in large-scale social network simulation and based on the structure of social networks, a two-tier
partition algorithm is designed. This optimizes the distribution of large-scale social networks in the
computing cluster and reduces cross-partition communications during the simulation, thus reducing
the network communication consumption. Finally, the performance of the two-tier partition algorithm
is verified by the experiments of the empirical dataset from Twitter.
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