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Abstract: Owing to the limitations of practical realizations, block-based motion is widely used as
an alternative for pixel-based motion in video applications such as global motion estimation and frame
rate up-conversion. We hereby present BlockNet, a compact but effective deep neural architecture
for block-based motion estimation. First, BlockNet extracts rich features for a pair of input images.
Then, it estimates coarse-to-fine block motion using a pyramidal structure. In each level, block-based
motion is estimated using the proposed representative matching with a simple average operator.
The experimental results show that BlockNet achieved a similar average end-point error with and
without representative matching, whereas the proposed matching incurred 18% lower computational
cost than full matching.

Keywords: motion estimation; block-based motion; block matching; representative matching;
deep neural network

1. Introduction

Motion estimation is a process that searches for movement between two sequential images. It is
widely used in video applications such as video compression [1], global motion estimation [2,3],
and frame rate up-conversion [4,5]. Recently, deep neural networks, which exhibit superiority in
the field of computer vision [6–12], were used to estimate motion [13–16]. Dosovitskiy et al. [13]
proposed FlowNet by directly applying a deep network to estimate motion from input image pairs.
Ilg et al. [14] proposed FlowNet2, which was designed as a cascade of FlowNet. The first network in
FlowNet2 estimates the motion between the current and reference images. This motion is exploited to
warp the reference image, which constitutes the input to the following network. Although FlowNet2
achieved outstanding performance, the network had over 160M parameters. Recently, Sun et al. [15]
and Hui et al. [16] proposed lightweight and effective networks that estimate the coarse-to-fine motion
by exploiting a pyramidal structure for features named PWC-Net and LiteFlowNet, respectively.
However, the aforementioned methods suffer from extremely high computational costs and large
numbers of model parameters because they estimate motion in the pixel domain, which constitutes
a limitation in practical realizations.

Block-based motion is widely used as an alternative to pixel-based motion [17]. To estimate
block- based motion, block-matching algorithms, where blocks of two sequential images are compared,
are usually used owing to their simplicity. A naïve block-matching method consists of exploiting all
pixels of each candidate block for matching. Although the naïve block-matching method can be used
to find the optimal motion between input image pairs, the computational complexity is high. To reduce
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this complexity in a matching manner, several alternative methods using representative values for each
block were studied, such as sub-block mean [18], certain patterns [19], and some noticeable pixels [20].
However, because these methods matched each block of input image pairs in the intensity domain, it is
difficult to find the effective values for representing the block.

In this paper, we propose a new deep neural architecture for block-based motion estimation.
Our contribution is as follows. First, unlike conventional representative matching in the intensity
domain [18–20], we conduct representative matching in the feature domain where the features are
obtained from convolutional neural networks (CNNs). Owing to the powerful ability of CNNs to
represent features, the proposed representative matching achieves similar performance to naïve
full matching with lower computation complexity. Secondly, it can be easily implemented by the
typical pooling operator used in deep learning because the process to find the representative value in
each feature is shared. Finally, to maximize the efficiency of the proposed representative matching,
we optimize deep neural network using dilated convolution, which can expand the receptive field
preserving feature shape without the additional computation and pyramidal structure that causes
BlockNet to use a small search range.

2. BlockNet

Figure 1 shows the architecture of BlockNet, the proposed block-based motion estimation network
using representative matching. Next, we explain each component of BlockNet in detail.
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Figure 1. Overall architecture of BlockNet. It first extracts features for a pair of input images using
shared weights and then estimates coarse-to-fine motion from top to bottom. To estimate the residual
motion at levels 3 and 2, the current level of BlockNet uses the reference feature warped by the
motion from the previous level. In each level, block-based motion is estimated using the proposed
representative matching with a simple operator and a motion estimation network.

2.1. Feature Extractor

When a current image Ic and reference image Ir are given as input, BlockNet extracts features
using three convolutional layers that construct compact architecture. In each layer, a convolution with
a filter size 3 × 3 and stride of 2 is first used to obtain the appropriate spatial shape in each level;
a dilated convolution with filter size of 3 × 3 and rate of 2 is then used to enlarge the receptive field
while retaining the spatial shape. The numbers of filters in each convolutional layer are 16, 32, and 64,
respectively, similar to [15]. The filter weights in each convolutional layer are shared across two input
images, namely Ic,Ir, to extract features with common patterns.
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2.2. Representative Matching for Motion Estimation

2.2.1. Proposed Algorithm

In a compact deep neural network, a hand-designed architecture such as the matching approach
may perform better to estimate motion [13]. Based on this, it is reasonable for our network to utilize
a standard method of block-matching motion estimation. Block matching consists of finding the most
similar block by comparing the block in the current feature and candidate blocks of the reference
feature in the search range (Figure 2, left side).

For pixel matching, the matching cost is defined in [13] as the correlation of vectors corresponding
to each pixel of the current and reference features. This correlation is accumulated for the search range
of each pixel. As a result, a 3D cost volume, which has dimensions of R2

×H ×W, where R×R is the
search range and H and W respectively denote the height and width of the features, is constructed.
When this pixel matching is applied on block matching, the matching cost is calculated at block level
instead of pixel level. Thus, the 3D cost volume has dimensions R2

×
H
d ×

W
d , where d× d is block size,

that is:
Cost Volume(i, j) =

1
Nd2

(
bc

i

)T
br

j (1)

where bc
i is the column vector vectorizing the i-th block of the current feature, br

j is the column

vector vectorizing the j-th candidate block of the reference feature in the search range, and Nd2 is the
dimension of the column vector.
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Figure 2. Generation procedure of the matching cost between the block in the current feature and
a candidate block in the reference feature: (left) conventional block matching method, (right) the
proposed representative matching using the average operator.

When the block size is d× d and the search range is R×R, the number of multipliers for a block
matching is Nd2

×R2. If the block size is larger, the total number of the computation is much higher and
thus it may not be suitable for practical realizations. To reduce the computation in the block matching,
we could find the representative value in the block. In this study, we propose a representative matching
method using the simple average operator defined next (see Figure 2):

Cost Volume(i, j) =
1
N
(b

c
i )

T
b

r
j (2)

where b
c
i and b

r
j are the average of the column vectors bc

i and br
j, respectively. Owing to the proposed

representative matching, the number of multipliers for block matching is reduced as much as d× d.
In a conventional block-matching algorithm using representative values of the block [18],

the average value of the block is also used to reduce the computational cost. However, because
the representative matching is applied in the intensity domain, it is insufficient to represent the block.
By contrast, because the image can be analyzed as various features through a CNN, our representative
matching works well in the feature domain.
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With the 3D cost volume and current feature as input, block-based motion is obtained using
a CNN with filter size 3 × 3 and stride 2 (Figure 1, motion estimation network). The numbers of filters
at each convolutional layer are 32, 24, 16, and 8, respectively.

2.2.2. Implementation Details

Instead of extracting the representative values whenever performing the block-level matching,
it can be considered that the representative value of each feature is first extracted, and then matching
is performed to implement efficiently. To this end, the average-pooling operator, which is widely
exploited in the deep-learning framework, can be used.

The implementation procedure of the proposed representative matching is described in Algorithm 1.
Because the representative values of the block in the current and reference features should be extracted
at intervals of block size and pixel, respectively, the stride of the average-pooling operator is set
to block size and 1, respectively. Moreover, the average-pooling size is the same as the block size
(steps 1 and 2). Then, the 3D cost volume is obtained by a matching process that extracts the patches
from each average-pooled feature in the search range (steps 3–5) and multiplies them (step 6).

Algorithm 1. Proposed representative matching

Definition
avg_pool(·): The average-pooling operator
repeat(·): Duplication of each element of the matrix
extract_patch(·): Extraction of the patches repeatedly
Input: current feature fc, reference feature fr, block size d× d, and search range R×R

1. fc = avg_pool
(
fc, size = [d, d], stride = [d, d]

)
2. fr = avg_pool

(
fr, size = [d, d], stride = [1, 1]

)
3. f

repeat
c = repeat

(
fc, size = [R, R]

)
4. pc = extract_patch(f

repeat
c , size = [R, R], stride = [R, R])

5. pr = extract_patch
(
fr, size = [R, R], stride = [d, d]

)
6. Cost Volume= pc ∗ pr

Output: Cost Volume

2.3. Pyramidal Structure with Feature Warping

To maximize the efficiency of our representative matching, we adopted the pyramidal structure
in PWC-Net [15]. At level l, the reference feature is warped toward the current feature using a ×2
up-sampled motion estimated from the previous level (Figure 1, feature warping). We first estimate
the motion utilizing a 3-level pyramid structure with

{
f3
c , f3

r

}
, and

{
f2
c , f2

r

}
among the 4 possible levels.

We then simply up-sample the estimated motion as much as the remaining levels to obtain the final
motion. This architecture can reduce the computation complexity while obtaining the motion with
a similar accuracy to that reported in [13].

3. Experiments

3.1. Experimental Setup

To train BlockNet, we used the FlyingChairs dataset [13], which is composed of 22,872 image
pairs with ground-truth motion. We cropped 384 × 512 images to 384 × 448 patches and used 90% and
10% of the dataset for training and to test, respectively. We used the multi-scale training loss L(θ)
described in [15] as follows:
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L(θ) =
∑

l

αl

∑
x
‖MVl

θ(x) −MVl
GT(x) ‖2 +γ ‖ θ ‖2 (3)

where θ is the network parameter, αl is the loss weight for layer l, x is the block index, MVl
θ is the

estimated block-based motion vector in layer l, MVl
GT is the ground-truth block-based motion vector in

layer l, ‖ · ‖2 is the L2 norm operator, and γ is the regularization parameter. To obtain the ground truth
of block-based motion, we down-sampled the pixel-level ground-truth motion by a factor given by the
block size. As in [15], the ground truth was down-sampled by a factor of 2 at each level. Moreover,
it was identically scaled by 1/20 at all levels. This made the estimated motion have identical scale
at all levels. Thus, the up-sampled motion had to be scaled from the previous level before passing
through the warping operator. We set the scale values for the up-sampled motion as 20/23 and 20/22

at levels 3 and 2, respectively. We used a block size of 4 × 4 and a search range of 15 × 15, which are
determined by experiments on hyperparameters in Section 3.2.

We first trained BlockNet using the MPI Sintel dataset [21] with 600 epochs. We fine-tuned the
network using the FlyingChairs dataset. The initial learning rate was 0.0001. It was halved at iterations
0.2 M, 0.25 M, 0.3 M, and 0.35 M. We used a mini-batch size of 4 and the Adam optimizer [22].
The weights were set to α4 = 0.32, α3 = 0.08, and α2 = 0.02, and the regularization parameter γwas
set to 0.0004 as in [15]. BlockNet was implemented using TensorFlow 1.7.0.

3.2. Results

To verify the effectiveness of the proposed deep neural architecture, BlockNet was compared
to a conventional block motion estimation (BME) that exploits all pixels of each candidate block
in the search range for matching. We also compared each algorithm with or without the proposed
representative matching (RM). All results are evaluated in terms of end-point error (EPE), with the L2

norm between the estimated motion and ground truth [15].
The average and standard deviation of EPE are summarized in Table 1. Experimental results show

that BlockNet with full matching had lower average EPE than BME with full matching. This is because
the CNNs in BlockNet can extract rich features, and the matching errors of BlockNet were lower than
those of BME. Moreover, average EPEs of BlockNet with full matching and proposed RM were similar,
while average EPEs of BME with full matching and proposed RM significantly differed. This result
implies that the proposed representative value, which reduced the computational complexity as much
as 1/16 for each matching, was more effective in the feature domain than in the intensity domain.
Figure 3 shows qualitative results of BlockNet with full matching and proposed RM. The results of
BlockNet with full matching and proposed RM are quite similar (Figure 3; top, chair leg). However,
proposed RM occasionally fails to estimate the detailed motion of an object compared to full matching
(Figure 3; bottom, chair leg).

Table 1. Quantitative results on the FlyingChairs dataset.

BME with Full
Matching

BME with
Proposed RM

BlockNet with
Full Matching

BlockNet with
Proposed RM

Average EPE 10.33 16.86 3.74 4.09

Std. of EPE 7.64 7.09 3.53 3.57

Detailed experiments were conducted to verify the effect of some hyper-parameters (block size,
search range) in BlockNet with RM (Figure 4). Although a large block size reduced the computational
complexity, the average EPE was increased because of the reduction in the resolution of the estimated
motion. For the search range, the average EPE with a large value was slightly decreased at the expense
of high computational complexity. The proposed RM was reduced by 18% compared to full matching,
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using the best hyper-parameter (Figure 4, red diamond), with respect to computational complexity
while archiving similar average EPE.Symmetry 2020, 12, x FOR PEER REVIEW 6 of 8 
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search ranges, respectively.

4. Conclusions

In this paper, we proposed BlockNet using an efficient representative matching. The proposed
network can extract rich features for block-based motion estimation. A representative matching was
performed with these features by using the average operator and implemented simply by using
the average-pooling operator, widely employed in the deep-learning framework. To maximize the
efficiency of the proposed representative matching, a pyramidal structure with feature warping was
adopted in BlockNet. Experimental results show that BlockNet with and without our representative
matching achieved similar average EPE, while our matching exhibited lower computational cost than
full matching. In future work, we will apply BlockNet to various real-time applications based on



Symmetry 2020, 12, 840 7 of 8

motion estimation, such as frame rate up-conversion because it has less computational cost and is easy
to implement.
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