
symmetryS S

Article

BlockNet: A Deep Neural Network for Block-Based
Motion Estimation Using Representative Matching

Junggi Lee 1,†, Kyeongbo Kong 1,†, Gyujin Bae 2 and Woo-Jin Song 1,*
1 Department of Electrical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong,

Nam-gu, Pohang, Gyungbuk 37673, Korea; leejk12@postech.ac.kr (J.L.); kkb4723@postech.ac.kr (K.K.)
2 LG Display Co., Ltd., E2 Block LG Science Park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul 07796, Korea;

gyujin.bae@lgdisplay.com
* Correspondence: wjsong@postech.ac.kr
† The authors contribute equally.

Received: 25 April 2020; Accepted: 17 May 2020; Published: 20 May 2020
����������
�������

Abstract: Owing to the limitations of practical realizations, block-based motion is widely used as
an alternative for pixel-based motion in video applications such as global motion estimation and frame
rate up-conversion. We hereby present BlockNet, a compact but effective deep neural architecture
for block-based motion estimation. First, BlockNet extracts rich features for a pair of input images.
Then, it estimates coarse-to-fine block motion using a pyramidal structure. In each level, block-based
motion is estimated using the proposed representative matching with a simple average operator.
The experimental results show that BlockNet achieved a similar average end-point error with and
without representative matching, whereas the proposed matching incurred 18% lower computational
cost than full matching.

Keywords: motion estimation; block-based motion; block matching; representative matching;
deep neural network

1. Introduction

Motion estimation is a process that searches for movement between two sequential images. It is
widely used in video applications such as video compression [1], global motion estimation [2,3],
and frame rate up-conversion [4,5]. Recently, deep neural networks, which exhibit superiority in
the field of computer vision [6–12], were used to estimate motion [13–16]. Dosovitskiy et al. [13]
proposed FlowNet by directly applying a deep network to estimate motion from input image pairs.
Ilg et al. [14] proposed FlowNet2, which was designed as a cascade of FlowNet. The first network in
FlowNet2 estimates the motion between the current and reference images. This motion is exploited to
warp the reference image, which constitutes the input to the following network. Although FlowNet2
achieved outstanding performance, the network had over 160M parameters. Recently, Sun et al. [15]
and Hui et al. [16] proposed lightweight and effective networks that estimate the coarse-to-fine motion
by exploiting a pyramidal structure for features named PWC-Net and LiteFlowNet, respectively.
However, the aforementioned methods suffer from extremely high computational costs and large
numbers of model parameters because they estimate motion in the pixel domain, which constitutes
a limitation in practical realizations.

Block-based motion is widely used as an alternative to pixel-based motion [17]. To estimate
block- based motion, block-matching algorithms, where blocks of two sequential images are compared,
are usually used owing to their simplicity. A naïve block-matching method consists of exploiting all
pixels of each candidate block for matching. Although the naïve block-matching method can be used
to find the optimal motion between input image pairs, the computational complexity is high. To reduce

Symmetry 2020, 12, 840; doi:10.3390/sym12050840 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/5/840?type=check_update&version=1
http://dx.doi.org/10.3390/sym12050840
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 840 2 of 8

this complexity in a matching manner, several alternative methods using representative values for each
block were studied, such as sub-block mean [18], certain patterns [19], and some noticeable pixels [20].
However, because these methods matched each block of input image pairs in the intensity domain, it is
difficult to find the effective values for representing the block.

In this paper, we propose a new deep neural architecture for block-based motion estimation.
Our contribution is as follows. First, unlike conventional representative matching in the intensity
domain [18–20], we conduct representative matching in the feature domain where the features are
obtained from convolutional neural networks (CNNs). Owing to the powerful ability of CNNs to
represent features, the proposed representative matching achieves similar performance to naïve
full matching with lower computation complexity. Secondly, it can be easily implemented by the
typical pooling operator used in deep learning because the process to find the representative value in
each feature is shared. Finally, to maximize the efficiency of the proposed representative matching,
we optimize deep neural network using dilated convolution, which can expand the receptive field
preserving feature shape without the additional computation and pyramidal structure that causes
BlockNet to use a small search range.

2. BlockNet

Figure 1 shows the architecture of BlockNet, the proposed block-based motion estimation network
using representative matching. Next, we explain each component of BlockNet in detail.

Symmetry 2020, 12, x FOR PEER REVIEW 2 of 8

complexity is high. To reduce this complexity in a matching manner, several alternative methods

using representative values for each block were studied, such as sub-block mean [18], certain patterns

[19], and some noticeable pixels [20]. However, because these methods matched each block of input

image pairs in the intensity domain, it is difficult to find the effective values for representing the block.

In this paper, we propose a new deep neural architecture for block-based motion estimation.

Our contribution is as follows. First, unlike conventional representative matching in the intensity

domain [18–20], we conduct representative matching in the feature domain where the features are

obtained from convolutional neural networks (CNNs). Owing to the powerful ability of CNNs to

represent features, the proposed representative matching achieves similar performance to naïve full

matching with lower computation complexity. Secondly, it can be easily implemented by the typical

pooling operator used in deep learning because the process to find the representative value in each

feature is shared. Finally, to maximize the efficiency of the proposed representative matching, we

optimize deep neural network using dilated convolution, which can expand the receptive field

preserving feature shape without the additional computation and pyramidal structure that causes

BlockNet to use a small search range.

2. BlockNet

Figure 1 shows the architecture of BlockNet, the proposed block-based motion estimation

network using representative matching. Next, we explain each component of BlockNet in detail.

Figure 1. Overall architecture of BlockNet. It first extracts features for a pair of input images using

shared weights and then estimates coarse-to-fine motion from top to bottom. To estimate the residual

motion at levels 3 and 2, the current level of BlockNet uses the reference feature warped by the motion

from the previous level. In each level, block-based motion is estimated using the proposed

representative matching with a simple operator and a motion estimation network.

2.1. Feature Extractor

When a current image 𝐼𝑐 and reference image 𝐼𝑟 are given as input, BlockNet extracts features

using three convolutional layers that construct compact architecture. In each layer, a convolution

with a filter size 3×3 and stride of 2 is first used to obtain the appropriate spatial shape in each level;

a dilated convolution with filter size of 3×3 and rate of 2 is then used to enlarge the receptive field

while retaining the spatial shape. The numbers of filters in each convolutional layer are 16, 32, and

64, respectively, similar to [15]. The filter weights in each convolutional layer are shared across two

input images, namely 𝐼𝑐,𝐼𝑟, to extract features with common patterns.

Figure 1. Overall architecture of BlockNet. It first extracts features for a pair of input images using
shared weights and then estimates coarse-to-fine motion from top to bottom. To estimate the residual
motion at levels 3 and 2, the current level of BlockNet uses the reference feature warped by the
motion from the previous level. In each level, block-based motion is estimated using the proposed
representative matching with a simple operator and a motion estimation network.

2.1. Feature Extractor

When a current image Ic and reference image Ir are given as input, BlockNet extracts features
using three convolutional layers that construct compact architecture. In each layer, a convolution with
a filter size 3 × 3 and stride of 2 is first used to obtain the appropriate spatial shape in each level;
a dilated convolution with filter size of 3 × 3 and rate of 2 is then used to enlarge the receptive field
while retaining the spatial shape. The numbers of filters in each convolutional layer are 16, 32, and 64,
respectively, similar to [15]. The filter weights in each convolutional layer are shared across two input
images, namely Ic,Ir, to extract features with common patterns.

Symmetry 2020, 12, 840 3 of 8

2.2. Representative Matching for Motion Estimation

2.2.1. Proposed Algorithm

In a compact deep neural network, a hand-designed architecture such as the matching approach
may perform better to estimate motion [13]. Based on this, it is reasonable for our network to utilize
a standard method of block-matching motion estimation. Block matching consists of finding the most
similar block by comparing the block in the current feature and candidate blocks of the reference
feature in the search range (Figure 2, left side).

For pixel matching, the matching cost is defined in [13] as the correlation of vectors corresponding
to each pixel of the current and reference features. This correlation is accumulated for the search range
of each pixel. As a result, a 3D cost volume, which has dimensions of R2

×H ×W, where R×R is the
search range and H and W respectively denote the height and width of the features, is constructed.
When this pixel matching is applied on block matching, the matching cost is calculated at block level
instead of pixel level. Thus, the 3D cost volume has dimensions R2

×
H
d ×

W
d , where d× d is block size,

that is:
Cost Volume(i, j) =

1
Nd2

(
bc

i

)T
br

j (1)

where bc
i is the column vector vectorizing the i-th block of the current feature, br

j is the column

vector vectorizing the j-th candidate block of the reference feature in the search range, and Nd2 is the
dimension of the column vector.

Symmetry 2020, 12, x FOR PEER REVIEW 3 of 8

2.2. Representative Matching for Motion Estimation

2.2.1. Proposed Algorithm

In a compact deep neural network, a hand-designed architecture such as the matching approach

may perform better to estimate motion [13]. Based on this, it is reasonable for our network to utilize

a standard method of block-matching motion estimation. Block matching consists of finding the most

similar block by comparing the block in the current feature and candidate blocks of the reference

feature in the search range (Figure 2, left side).

For pixel matching, the matching cost is defined in [13] as the correlation of vectors

corresponding to each pixel of the current and reference features. This correlation is accumulated for

the search range of each pixel. As a result, a 3D cost volume, which has dimensions of 𝑅2 × 𝐻 × 𝑊,

where 𝑅 × 𝑅 is the search range and 𝐻 and 𝑊 respectively denote the height and width of the

features, is constructed. When this pixel matching is applied on block matching, the matching cost is

calculated at block level instead of pixel level. Thus, the 3D cost volume has dimensions 𝑅2 ×
𝐻

𝑑
×

𝑊

𝑑
,

where 𝑑 × 𝑑 is block size, that is:

𝑪𝒐𝒔𝒕 𝑽𝒐𝒍𝒖𝒎𝒆(𝑖, 𝑗) =
1

𝑁𝑑2
(𝒃𝑖

𝑐)T𝒃𝑗
𝑟 (1)

where 𝒃𝑖
𝑐 is the column vector vectorizing the 𝑖-th block of the current feature, 𝒃𝑗

𝑟 is the column

vector vectorizing the 𝑗-th candidate block of the reference feature in the search range, and 𝑁𝑑2 is

the dimension of the column vector.

Figure 2. Generation procedure of the matching cost between the block in the current feature and a

candidate block in the reference feature: (left) conventional block matching method, (right) the

proposed representative matching using the average operator.

When the block size is 𝑑 × 𝑑 and the search range is 𝑅 × 𝑅, the number of multipliers for a

block matching is 𝑁𝑑2 × 𝑅2. If the block size is larger, the total number of the computation is much

higher and thus it may not be suitable for practical realizations. To reduce the computation in the

block matching, we could find the representative value in the block. In this study, we propose a

representative matching method using the simple average operator defined next (see Figure 2):

𝑪𝒐𝒔𝒕 𝑽𝒐𝒍𝒖𝒎𝒆(𝑖, 𝑗) =
1

𝑁
(�̅�𝑖

𝑐)
T

�̅�𝑗
𝑟 (2)

where �̅�𝑖
𝑐 and �̅�𝑗

𝑟 are the average of the column vectors 𝒃𝑖
𝑐 and 𝒃𝑗

𝑟 , respectively. Owing to the

proposed representative matching, the number of multipliers for block matching is reduced as much

as 𝑑 × 𝑑.

In a conventional block-matching algorithm using representative values of the block [18], the

average value of the block is also used to reduce the computational cost. However, because the

representative matching is applied in the intensity domain, it is insufficient to represent the block. By

contrast, because the image can be analyzed as various features through a CNN, our representative

matching works well in the feature domain.

Figure 2. Generation procedure of the matching cost between the block in the current feature and
a candidate block in the reference feature: (left) conventional block matching method, (right) the
proposed representative matching using the average operator.

When the block size is d× d and the search range is R×R, the number of multipliers for a block
matching is Nd2

×R2. If the block size is larger, the total number of the computation is much higher and
thus it may not be suitable for practical realizations. To reduce the computation in the block matching,
we could find the representative value in the block. In this study, we propose a representative matching
method using the simple average operator defined next (see Figure 2):

Cost Volume(i, j) =
1
N
(b

c
i)

T
b

r
j (2)

where b
c
i and b

r
j are the average of the column vectors bc

i and br
j, respectively. Owing to the proposed

representative matching, the number of multipliers for block matching is reduced as much as d× d.
In a conventional block-matching algorithm using representative values of the block [18],

the average value of the block is also used to reduce the computational cost. However, because
the representative matching is applied in the intensity domain, it is insufficient to represent the block.
By contrast, because the image can be analyzed as various features through a CNN, our representative
matching works well in the feature domain.

Symmetry 2020, 12, 840 4 of 8

With the 3D cost volume and current feature as input, block-based motion is obtained using
a CNN with filter size 3 × 3 and stride 2 (Figure 1, motion estimation network). The numbers of filters
at each convolutional layer are 32, 24, 16, and 8, respectively.

2.2.2. Implementation Details

Instead of extracting the representative values whenever performing the block-level matching,
it can be considered that the representative value of each feature is first extracted, and then matching
is performed to implement efficiently. To this end, the average-pooling operator, which is widely
exploited in the deep-learning framework, can be used.

The implementation procedure of the proposed representative matching is described in Algorithm 1.
Because the representative values of the block in the current and reference features should be extracted
at intervals of block size and pixel, respectively, the stride of the average-pooling operator is set
to block size and 1, respectively. Moreover, the average-pooling size is the same as the block size
(steps 1 and 2). Then, the 3D cost volume is obtained by a matching process that extracts the patches
from each average-pooled feature in the search range (steps 3–5) and multiplies them (step 6).

Algorithm 1. Proposed representative matching

Definition
avg_pool(·): The average-pooling operator
repeat(·): Duplication of each element of the matrix
extract_patch(·): Extraction of the patches repeatedly
Input: current feature fc, reference feature fr, block size d× d, and search range R×R

1. fc = avg_pool
(
fc, size = [d, d], stride = [d, d]

)
2. fr = avg_pool

(
fr, size = [d, d], stride = [1, 1]

)
3. f

repeat
c = repeat

(
fc, size = [R, R]

)
4. pc = extract_patch(f

repeat
c , size = [R, R], stride = [R, R])

5. pr = extract_patch
(
fr, size = [R, R], stride = [d, d]

)
6. Cost Volume= pc ∗ pr

Output: Cost Volume

2.3. Pyramidal Structure with Feature Warping

To maximize the efficiency of our representative matching, we adopted the pyramidal structure
in PWC-Net [15]. At level l, the reference feature is warped toward the current feature using a ×2
up-sampled motion estimated from the previous level (Figure 1, feature warping). We first estimate
the motion utilizing a 3-level pyramid structure with

{
f3
c , f3

r

}
, and

{
f2
c , f2

r

}
among the 4 possible levels.

We then simply up-sample the estimated motion as much as the remaining levels to obtain the final
motion. This architecture can reduce the computation complexity while obtaining the motion with
a similar accuracy to that reported in [13].

3. Experiments

3.1. Experimental Setup

To train BlockNet, we used the FlyingChairs dataset [13], which is composed of 22,872 image
pairs with ground-truth motion. We cropped 384 × 512 images to 384 × 448 patches and used 90% and
10% of the dataset for training and to test, respectively. We used the multi-scale training loss L(θ)
described in [15] as follows:

Symmetry 2020, 12, 840 5 of 8

L(θ) =
∑

l

αl

∑
x
‖MVl

θ(x) −MVl
GT(x) ‖2 +γ ‖ θ ‖2 (3)

where θ is the network parameter, αl is the loss weight for layer l, x is the block index, MVl
θ is the

estimated block-based motion vector in layer l, MVl
GT is the ground-truth block-based motion vector in

layer l, ‖ · ‖2 is the L2 norm operator, and γ is the regularization parameter. To obtain the ground truth
of block-based motion, we down-sampled the pixel-level ground-truth motion by a factor given by the
block size. As in [15], the ground truth was down-sampled by a factor of 2 at each level. Moreover,
it was identically scaled by 1/20 at all levels. This made the estimated motion have identical scale
at all levels. Thus, the up-sampled motion had to be scaled from the previous level before passing
through the warping operator. We set the scale values for the up-sampled motion as 20/23 and 20/22

at levels 3 and 2, respectively. We used a block size of 4 × 4 and a search range of 15 × 15, which are
determined by experiments on hyperparameters in Section 3.2.

We first trained BlockNet using the MPI Sintel dataset [21] with 600 epochs. We fine-tuned the
network using the FlyingChairs dataset. The initial learning rate was 0.0001. It was halved at iterations
0.2 M, 0.25 M, 0.3 M, and 0.35 M. We used a mini-batch size of 4 and the Adam optimizer [22].
The weights were set to α4 = 0.32, α3 = 0.08, and α2 = 0.02, and the regularization parameter γwas
set to 0.0004 as in [15]. BlockNet was implemented using TensorFlow 1.7.0.

3.2. Results

To verify the effectiveness of the proposed deep neural architecture, BlockNet was compared
to a conventional block motion estimation (BME) that exploits all pixels of each candidate block
in the search range for matching. We also compared each algorithm with or without the proposed
representative matching (RM). All results are evaluated in terms of end-point error (EPE), with the L2

norm between the estimated motion and ground truth [15].
The average and standard deviation of EPE are summarized in Table 1. Experimental results show

that BlockNet with full matching had lower average EPE than BME with full matching. This is because
the CNNs in BlockNet can extract rich features, and the matching errors of BlockNet were lower than
those of BME. Moreover, average EPEs of BlockNet with full matching and proposed RM were similar,
while average EPEs of BME with full matching and proposed RM significantly differed. This result
implies that the proposed representative value, which reduced the computational complexity as much
as 1/16 for each matching, was more effective in the feature domain than in the intensity domain.
Figure 3 shows qualitative results of BlockNet with full matching and proposed RM. The results of
BlockNet with full matching and proposed RM are quite similar (Figure 3; top, chair leg). However,
proposed RM occasionally fails to estimate the detailed motion of an object compared to full matching
(Figure 3; bottom, chair leg).

Table 1. Quantitative results on the FlyingChairs dataset.

BME with Full
Matching

BME with
Proposed RM

BlockNet with
Full Matching

BlockNet with
Proposed RM

Average EPE 10.33 16.86 3.74 4.09

Std. of EPE 7.64 7.09 3.53 3.57

Detailed experiments were conducted to verify the effect of some hyper-parameters (block size,
search range) in BlockNet with RM (Figure 4). Although a large block size reduced the computational
complexity, the average EPE was increased because of the reduction in the resolution of the estimated
motion. For the search range, the average EPE with a large value was slightly decreased at the expense
of high computational complexity. The proposed RM was reduced by 18% compared to full matching,

Symmetry 2020, 12, 840 6 of 8

using the best hyper-parameter (Figure 4, red diamond), with respect to computational complexity
while archiving similar average EPE.Symmetry 2020, 12, x FOR PEER REVIEW 6 of 8

Figure 3. Visual results on the FlyingChairs dataset.

Detailed experiments were conducted to verify the effect of some hyper-parameters (block size,

search range) in BlockNet with RM (Figure 4). Although a large block size reduced the computational

complexity, the average EPE was increased because of the reduction in the resolution of the estimated

motion. For the search range, the average EPE with a large value was slightly decreased at the

expense of high computational complexity. The proposed RM was reduced by 18% compared to full

matching, using the best hyper-parameter (Figure 4, red diamond), with respect to computational

complexity while archiving similar average EPE.

Figure 4. Average end-point error and computational complexity ratio on BlockNet with several

methods using FlyingChairs dataset. Computational complexity ratio represents the value of all

methods divided by that of full matching. The values in the parentheses represent the block sizes and

search ranges, respectively.

4. Conclusions

In this paper, we proposed BlockNet using an efficient representative matching. The proposed

network can extract rich features for block-based motion estimation. A representative matching was

performed with these features by using the average operator and implemented simply by using the

average-pooling operator, widely employed in the deep-learning framework. To maximize the

efficiency of the proposed representative matching, a pyramidal structure with feature warping was

adopted in BlockNet. Experimental results show that BlockNet with and without our representative

Figure 3. Visual results on the FlyingChairs dataset.

Symmetry 2020, 12, x FOR PEER REVIEW 6 of 8

Figure 3. Visual results on the FlyingChairs dataset.

Detailed experiments were conducted to verify the effect of some hyper-parameters (block size,

search range) in BlockNet with RM (Figure 4). Although a large block size reduced the computational

complexity, the average EPE was increased because of the reduction in the resolution of the estimated

motion. For the search range, the average EPE with a large value was slightly decreased at the

expense of high computational complexity. The proposed RM was reduced by 18% compared to full

matching, using the best hyper-parameter (Figure 4, red diamond), with respect to computational

complexity while archiving similar average EPE.

Figure 4. Average end-point error and computational complexity ratio on BlockNet with several

methods using FlyingChairs dataset. Computational complexity ratio represents the value of all

methods divided by that of full matching. The values in the parentheses represent the block sizes and

search ranges, respectively.

4. Conclusions

In this paper, we proposed BlockNet using an efficient representative matching. The proposed

network can extract rich features for block-based motion estimation. A representative matching was

performed with these features by using the average operator and implemented simply by using the

average-pooling operator, widely employed in the deep-learning framework. To maximize the

efficiency of the proposed representative matching, a pyramidal structure with feature warping was

adopted in BlockNet. Experimental results show that BlockNet with and without our representative

Figure 4. Average end-point error and computational complexity ratio on BlockNet with several
methods using FlyingChairs dataset. Computational complexity ratio represents the value of all
methods divided by that of full matching. The values in the parentheses represent the block sizes and
search ranges, respectively.

4. Conclusions

In this paper, we proposed BlockNet using an efficient representative matching. The proposed
network can extract rich features for block-based motion estimation. A representative matching was
performed with these features by using the average operator and implemented simply by using
the average-pooling operator, widely employed in the deep-learning framework. To maximize the
efficiency of the proposed representative matching, a pyramidal structure with feature warping was
adopted in BlockNet. Experimental results show that BlockNet with and without our representative
matching achieved similar average EPE, while our matching exhibited lower computational cost than
full matching. In future work, we will apply BlockNet to various real-time applications based on

Symmetry 2020, 12, 840 7 of 8

motion estimation, such as frame rate up-conversion because it has less computational cost and is easy
to implement.

Author Contributions: J.L. and K.K.: methodology, software, writing—original draft preparation, writing—review
and editing; G.B.: project administration; W.-J.S.: supervision. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ICT Consilience
Creative program (IITP-2019-2011-1-00783) supervised by the IITP (Institute for Information & communications
Technology Planning & Evaluation), and LG Display under LGD-POSTECH Research Program.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Kuo, C.-M.; Hsieh, C.-H.; Jou, Y.-D.; Lin, H.-C.; Lu, P.-C. Motion estimation for video compression using
Kalman filtering. IEEE Trans. Broadcast. 1996, 42, 110–116.

2. Su, Y.; Sun, M.-T.; Hsu, V. Global motion estimation from coarsely sampled motion vector field and the
applications. IEEE Trans. Circuits Syst. Video Technol. 2005, 15, 232–242.

3. Kong, K.; Shin, S.; Lee, J.; Song, W.-J. How to estimate global motion non-Iteratively from a coarsely sampled
motion vector field. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 3729–3742. [CrossRef]

4. Kang, S.-J.; Yoo, S.; Kim, Y.H. Dual motion estimation for frame rate up-conversion. IEEE Trans. Circuits Syst.
Video Technol. 2010, 20, 1909–1914. [CrossRef]

5. Yoo, D.-G.; Kang, S.-J.; Kim, Y.H. Direction-select motion estimation for motion-compensated frame rate
up-conversion. J. Disp. Technol. 2013, 9, 840–850.

6. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal.
Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

7. Kong, K.; Lee, J.; Song, W.-J.; Kang, M.; Kwon, K.J.; Kim, S.G. Multitask bilateral learning for real-time image
enhancement. J. Soc. Inf. Disp. 2019, 27, 630–645. [CrossRef]

8. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-scale video classification
with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 1725–1732.

9. Kong, K.; Lee, J.; Kwak, Y.; Kang, M.; Kim, S.G.; Song, W.-J. Recycling: Semi-supervised learning with noisy
labels in deep neural networks. IEEE Access 2019, 7, 66998–67005. [CrossRef]

10. Bouwmans, T.; Javed, S.; Sultana, M.; Jung, S.K. Deep neural network concepts for background subtraction:
A systematic review and comparative evaluation. Neural Netw. 2019, 117, 8–66. [CrossRef] [PubMed]

11. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 4700–4708.

12. Ciaparrone, G.; Sánchez, F.L.; Tabik, S.; Troiano, L.; Tagliaferri, R.; Herrera, F. Deep learning in video
multi-object tracking: A survey. Neurocomputing 2020, 381, 61–88. [CrossRef]

13. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T.
Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE International
Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2758–2766.

14. Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. Flownet 2.0: Evolution of optical flow
estimation with deep networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2462–2470.

15. Sun, D.; Yang, X.; Liu, M.Y.; Kautz, J. Pwc-net: Cnns for optical flow using pyramid, warping, and cost
volume. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 8934–8943.

16. Hui, T.W.; Tang, X.; Change Loy, C. Liteflownet: A lightweight convolutional neural network for optical
flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018; pp. 8981–8989.

http://dx.doi.org/10.1109/TCSVT.2018.2882513
http://dx.doi.org/10.1109/TCSVT.2010.2087832
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://dx.doi.org/10.1002/jsid.791
http://dx.doi.org/10.1109/ACCESS.2019.2918794
http://dx.doi.org/10.1016/j.neunet.2019.04.024
http://www.ncbi.nlm.nih.gov/pubmed/31129491
http://dx.doi.org/10.1016/j.neucom.2019.11.023

Symmetry 2020, 12, 840 8 of 8

17. Metkar, S.; Talbar, S. Motion Estimation Techniques for Digital Video Coding; Springer: Cham, Switzerland,
2013; p. 13.

18. Sun, X.; Jin, G.; Huang, M.; Xu, G. A novel partial block-matching motion estimation algorithm. In Proceedings
of the Third International Symposium on Multispectral Image Processing and Pattern Recognition, Beijing,
China, 20–22 October 2003; pp. 839–842.

19. Liu, B.; Zaccarin, A. New fast algorithms for the estimation of block motion vectors. IEEE Trans. Circuits Syst.
Video Technol. 1993, 3, 148–157. [CrossRef]

20. Chan, Y.-L.; Siu, W.-C. New adaptive pixel decimation for block motion vector estimation. IEEE Trans.
Circuits Syst. Video Technol. 1996, 6, 113–118. [CrossRef]

21. Butler, D.J.; Wulff, J.; Stanley, G.B.; Black, M.J. A naturalistic open source movie for optical flow evaluation.
In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2012; pp. 611–625.

22. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/76.212720
http://dx.doi.org/10.1109/76.486426
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	BlockNet
	Feature Extractor
	Representative Matching for Motion Estimation
	Proposed Algorithm
	Implementation Details

	Pyramidal Structure with Feature Warping

	Experiments
	Experimental Setup
	Results

	Conclusions
	References

