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Abstract: Gamma distribution is a general type of statistical distribution that can be applied in
various fields, mainly when the distribution of data is not symmetrical. When predictor variables
also affect positive outcome, then gamma regression plays a role. In many cases, the predictor
variables give effect to several responses simultaneously. In this article, we develop a multivariate
gamma regression (MGR), which is one type of non-linear regression with response variables that
follow a multivariate gamma (MG) distribution. This work also provides the parameter estimation
procedure, test statistics, and hypothesis testing for the significance of the parameter, partially and
simultaneously. The parameter estimators are obtained using the maximum likelihood estimation
(MLE) that is optimized by numerical iteration using the Berndt–Hall–Hall–Hausman (BHHH)
algorithm. The simultaneous test for the model’s significance is derived using the maximum
likelihood ratio test (MLRT), whereas the partial test uses the Wald test. The proposed MGR model is
applied to model the three dimensions of the human development index (HDI) with five predictor
variables. The unit of observation is regency/municipality in Java, Indonesia, in 2018. The empirical
results show that modeling using multiple predictors makes more sense compared to the model when
it only employs a single predictor.

Keywords: human development dimensions; maximum likelihood estimation; maximum likelihood
ratio test; multivariate gamma regression; Wald test

1. Introduction

Gamma distribution is one family of continuous probability distributions and generalizations of
exponential distributions [1]. Nagar, Correa, and Gupta [2] mentioned that the gamma distribution
function was first introduced by Swiss mathematician Leonhard Euler (1729). Because this function
is considered important, many researchers have studied and developed it. Bhattacharya [3], among
others, conducted a study on testing the homogeneity of the parameters (shape and scale) of the
gamma distribution. Chen and Kotz [4] conducted a study on the probability density function (pdf)
of gamma distribution with three parameters (shape, scale, and location). Many researchers also
study and develop bivariate gamma distribution; among others are Schickedanz and Krause [5],
who conducted a study on testing scale parameters from two gamma-distributed data using the
generalized likelihood ratio (GLR). Nadarajah [6] studied the types of bivariate gamma distribution.
Next, Nadarajah and Gupta [7] developed two new bivariate gamma distributions based on gamma
and beta random variables. In addition, Mathai and Moschopoulos [8] discussed joint densities,
product moments, conditional densities, and conditional moments that were developed from two
bivariate gamma distributions.
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One statistical method that can be applied to analyze the data that follow gamma distribution
and its predictor variables is gamma regression. Gamma regression is a type of non-linear regression.
A non-linear regression contains at least one parameter with a non-linear form [9,10]. The gamma
regression with multiple responses is the so-called multivariate gamma regression (MGR).

The MGR model proposed in this article is the extension of the trivariate gamma regression (TGR)
proposed by Rahayu, Purhadi, Sutikno, and Prastyo [11], which describes the theory of parameter
estimation and its hypothesis testing. The MGR is developed based on multivariate gamma distribution
with three parameters (shape, scale, and location). The supporting references about multivariate gamma
distribution were written by Mathai and Moschopoulos [12], and Vaidyanathan and Lakshmi [13].
The parameter estimation method for MGR in this study uses maximum likelihood estimation (MLE).
However, the solution cannot be obtained in the closed form. Therefore, a numerical method is
needed to achieve the parameter estimator value. The numerical optimization used in this study is the
Berndt–Hall–Hall–Hausman (BHHH).

Based on the previously mentioned background, the aims of this study are: (i) how to construct
the MGR model, (ii) how to estimate the parameters, and (iii) how to test the significance of the model
as well as the significance of the individual parameter. The last objective of this work is how to apply
the proposed MGR model to real data. The case study used in this study includes the factors that affect
the life expectancy index (first response), education index (second response), and expenditure index
(third response), the three indexes that compose the human development dimensions. The unit of
observation is the regency/municipality in Java, Indonesia, in 2018. The predictor variables include
the percentage of households that have a private toilet, net enrollment rate of schooling, population
density, the percentage of poor people, and the unemployment rate.

The rest of the article is organized as follows. Section 2 introduces the detail of the proposed
MGR model. Sections 3 and 4 explore the data and application, respectively. The last section contains
conclusions and further research.

2. Multivariate Gamma Regression Model

Suppose yl is the response variables data (yl1, yl2, . . . , ylk) that follows multivariate gamma
distribution and xl is the corresponding predictor variables (xl1, xl2, . . . , xls), with sample size as
n observations (l = 1, 2, . . . , n). In this section, we discuss the construction of the MGR model, its
parameter estimation, and hypothesis testing. A short explanation about univariate gamma regression
is introduced to make a smooth transition into the MGR model.

According to Balakrishnan and Wang [14], a random variable Y follows univariate gamma
distribution with three parameters (α,γ,λ), denoted by Y ∼ Gamma(α,γ,λ), with pdf formulated in
Equation (1).

f (y) =


1

γαΓ(α)
(y− λ)α−1e−

y − λ
γ ; α,γ,λ > 0, λ < y < ∞,

; otherwise.
(1)

If Y ∼ Gamma(α,γ,λ), then the statistics are as follows [15,16].

µ = E(y) = γα+ λ, Var(y) = αγ2, Stdev(y) =
√
αγ, and the skewness is γ1 = 2

√
α

.

Mathai and Moschopoulos (1992) defined the pdf as in Equation (2) for a pair of random variables
(Y1, Y2) that follows bivariate gamma distribution as:

f (y1, y2) =
(y1 − λ1)

α1−1(y2 − y1 − λ2)
α2−1e−

y2 −
2∑

i=1
λi

γ

γα2∗
2∏

i=1
Γ(αi)

, (2)
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with αi > 0, γ > 0, λi ∈ R, λ1 < y1 < ∞, λ2 < y2 < ∞, α2∗ = α1 + α2, i = 1, 2, f (y1, y2) = 0
for otherwise.

The mean for Y1 and Y2 are E(Y1) = γα1 + λ1 and E(Y2) = γ(α1 + α2) + λ1 + λ2, while the
variances are Var(Y1) = γ2α1 and Var(Y2) = γ2(α1 + α2).

Suppose there are k response variables; the pdf for random variables (Y1, Y2, . . . , Yk) that follow
multivariate gamma distribution (Mathai and Moschopoulos, 1992) is:

f (y1, y2, . . . , yk) =
(y1 − λ1)

α1−1(y2 − y1 − λ2)
α2−1
· · · (yk − yk−1 − λk)

αk − 1e−
yk −

k∑
i=1

λi

γ

γαk∗
k∏

i=1
Γ(αi)

, (3)

with αi > 0,γ > 0,λi ∈ R, λ1 < y1 < ∞,λ2 < y2 < ∞,λk < yk < ∞,αk∗ = α1 + α2 + · · ·+ αk, i = 1, 2, . . . k,
otherwise f (y1, y2, . . . , yk) = 0.

The mean and variance for Yi are E(Yi) = γαi∗ +λi∗ and Var(Yi) = γ2αi∗ withαi∗ = α1 +α2 + · · ·+αi
and λi∗ = λ1 + λ2 + · · ·+ λi. The MGR model can be stated in Equation (4).

E(Yi) = γαi∗ + λi∗ = exTβi , i = 1, 2, . . . , k, (4)

with αi∗ = α1 + α2 + · · ·+ αi, λi∗ = λ1 + λ2 + · · ·+ λi.
The pdf for the lth observation is formulated in Equation (5) which will be used to compose the

likelihood function in Equation (6).

f (yl1, yl2, . . . , ylk) =
(yl1 −λ1)

α1−1(yl2 − yl1 −λ2)
α2−1
· · ·

(
ylk − yl(k−1) −λk

)αk − 1
e−

ylk −
k∑

i=1
λi

γ

γα
∗

k Γ(α1)Γ(α2) · · · Γ(αk)
, (5)

with αi > 0,γ > 0,λi ∈ R, λ1 < yl1 <∞,λ2 < yl2 <∞,λk < ylk <∞,

α1 = exT
l β1 − λ1
γ , α2 = exT

l β2 − exT
l β1 − λ2
γ , . . . ,αk =

exT
l βk − exT

l βk−1 − λk
γ ,

αk∗ = α1 + α2 + · · ·+ αk =
exT

l βk − λ1 − λ2 − ··· − λk
γ , otherwise f (yl1, yl2, . . . , ylk) = 0.

Later, we discuss parameter estimation on MGR using MLE. The likelihood function constructed from
Equation (5) is:

L
(
γ,λ1,λ2, . . . ,λk,β1,β2, . . . ,βk

)
=

n∏
l=1

f (yl1, yl2, . . . , ylk)

=
n∏

l=1


(yl1 − λ1)

α1−1(yl2 − yl1 − λ2)
α2−1
· · ·

(
ylk − yl(k−1) − λk

)αk − 1
e−

ylk −
k∑

i=1
λi

γ

γα
∗

k Γ(α1)Γ(α2) · · · Γ(αk)

,
(6)

with values α1,α2,αk, and αk∗ based on Equation (5).
The log-likelihood function from Equation (6) is:

log L
(
γ,λ1,λ2, . . . ,λk,β1,β2, . . . ,βk

)

=
n∑

l=1
log


(yl1 − λ1)

α1−1(yl2 − yl1 − λ2)
α2−1
· · ·

(
ylk − yl(k−1) − λk

)αk − 1
e−

ylk −
k∑

i=1
λi

γ

γαk∗ Γ(α1) Γ(α2) · · · Γ(αk)

.
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By substituting the values of α1,α2,αk, and αk∗ according to Equation (5), the log-likelihood function is:

log L
(
γ,λ1,λ2, . . . ,λk,β1,β2, . . . ,βk

)
=

n∑
l=1

exT
l β1 − λ1 − γ

γ
log(yl1 − λ1) +

n∑
l=1

exT
l β2 − exT

l β1 − λ2 − γ

γ
log(yl2 − yl1 − λ2) + · · ·+

n∑
l=1

exT
l βk − exT

l βk−1 − λk − γ

γ
log

(
ylk − yl(k−1) − λk

)
−

n∑
l=1

ylk − λ1 − λ2 − · · · − λk

γ
−

n∑
l=1

exT
l βk − λ1 − λ2 − · · · − λk

γ
logγ−

n∑
l=1

log Γ

 exT
l β1 − λ1

γ

− n∑
l=1

log Γ

 exT
l β2 − exT

l β1 − λ2

γ

− · · · −
n∑

l=1
log Γ

 exT
l βk − exT

l βk−1 − λk
γ

.

(7)

In this article, the log value is based on e or natural logarithm. The first derivatives of the
log-likelihood function for each parameter are as follows.

∂ log L
(
γ,λ1,λ2, . . . ,λk,β1,β2, . . . ,βk

)
∂γ

=
n∑

l=1

λ1 − exT
l β1

γ2 log(yl1 − λ1)

+
n∑

l=1

 exT
l β1 − exT

l β2 + λ2

γ2 log(yl2 − yl1 − λ2)

+ · · ·+ n∑
l=1

 exT
l βk−1 − exT

l βk + λk

γ2 log
(
ylk − yl(k−1) − λk

)+
n∑

l=1

ylk

γ2 −
nλ1

γ2 −
nλ2

γ2 −
nλ3

γ2 −

(
n(logγ)λ1

γ2 −
nλ1

γ2 +
n(logγ)λ2

γ2 −
nλ2

γ2 +
n(logγ)λ3

γ2 −
nλ3

γ2 +

n∑
l=1

− (logγ)exT
l βk

γ2 +
exT

l βk

γ2


− n∑

l=1

− 1
γ2

Ψ

 exT
l β1 − λ1

γ


(exT

l β1 − λ1

)−
n∑

l=1

− 1
γ2

Ψ

 exT
l β2 − exT

l β1 − λ2

γ


(exT

l β2 − exT
l β1 − λ2

)− · · · −
n∑

l=1

− 1
γ2

Ψ

 exT
l βk − exT

l βk−1 − λk
γ


(exT

l βk − exT
l βk−1 − λk

),

(8)

∂ log L
(
γ,λ1,λ2, . . . ,λk,β1,β2, . . . ,βk

)
∂λ1

=
n∑

l=1

− log(yl1 − λ1)

γ
−

exT
l β1 − λ1 − γ

γ(yl1 − λ1)

+ n
γ
+

n(logγ)
γ

−

n∑
l=1

− 1
γ

Ψ

 exT
l β1 − λ1

γ


,

(9)

∂ log L
(
γ,λ1,λ2, . . . ,λk,β1,β2, . . . ,βk

)
∂λ2

=
n∑

l=1

(
−

log(yl2 − yl1 − λ2)

γ
−

exT
l β2 − exT

l β1 − λ2 − γ

γ(yl2 − yl1 − λ2)

+ n
γ
+

n(logγ)
γ

−

n∑
l=1

− 1
γ

Ψ

 exT
l β2 − exT

l β1 − λ2

γ


,

(10)

∂ log L
(
γ,λ1,λ2, . . . ,λk,β1,β2, . . . ,βk

)
∂λk

=
n∑

l=1

− log
(
ylk − yl(k−1) − λk

)
γ

−
exT

l βk − exT
l βk−1 − λk − γ

γ
(
ylk − yl(k−1) − λk

) +
n
γ
+

n(logγ)
γ

−

n∑
l=1

− 1
γ

Ψ

 exT
l βk − exT

l βk−1 − λk
γ


,

(11)
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∂ log L
(
γ,λ1,λ2, . . . ,λk,β1,β2, . . . ,βk

)
∂β1

=
n∑

l=1

(log(yl1 − λ1))
xT

l exT
l β1

γ

−
n∑

l=1

(log(yl2 − yl1 − λ2))
xT

l exT
l β1

γ

− n∑
l=1


Ψ

 exT
l β1 − λ1

γ


xT

l exT
l β1

γ

−
n∑

l=1

−
Ψ

 exT
l β2 − exT

l β1 − λ2

γ


xT

l exT
l β1

γ

,

(12)

∂ log L
(
γ,λ1,λ2, . . . ,λk,β1,β2, . . . ,βk

)
∂β2

=
n∑

l=1

(log(yl2 − yl1 − λ2))
xT

l exT
l β2

γ

−
n∑

l=1


Ψ

 exT
l β2 − exT

l β1 − λ2

γ


xT

l exT
l β2

γ

− n∑
l=1

−
Ψ

 exT
l β3 − exT

l β2 − λ3

γ


xT

l exT
l β2

γ

,

(13)

∂ log L
(
γ,λ1,λ2, . . . ,λk,β1,β2, . . . ,βk

)
∂βk

=
n∑

l=1

(log
(
ylk − yl(k−1) − λk

))xT
l exT

l βk

γ

−
n∑

l=1

(logγ)
xT

l exT
l βk

γ

− n∑
l=1


Ψ

 exT
l βk − exT

l βk−1 − λk
γ


xT

l exT
l βk

γ

,

(14)

with Ψ(z) = digamma function, which is the first derivative of gamma function, formulated with

Ψ(z) = ∂[log Γ(z)]
dz =

Γ′(z)
Γ(z) .

A maximum likelihood (ML) can be found by setting all the derivatives above to zero and solving
the system. No closed-form solution to that system can be found. A numerical method is needed
to obtain the solution, i.e., parameter estimate γ̂, λ̂1, λ̂2, . . . , λ̂k, β̂1, β̂2, . . . , β̂k. One of the numerical
techniques that can be employed is the BHHH algorithm as follows.

• Step 1. Determine the initial value for θ̂(0)
=

[
γ̂(0) λ̂

(0)
1 λ̂

(0)
2 . . . λ̂

(0)
k β̂

T(0)
1 β̂

T(0)
2 . . . β̂

T(0)
k

]T
, where

γ̂(0) > 0, λ̂(0)1 , λ̂(0)2 , . . . , λ̂(0)k ∈ R satisfies the constraints in Equation (5), and β̂
T(0)
1 , β̂

T(0)
2 , . . . , β̂

T(0)
k

are obtained from the estimate of univariate gamma regression. The Hessian H(θ̂) in BHHH is
approximated as the negative of the sum of the outer products of the gradients of individual
observations. The gradient vector g(θ̂) is a vector with each element consisting of the first
derivative of the log-likelihood function for each of the estimated parameters.

• Step 2. Determine the tolerance limit so that the BHHH iteration process stops. In this study,
the tolerance value used is ε = 10−8.

• Step 3. Start the BHHH iteration using the following formula.

θ̂
(p+1)

= θ̂
(p)
−H−1(θ̂

(p)
)g(θ̂(p)

), (15)

with p = 0, 1, 2, . . . , p∗.

• Step 4. The iteration stops at the p∗− th iteration if it satisfies ‖θ̂(p∗+1)
− θ̂

(p∗)
‖ ≤ ε. When converging,

the last iteration produces an estimator value for each parameter.

The null hypothesis on the MGR model is H0 : β11 = β21 = · · · = βs1 = β12 = β22 = · · · =

βs2 = · · · = β1k = β2k = · · · = βsk = 0 and alternative hypothesis H1. At least one βqi , 0, with
q = 1, 2, . . . , s, i = 1, 2, . . . , k. Ω =

{
γ,λ1, . . . ,λk,β1,β2, . . . ,βk

}
is the set of parameters under the

population. The ω =
{
γ,λ1, . . . , λk, β01, β02, . . . , β0k

}
is the set of parameters under the null hypothesis.

The first derivatives of the log-likelihood function for each parameter under the null hypothesis are
provided in Appendix A.
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Proposition 1. If Ω is a set of parameters under the population, ω is a set of parameters under the null
hypothesis, and the hypothesis being used is the simultaneous test of MGR model, then the test statistic is
G2 = −2 log Λ = 2 log L(Ω̂) − 2 log L(ω̂).

A Corollary of Proposition 1: The hypothesis being used in the simultaneous test of the MGR model
in Section 2 can be stated in the following form: the null hypothesis is β∗ = 0(sk×1) and the alternative

hypothesis is β∗ , 0(sk×1), with β∗ =
[
β∗T1 β∗T2 · · · β∗Ti · · · β∗Tk

]T
and β∗i =

[
β1i β2i · · · βsi

]
for i = 1, 2, . . . , k.

It is noted that θ̂Ω and θ̂ω are estimators that maximize the likelihood and the log-likelihood
functions under the population and under the null hypothesis. The principle of the MLE method is to
maximize the likelihood functions [17]. The following are test statistics for the hypothesis being used
in the simultaneous test of the MGR model in Section 2.

Λ =
L(ω̂)

L
(
Ω̂

) < Λ0, (16)

where Λ0 is a constant value between 0 < Λ0 ≤ 1.
L(ω̂) and L

(
Ω̂

)
in Equation (16) are:

L(ω̂) =
n∏

l=1


(
yl1 − λ̂1

)α̂11−1(
yl2 − yl1 − λ̂2

)α̂22−1
· · ·

(
ylk − yl(k−1) − λ̂k

)α̂kk−1
e−

ylk−
k∑

i=1
λ̂i

γ̂

γ̂α̂kk∗Γ(α̂11)Γ(α̂22) · · · Γ(α̂kk)

,

and

L
(
Ω̂

)
=

n∏
l=1


(
yl1 − λ̂1

)α̂1−1(
yl2 − yl1 − λ̂2

)α̂2−1
· · ·

(
ylk − yl(k−1) − λ̂k

)α̂k−1
e−

ylk−
k∑

i=1
λ̂i

γ̂

γ̂α̂k∗Γ(α̂1)Γ(α̂2) · · · Γ(α̂k)

, (17)

with α̂11 =
eβ̂01 − λ̂1

γ̂
, α̂22 =

eβ̂02 − eβ̂01 − λ̂2

γ̂
, . . . , α̂kk =

eβ̂0k − eβ̂0(k − 1) − λ̂k
γ̂

,

α̂kk∗ = α̂11 + α̂22 + · · ·+ α̂kk =
eβ̂0k − λ̂1 − λ̂2 − · · · − λ̂k

γ̂
,

α̂1 =
exT

l β̂1 − λ̂1

γ̂
, α̂2 =

exT
l β̂2 − exT

l β̂1 − λ̂2

γ̂
, . . . , α̂k =

exT
l β̂k − exT

l β̂k−1 − λ̂k
γ̂

, and

α̂k∗ = α̂1 + α̂2 + · · ·+ α̂k =
exT

l β̂k − λ̂1 − λ̂2 − · · · − λ̂k
γ̂

.

Based on Equation (17), L(ω̂)
L(Ω̂)

is difficult to simplify. To simplify the calculation, the test statistics

in Equation (16) are expressed in a form equivalent to:

(Λ)−2 =

L(ω̂)

L
(
Ω̂

) 
−2

=

L
(
Ω̂

)
L(ω̂)


2

. (18)
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The application of natural logarithms in Equation (18) obtains the following test statistics.

G2 = −2 log Λ = −2 log

L(ω̂)

L
(
Ω̂

)  = 2 log

L
(
Ω̂

)
L(ω̂)

 = 2 log L
(
Ω̂

)
− 2 log L(ω̂), (19)

with log L
(
Ω̂MGR

)
=

n∑
l=1

log
(

f
(

yl1, yl2, . . . , ylk
∣∣∣Ω̂MGR

))

log L
(
Ω̂MGR

)
=

n∑
l=1

exT
l β̂1 − λ̂1 − γ̂

γ̂
log

(
yl1 − λ̂1

)
+

n∑
l=1

exT
l β̂2 − exT

l β̂1 − λ̂2 − γ̂

γ̂
log

(
yl2 − yl1 − λ̂2

)
+ · · ·+

n∑
l=1

exT
l β̂k − exT

l β̂k−1 − λ̂k − γ̂

γ̂
log

(
ylk − yl(k−1) − λ̂k

)
−

n∑
l=1

ylk − λ̂1 − λ̂2 − · · · − λ̂k

γ̂
−

n∑
l=1

exT
l β̂k − λ̂1 − λ̂2 − · · · − λ̂k

γ̂
log γ̂−

n∑
l=1

log Γ

 exT
l β̂1 − λ̂1

γ̂

− n∑
l=1

log Γ

 exT
l β̂2 − exT

l β̂1 − λ̂2

γ̂

− · · · −
n∑

l=1
log Γ

 exT
l β̂k − exT

l β̂k−1 − λ̂k
γ̂

,

log L(ω̂MGR) =
n∑

l=1

log
(

f
(

yl1, yl2, . . . , ylk
∣∣∣ω̂MGR

))

log L(ω̂MGR) =
n∑

l=1

eβ̂01 − λ̂1 − γ̂

γ̂
log

(
yl1 − λ̂1

)
+

n∑
l=1

eβ̂02 − eβ̂01 − λ̂2 − γ̂

γ̂
log

(
yl2 − yl1 − λ̂2

)
+ · · ·+

n∑
l=1

eβ̂0k − eβ̂0(k−1) − λ̂k − γ̂

γ̂
log

(
ylk − yl(k−1) − λ̂k

)
−

n∑
l=1

ylk − λ̂1 − λ̂2 − · · · − λ̂k

γ̂
−

eβ̂0k − λ̂1 − λ̂2 − · · · − λ̂k
γ̂

log γ̂− log Γ

 eβ̂01 − λ̂1

γ̂

− log Γ

 eβ̂02 − eβ̂01 − λ̂2

γ̂

− · · · −
log Γ

 eβ̂0k − eβ̂0(k−1) − λ̂k
γ̂

.

Proposition 2. Based on Proposition 1, the distribution of test statistics G2 is Chi-square with sk degrees of
freedom, which can be written as follows.

G2 = 2 log L(Ω̂) − 2 log L(ω̂) d
→ χ2

sk, n→∞.

A Corollary of Proposition 2: If θ̂Ω is an estimator that maximizes the likelihood and the log-likelihood
functions under the population, θ̂ω is an estimator that maximizes the likelihood and the log-likelihood
functions under the null hypothesis, based on Equation (19), so:

G2= 2 log L
(
θ̂Ω

)
− 2 log L

(
θ̂ω

)
= 2

(
log L

(
θ̂Ω

)
− log L(θω)

)
− 2

(
log L

(
θ̂ω

)
− log L(θω)

)
.

(20)
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LogL(θω) function can be approached by Taylor’s second-degree expansion around θ̂Ω as follows.

log L(θω) ≈ log L
(
θ̂Ω

)
+ g

(
θ̂Ω

)(
θω − θ̂Ω

)
−

1
2

(
θω − θ̂Ω

)T[
I
(
θ̂Ω

)](
θω − θ̂Ω

)
, (21)

with g
(
θ̂Ω

)
=

∂ log L(θΩ)
∂θΩ

∣∣∣∣
θΩ=θ̂Ω

= 0 and I
(
θ̂Ω

)
= −

∂2 log L(θΩ)

∂θΩ∂(θΩ)T

∣∣∣∣∣
θΩ=θ̂Ω

.

Because g
(
θ̂Ω

)
= 0, then Equation (21) becomes:

log L(θω) ≈ log L
(
θ̂Ω

)
−

1
2

(
θω − θ̂Ω

)T[
I
(
θ̂Ω

)](
θω − θ̂Ω

)
2
(
log L

(
θ̂Ω

)
− log L(θω)

)
≈

(
θ̂Ω −θω

)T[
I
(
θ̂Ω

)](
θ̂Ω −θω

)
.

(22)

LogL(θω) function can be approached by Taylor’s second-degree expansion around θ̂ω as follows.

log L(θω) ≈ log L
(
θ̂ω

)
+ g

(
θ̂Ω

)(
θω − θ̂ω

)
−

1
2

(
θω − θ̂ω

)T[
I
(
θ̂Ω

)](
θω − θ̂ω

)
. (23)

Because g
(
θ̂Ω

)
= 0, then Equation (23) becomes:

log L(θω) ≈ log L
(
θ̂ω

)
−

1
2

(
θω − θ̂ω

)T[
I
(
θ̂Ω

)](
θω − θ̂ω

)
2
(
log L

(
θ̂ω

)
− log L(θω)

)
≈

(
θ̂ω −θω

)T[
I
(
θ̂Ω

)](
θ̂ω −θω

)
.

(24)

Based on Equations (22) and (24), the test statistics on Equation (20) can be stated as follows.

G2 = 2
(
log L

(
θ̂Ω

)
− log L(θω)

)
− 2

(
log L

(
θ̂ω

)
− log L(θω)

)
(25)

G2
≈

(
θ̂Ω −θω

)T[
I
(
θ̂Ω

)](
θ̂Ω −θω

)
−

(
θ̂ω −θω

)T[
I
(
θ̂Ω

)](
θ̂ω −θω

)
.

Equation (25) can be simplified by outlining the quadratic form of
(
θ̂Ω −θω

)T[
I
(
θ̂Ω

)](
θ̂Ω −θω

)
,

so we obtained:

2
(
log L

(
θ̂Ω

)
− log L

(
θ̂ω

))
≈ β̂
∗T(

[I11] − [I12][I22]
−1[I21]

)
β̂
∗
≈ β̂
∗T[

I11
]−1
β̂
∗
. (26)

From Equation (26), this can be obtained:

β̂
∗ d
→ N

(
0,

[
I11

]
(sk×sk)

)
, n→∞, (27)

[
I11

]− 1
2 β̂
∗ d
→ N(0, Isk). (28)

Based on Equation (28), the quadratic form given by Equation (26) distributed Chi-square with sk
degrees of freedom is:

2
(
log L

(
θ̂Ω

)
− log L

(
θ̂ω

))
≈

[[
I11

]− 1
2 β̂
∗

]T[[
I11

]− 1
2 β̂
∗

]
= zTz d

→ χ2
sk, n→∞,

(29)

with z =
[
I11

]− 1
2 β̂
∗ d
→ N(0, Isk), n→∞.

sk is a vector dimension β∗ or the difference between the number of parameter sets under the
population with the number of parameter sets under the null hypothesis, symbolized by n(Ω) − n(ω).
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Proposition 3. The critical area for testing the hypothesis of the MGR model regression parameters
simultaneously with regard to Equation (16) is:

α = P(Λ < Λ0)

= P(−2 log Λ > −2 log Λ0)

= P
(
G2 > c1

)
, with c1 = −2 log Λ0

= P
(
G2 > χ2

α,sk

)
= P

(
G2 > χ2

α,n(Ω)−n(ω)

)
.

(30)

Based on Proposition 2 and Proposition 3, the decision to reject the null hypothesis is made if
G2 > χ2

α;d f , with d f = n(Ω) − n(ω), n(Ω) is the number of parameters under the population, and n(ω)
is the number of parameters under the null hypothesis.

The null hypothesis for the partial test is H0 : βqi = 0, whereas the alternative is H1 : βqi , 0, with
q = 1, 2, . . . , s, i = 1, 2, . . . k. According to Pawitan [18], the test statistic is stated in Equation (31).

Z =
β̂qi

SE(β̂qi)
, (31)

with SE(β̂qi) =
√

ˆvar(β̂qi). The ˆvar(β̂qi) is diagonal elements that correspond to the −H−1
(
θ̂
)

matrix.
The null hypothesis is rejected if |Z| > Zα/2.

3. Data and Method

The parameter estimation and hypothesis testing on MGR were done based on the following
steps. The MGR model was specified based on the pdf in Equation (5) for n observations, l = 1, 2, . . . , n,
to construct the likelihood and the log-likelihood functions. The first derivative of the log-likelihood
function for each parameter was computed, then equalized to zero. If the solutions were closed-form,
then the parameter estimators were obtained. Otherwise, numerical optimization was needed. As shown
in the previous section, the solution for parameter optimization was not closed-form, such that the
BHHH algorithm was employed in this work.

The overall test for MGR’s significance was done using the maximum likelihood ratio test (MLRT).
The test statistic was formulated in Equation (19). Meanwhile, the partial test for individual parameter
significance in MGR was done using the Wald test [18]. Its test statistics are provided in Equation (31).
The proposed MGR model, along with its parameter estimation and hypothesis testing, was applied
on real data as an application of this study.

This study used secondary data obtained from Statistics Indonesia. The data used were three
response variables, i.e., the life expectancy index, education index, and expenditure index, with six
predictor variables: percentage of households that have a private toilet, net enrollment rate of schooling,
population density, percentage of poor people, and unemployment rate. The data were observed for
119 regencies/municipalities in Java, Indonesia, in the year 2018.

4. Application on Human Development Dimensions Data

First, testing the gamma distribution was done using the Kolmogorov–Smirnov (KS) test. The null
hypothesis is the data that follows the gamma distribution against the alternative hypothesis that data
does not follow the gamma distribution. The test statistic value of the KS test for each response variable
is presented in Table 1. In this paper, the goodness of fit is done univariately as the test for multivariate
gamma distribution is not available yet. The test for that is another extensive work that is not covered
in this paper. Once each response follows gamma distribution, we assume the multiresponses data
follow a multivariate gamma distribution. This assumption is the limitation of this work, such that the
proposed model can be applied to real data without delay.
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Table 1. Gamma distribution test with Kolmogorov–Smirnov (KS) for α = 0.05.

Response Dn D(0,05) p-Value

Y1 0.118 0.124 0.066
Y2 0.107 0.124 0.123
Y3 0.065 0.124 0.667

Each response variable has Dn < D(0.05) and p-value > α. The test concludes not to reject
the null hypothesis, meaning that the data of life expectancy index (Y1), the education index (Y2),
and the expenditure index (Y3) follow the gamma distribution. Therefore, as our research limitation,
as mentioned previously, the three response variables are assumed to follow MG distribution.

To support our assumption, we calculated the correlation between the pair of the response
variables to show there are dependencies among responses. The correlation coefficients for each pair
are as follows: (i) Y1 and Y2 is 0.398 with p-value close to zero, (ii) Y1 and Y3 is 0.324 with p-value close
to zero, (iii) Y2 and Y3 is 0.818 with p-value close to zero. The correlation coefficient between education
index (Y2) and expenditure index (Y3) is stronger than the other pairs. To find out whether there is
dependency among the response variables, one can use Bartlett’s test of sphericity so that the data are
feasible for multivariate analysis. This test has statistic value χ2 = 148.735 and p-value = 2.22 × 10−16.
The χ2 > χ2

3;0,05 (or 7.815) and p-value < α, and alpha is 0.05. The decision is to reject the null
hypothesis (Pearson correlation matrix not equal to an identity matrix), which means the correlation
between the response variables is significant in the multivariate sense. Therefore, the data analysis
needs to be done in a multivariate way using the MGR model.

We also tested the multicollinearity among the predictor variables. The variance inflation factor
(VIF) value for each predictor variable is 1.358 (for X1), 1.350 (X2), 1.560 (X3), 1.849 (X4), and 1.211 (X5).
The VIF value for each of the predictor variables is less than ten which shows there is no multicollinearity
among the predictor variables.

In Table 2, the mean values for response variables Y1, Y2, and Y3 are 0.806, 0.632, and 0.735.
Although Y1, Y2, and Y3 have mean values that do not differ greatly, they are not necessarily of the
same quality; it depends on the size of the spread of the data. One measure of data distribution
that can be used is the coefficient of variation (CoV). The CoV for Y1, Y2, and Y3 are 5.200, 12.210,
and 9.140, respectively. The CoV for education index (Y2) is the highest among others, which means
that the variable is more heterogeneous. The CoV for predictor variables X1, X2, X3, X4, and X5 are,
respectively, 12.100, 16.750, 136.250, 43.750, and 45.530. The CoV for population density (X3) is the
highest among other predictor variables as its range is also the biggest one.

Table 2. Description of data.

Variables Mean SD Coefficient of
Variation Min Max

Life expectancy index (Y1) 0.806 0.042 5.200 0.680 0.890
Education index (Y2) 0.632 0.077 12.210 0.470 0.850
Expenditure index (Y3) 0.735 0.067 9.140 0.620 0.960
Percentage of households that have a private toilet (X1) 80.215 9.710 12.100 37.820 98.010
Net enrollment rate of schooling (X2) 63.579 10.650 16.750 34.220 89.460
Population density (X3) 3298 4493 136.250 278 19757
Percentage of poor people (X4) 9.623 4.211 43.750 1.680 21.210
Unemployment rate (X5) 5.337 2.430 45.530 1.430 12.770

The dependency between response and predictor variables can be shown visually by the matrix
plot, as exhibited in Figure 1. The correlation between X3 and X4 (−0.585) is stronger than the correlation
between X4 and the other predictor variables, even stronger than other pairs. The correlation between
X1 and X5 (−0.017) is weakest compared to the correlation of other couples. There are indications that
the relationship is non-linear between X3 with the response variable and the other predictor variables.
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For the correlation between response and predictor variables, log(Y1) has the strongest correlation
with X1 (0.434) compared to other predictors. The log(Y2) and X3 have the strongest correlation (0.705)
compared with other predictors, while the correlation of log(Y3) and X3 is the strongest one (0.744).
This value shows that log expenditure index and population density has the strongest relationship
among other pairs.

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 18 

 

can be used is the coefficient of variation (CoV). The CoV for Y1, Y2, and Y3 are 5.200, 12.210, and 

9.140, respectively. The CoV for education index (Y2) is the highest among others, which means that 

the variable is more heterogeneous. The CoV for predictor variables X1, X2, X3, X4, and X5 are, 

respectively, 12.100, 16.750, 136.250, 43.750, and 45.530. The CoV for population density (X3) is the 

highest among other predictor variables as its range is also the biggest one. 

Table 2. Description of data. 

Variables Mean SD Coefficient 

of 

Variation 

Min Max 

Life expectancy index (Y1) 0.806 0.042 5.200 0.680 0.890 

Education index (Y2) 0.632 0.077 12.210 0.470 0.850 

Expenditure index (Y3) 0.735 0.067 9.140 0.620 0.960 

Percentage of households that have a 

private toilet (X1) 80.215 9.710 12.100 37.820 98.010 

Net enrollment rate of schooling (X2) 63.579 10.650 16.750 34.220 89.460 

Population density (X3) 3298 4493 136.250 278 19757 

Percentage of poor people (X4) 9.623 4.211 43.750 1.680 21.210 

Unemployment rate (X5) 5.337 2.430 45.530 1.430 12.770 

The dependency between response and predictor variables can be shown visually by the matrix 

plot, as exhibited in Figure 1. The correlation between X3 and X4 (−0.585) is stronger than the 

correlation between X4 and the other predictor variables, even stronger than other pairs. The 

correlation between X1 and X5 (−0.017) is weakest compared to the correlation of other couples. There 

are indications that the relationship is non-linear between X3 with the response variable and the 

other predictor variables. For the correlation between response and predictor variables, log(Y1) has 

the strongest correlation with X1 (0.434) compared to other predictors. The log(Y2) and X3 have the 

strongest correlation (0.705) compared with other predictors, while the correlation of log(Y3) and X3 

is the strongest one (0.744). This value shows that log expenditure index and population density has 

the strongest relationship among other pairs. 

 
Figure 1. The matrix plot of the response and predictor variables.

To find out which predictor variables significantly predicted response variables, we employed the
MGR model. Table 3 presents the ML estimates of the MGR model with a single predictor and their
corresponding standard errors, z score, and p-value. Every single predictor does not affect any response
variables. Only the intercepts when the MGR model employs X3 as a single predictor are significant.

Table 3. Parameter estimation of multivariate gamma regression (MGR) model with a single predictor.

Parameter Estimate Standard Error z p-Value

(Y1, Y2, Y3) ∼ X1
β01 −0.422284 0.646166 −0.654 0.513
β11 0.002758 0.007970 0.346 0.729
β02 −0.762038 1.120002 −0.680 0.496
β12 0.004297 0.016611 0.259 0.796
β03 −0.437765 0.760203 −0.576 0.565
β13 0.002339 0.011250 0.208 0.835

(Y1, Y2, Y3) ∼ X2
β01 −0.305102 0.518863 −0.588 0.557
β21 0.001896 0.008076 0.235 0.814
β02 −0.881184 0.575235 −1.532 0.126
β22 0.007363 0.008563 0.860 0.390
β03 −0.430093 0.857503 −0.502 0.616
β23 0.002789 0.014685 0.190 0.849
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Table 3. Cont.

Parameter Estimate Standard Error z p-Value

(Y1, Y2, Y3) ∼ X3
β01 −0.205148 0.000421 −486.716 0.000 *
β31 0.000002 0.000054 0.029 0.977
β02 −0.483898 0.000262 −1846.353 0.000 *
β32 0.000020 0.000021 0.930 0.352
β03 −0.306820 0.000209 −1465.698 0.000 *
β33 0.000016 0.000014 1.132 0.258

(Y1, Y2, Y3) ∼ X4
β01 −0.166290 0.581543 −0.286 0.775
β41 −0.002307 0.019731 −0.117 0.907
β02 −0.238049 1.200557 −0.198 0.843
β42 −0.019448 0.046895 −0.415 0.678
β03 −0.136018 1.044931 −0.130 0.896
β43 −0.012480 0.035650 −0.350 0.726

(Y1, Y2, Y3) ∼ X5
β01 −0.168892 0.555574 −0.304 0.761
β51 −0.006666 0.057555 −0.116 0.908
β02 −0.460389 0.862713 −0.534 0.594
β52 0.006020 0.092371 0.065 0.948
β03 −0.279763 0.831607 −0.336 0.737
β53 0.003974 0.040046 0.099 0.921

* Significant at α = 10%.

The MGR model with a single predictor (for example, the X5) for the life expectancy index,
education index, and expenditure index is obtained as follows.

µ̂l1 = exp(−0.168892− 0.006666Xl5),
µ̂l2 = exp(−0.460389 + 0.006020Xl5),
µ̂l3 = exp(−0.279763 + 0.003974Xl5).

As summarized in Table 3, it is shown that all predictor variables are not significant. For comparison,
we also did MGR modeling with multiple predictors. Table 4 presents the ML estimates of the MGR
model with multiple predictors along with their corresponding standard errors, z score, and p-value.

Table 4. Parameter estimation of MGR model with multiple predictors.

Parameter Estimate Standard Error z p-Value

Life expectancy index (Y1)
β01 −0.353421 0.000119 −2969.383 0.000 **
β11 0.002005 0.002987 0.671 0.502
β21 0.000653 0.003494 0.187 0.852
β31 0.000004 0.000029 0.124 0.902
β41 −0.000469 0.002831 −0.166 0.868
β51 −0.009502 0.005252 −1.809 0.070 **

Education index (Y2)
β02 −0.606408 0.000120 −5069.156 0.000 **
β12 0.000207 0.003800 0.055 0.956
β22 0.004706 0.004952 0.950 0.342
β32 0.000012 0.000018 0.677 0.498
β42 −0.011729 0.004125 −2.843 0.004 **
β52 −0.011194 0.006636 −1.687 0.092 **
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Table 4. Cont.

Parameter Estimate Standard Error z p-Value

Expenditure index (Y3)
β03 −0.274026 0.000101 −2723.533 0.000 **
β13 0.000779 0.002337 0.333 0.739
β23 0.000298 0.002621 0.114 0.910
β33 0.000013 0.000014 0.943 0.346
β43 −0.006542 0.003125 −2.093 0.036 **
β53 −0.007994 0.003900 −2.050 0.040 **

** Significant at α = 10%.

The estimate of the scale parameter is 0.649423, with its standard error 0.000028. The estimate
of λ1, the location parameter for Y1, is 0.670845 (standard error 0.006884); meanwhile, the estimate
for λ2 is −0.309362, with standard error 0.006507, and for λ3 is 0.000468 (standard error 0.006530).
The significant parameters are the scale parameter γ, the location parameter for Y1 and Y2, respectively,
and λ1 and λ2, as their p-values are less than α = 10%. The estimate of each parameter corresponding
to each predictor is summarized in Table 4. Therefore, the MGR model for the life expectancy index,
education index, and expenditure index is obtained as follows.

µ̂l1 = exp(−0.353421 + 0.002005Xl1 + 0.000653Xl2 + 0.000004Xl3 − 0.000469Xl4 − 0.009502Xl5)

µ̂l2 = exp(−0.606408 + 0.000207Xl1 + 0.004706Xl2 + 0.000012Xl3 − 0.011729l4 − 0.011194Xl5)

µ̂l3 = exp(−0.274026 + 0.000779Xl1 + 0.000298Xl2 + 0.000013Xl3 − 0.006542Xl4 − 0.007994Xl5)

The Akaike information criterion (AIC) value is −63.903, and the corrected Akaike information
criterion (AICc) value is −53.361. To know the average squared difference between the estimated
and the actual values, one can use the mean square error (MSE). The MSEs for the life expectancy
index, education index, and expenditure index are 0.001, 0.002, and 0.003, respectively. As the MSE
is an unbiased estimator of variance, the MSE value is expected to be not much different from the
variance of each response variable, i.e., 0.002 (expectancy index), 0.006 (education index), and 0.004
(expenditure index).

We can perform the simultaneous test for the model’s significance using Wilk’s likelihood ratio
statistics derived based on the MLRT. The test statistic value is 46.682, and the value of the Chi-square
table with 15 degrees of freedom and α = 10% is 22.307. The test statistical value is larger than the
value of the Chi-square table; therefore, the decision is to reject the null hypothesis. It means that the
five predictor variables have a significant effect on the response variables simultaneously. To find
out the predictor variables that partially affect the response variable, one can use test statistics in
Equation (31). From Table 4, it can be seen that the significant predictor variable that influences the life
expectancy index is the unemployment rate (X5); meanwhile the education index and expenditure
index are significantly affected by the percentage of poor people (X4) and unemployment rate (X5).

Based on the results of MGR modeling with a single predictor (Table 3) and multiple predictors
(Table 4), it can be determined the differences in the coefficient signs only happen for X5 in response to
Y2 and Y3, as shown in Table 5. We can also find the supports of this evidence from the matrix plot in
Figure 1, that individually, X5 has a negative relationship with Y1, while it has positive dependencies
with Y2 and Y3. On the other side, the X4 has a stronger negative individual relationship with all
responses. Therefore, when X4 and X5 are used as predictors together in the MGR model, the sign of
X5 changes as there is a significant correlation (−0.391 with p-value < 0.05) between X4 and X5, where
X4 affects the response of Y2 and Y3 is stronger than X5.
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Table 5. The difference in coefficient signs and significance of the parameters in the MGR model.

Response Variables Predictor Variables

MGR Modeling

Multiple Predictors
Single Predictor

X1 X2 X3 X4 X5

Y1 X1 + +

X2 + +
X3 + +
X4 − −

X5 − *** −

Y2 X1 + +
X2 + +
X3 + +
X4 − *** −

X5 − *** +

Y3 X1 + +
X2 + +
X3 + +
X4 − *** −

X5 − *** +

*** Significant at α = 10%.

.
Recall the VIF value for X5 is 1.211, which is small. This value means that there is a weak

relationship between X5 and (X1, X2, X3, and X4). However, there is a significant correlation between
X4 alone and X5. In the MGR with multiple predictors, the positive sign for X5 will not change if X4

also has a positive sign for responses X2 and X3. Unfortunately, that is not the case. The correlation
between X4 and X2 has a different sign compared with the correlation between X5 and X2. The sign of
X4 and X5 in MGR with multiple predictors can change depending on its correlation with the response
variable. The same explanation pertains to response X3.

Life expectancy index (Y1) has a negative association with the percentage of poor people (X4),
even though it is not significant for regency/municipality in Java. This finding means that an increase
in life expectancy index is not affected by the percentage of poor people in Java. The education index
(Y2) and expenditure index (Y3) have a significant negative dependency on the percentage of poor
people in Java.

The predictions resulting from the MGR model are expected to be close to the actual values.
The closer those two values, the narrower the spread, as displayed in Figure 2. It can be seen that
fitting values for Y2 and Y3 are better than those of Y1. This result is also supported by significant
predictors, as reported in Table 4. The life expectancy index has one significant predictor, while the
other two responses have two significant predictors that increase their coefficients of determination.
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5. Conclusions

The proposed MGR model has been developed along with its parameter estimation and hypothesis
testing. The solution of parameter estimation using MLE is not closed-form such that it is optimized
numerically using the BHHH algorithm. The MLRT and Wald tests are employed for testing the
model’s significance and the individual parameter, respectively. The proposed MGR model is applied
to model the three dimensions of the human development index (HDI) with five predictor variables.
The empirical results show that modeling using multiple predictors makes more sense compared to the
model when it only employs a single predictor. When multiple predictors are used in the MGR model,
there is a possibility that the sign of a particular parameter changes compared to when it is employed
alone. This is a common problem that arises in modeling caused by collinearity among predictors.
This issue can be overcome in future work.
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Nomenclature

AIC Akaike information criterion
AICc Corrected Akaike information criterion
BHHH Berndt–Hall–Hall–Hausman
CoV Coefficient of variation
GLR Generalized likelihood ratio
HDI Human development index
KS Kolmogorov–Smirnov
MG Multivariate gamma
MGR Multivariate gamma regression
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ML Maximum likelihood
MLE Maximum likelihood estimation
MLRT Maximum likelihood ratio test
MSE Mean square error
Pdf Probability density function
TGR Trivariate gamma regression
VIF Variance inflation factor

Appendix A

The first derivatives of the log-likelihood function for each parameter under the null hypothesis.

∂ log L(γ,λ1,λ2, . . . ,λk, β01, β02, . . . , β0k)

∂γ
=

n∑
l=1

(
λ1 − eβ01

γ2 log(yl1 − λ1)

)
+

n∑
l=1

(
eβ01 − eβ02 + λ2

γ2 log(yl2 − yl1 − λ2)

)
+ · · ·+

n∑
l=1

(
eβ0(k−1) − eβ0k + λk

γ2 log
(
ylk − yl(k−1) − λk

))
+

n∑
l=1

ylk

γ2 −
nλ1

γ2 −
nλ2

γ2 −
nλ3

γ2 −

(
n(logγ)λ1

γ2 −
nλ1

γ2 +
n(logγ)λ2

γ2 −
nλ2

γ2 +
n(logγ)λ3

γ2 −
nλ3

γ2 +(
−
(logγ)eβ0k

γ2 +
eβ0k

γ2

))
−

(
−

1
γ2

(
Ψ
(

eβ01 − λ1
γ

))(
eβ01 − λ1

))
−

(
−

1
γ2

(
Ψ
(

eβ02 − eβ01 − λ2
γ

))(
eβ02 − eβ01 − λ2

))
−

· · · −

(
−

1
γ2

(
Ψ
(

eβ0k − eβ0(k−1) − λk
γ

))(
eβ0k − eβ0(k−1) − λk

))
.

∂ log L(γ,λ1,λ2, . . . ,λk, β01, β02, . . . , β0k)

∂λ1
=

n∑
l=1

(
−

log(yl1 − λ1)

γ
−

eβ01 − λ1 − γ

γ(yl1 − λ1)

)
+

n
γ
+

n(logγ)
γ

−(
−

1
γ

Ψ
(

eβ01 − λ1
γ

))
.

∂ log L(γ,λ1,λ2, . . . ,λk, β01, β02, . . . , β0k)

∂λ2
=

n∑
l=1

(
−

log(yl2 − yl1 − λ2)

γ
−

eβ02 − eβ01 − λ2 − γ

γ(yl2 − yl1 − λ2)

)
+

n
γ
+

n(logγ)
γ

−(
−

1
γ

Ψ
(

eβ02 − eβ01 − λ2
γ

))
.

∂ log L(γ,λ1,λ2, . . . ,λk, β01, β02, . . . , β0k)

∂λk
=

n∑
l=1

− log
(
ylk − yl(k−1) − λk

)
γ

−
eβ0k − eβ0(k−1) − λk − γ

γ
(
ylk − yl(k−1) − λk

) + n
γ
+

n(logγ)
γ

−

(
−

1
γ

Ψ
(

eβ0k − eβ0(k−1) − λk
γ

))
.

∂ log L(γ,λ1,λ2, . . . ,λk, β01, β02, . . . , β0k)

∂β01
=

n∑
l=1

(
(log(yl1 − λ1))

eβ01

γ

)
−

n∑
l=1

(
(log(yl2 − yl1 − λ2))

eβ01

γ

)
−(

Ψ
(

eβ01 − λ1
γ

))
eβ01

γ
−

(
−

(
Ψ
(

eβ02 − eβ01 − λ2
γ

))
eβ01

γ

)
.

∂ log L(γ,λ1,λ2, . . . ,λk, β01, β02, . . . , β0k)

∂β02
=

n∑
l=1

(
(log(yl2 − yl1 − λ2))

eβ02

γ

)
−

n∑
l=1

(
(log(yl3 − yl2 − λ3))

eβ02

γ

)
−

(
Ψ
(

eβ02 − eβ01 − λ2
γ

))
eβ02

γ
−

(
−

(
Ψ
(

eβ03 − eβ02 − λ3
γ

))
eβ02

γ

)
.

∂ log L(γ,λ1,λ2, . . . ,λk, β01, β02, . . . , β0k)

∂β0k
=

n∑
l=1

((
log

(
ylk − yl(k−1) − λk

)) eβ0k

γ

)
− (logγ)

eβ0k

γ
−

(
Ψ
(

eβ0k − eβ0(k−1) − λk
γ

))
eβ0k

γ
.



Symmetry 2020, 12, 813 17 of 17

References

1. Tripathi, R.C.; Gupta, C.R.; Pair, K.P. Statistical test involving several independent gamma distribution.
J. Ann. Inst. Stat. Math 1993, 773–786. [CrossRef]

2. Nagar, D.K.; Correa, A.R.; Gupta, A.K. Extended matrix variate gamma and beta functions. J. Multivar. Anal.
2013, 122, 53–69. [CrossRef]

3. Bhattacharya, B. Tests of parameters of several gamma distributions with inequality restrictions. J. Ann. Inst.
Stat. Math 2002, 54, 565–576. [CrossRef]

4. Chen, W.W.S.; Kotz, S. The riemannian structure of the three parameter gamma distribution. J. Appl. Math.
2013, 4, 514–522. [CrossRef]

5. Schickedanz, P.T.; Krause, G.F.A. Test for the scale parameters of two gamma distributions using the
generalized likelihood ratio. J. Appl. Meteorol. 1970, 9, 13–16. [CrossRef]

6. Nadarajah, S. Reliability for some bivariate gamma distributions. Math. Probl. Eng. 2005, 2, 151–163.
[CrossRef]

7. Nadarajah, S.; Gupta, A.K. Some bivariate gamma distributions. Appl. Math. Lett. 2006, 19, 767–774.
[CrossRef]

8. Mathai, A.M.; Moschopoulos, P.G. A Form of multivariate gamma distribution. J. Ann. Inst. Stat. Math 1992,
44, 97–106. [CrossRef]

9. Bates, D.M.; Watts, D.G. Nonlinear Regression Analysis and Its Applications, 2nd ed.; John Wiley & Sons, Inc.:
New York, NY, USA, 1988; ISBN: 9780470316757 (online), ISBN: 9780471816430 (print). [CrossRef]

10. Pan, J.; Mahmoudi, M.R.; Baleanu, D.; Maleki, M. On comparing and classifying several independent linear
and non-linear regression models with symmetric errors. Symmetry 2019, 11, 820. [CrossRef]

11. Rahayu, A.; Purhadi; Sutikno; Prastyo, D.D. Trivariate gamma regression. IOP Conf. Ser. Mater. Sci. Eng.
2019, 546, 052062. [CrossRef]

12. Mathai, A.M.; Moschopoulos, P.G. On a multivariate gamma. J. Multivar. Anal. 1991, 39, 135–153. [CrossRef]
13. Vaidyanathan, V.S.; Lakshmi, R.V. Parameter estimation in multivariate gamma distribution. Stat. Optim.

Inf. Comput. 2015, 3. [CrossRef]
14. Balakrishnan, N.; Wang, J. Simple efficient estimation for the three-parameter gamma distribution. J. Stat.

Plan. Inference 2000, 85, 115–126. [CrossRef]
15. Ewemoje, T.A.; Ewemooje, O.S. Best distribution and plotting positions of daily maximum flood estimation

at ona river in Ogun-Oshun river Basin, Nigeria. Agric. Eng. Int. 2011, 13, 1–13, EID: 2-s2.0-84877825735.
16. Bono, R.; Arnau, J.; Alarcon, R.; Blanca, M.J. Bias, precision, and accuracy of skewness and kurtosis estimators

for frequently used continuous distributions. Symmetry 2020, 12, 19. [CrossRef]
17. Usman, M.; Zubair, M.; Shiblee, M.; Rodrigues, P.; Jaffar, S. Probabilistic modeling of speech in spectral

domain using maximum likelihood estimation. Symmetry 2018, 10, 750. [CrossRef]
18. Pawitan, Y. All Likelihood: Statistical Modelling and Inference Using Likelihood, 1st ed.; Clarendon Press: Oxford,

UK, 2001; pp. 41–42, ISBN 9780199671229.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF00774787
http://dx.doi.org/10.1016/j.jmva.2013.07.001
http://dx.doi.org/10.1023/A:1022411127154
http://dx.doi.org/10.4236/am.2013.43077
http://dx.doi.org/10.1175/1520-0450(1970)009&lt;0013:ATFTSP&gt;2.0.CO;2
http://dx.doi.org/10.1155/MPE.2005.151
http://dx.doi.org/10.1016/j.aml.2005.10.007
http://dx.doi.org/10.1007/BF00048672
http://dx.doi.org/10.1002/9780470316757
http://dx.doi.org/10.3390/sym11060820
http://dx.doi.org/10.1088/1757-899X/546/5/052062
http://dx.doi.org/10.1016/0047-259X(91)90010-Y
http://dx.doi.org/10.19139/95
http://dx.doi.org/10.1016/S0378-3758(99)00074-9
http://dx.doi.org/10.3390/sym12010019
http://dx.doi.org/10.3390/sym10120750
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Multivariate Gamma Regression Model 
	Data and Method 
	Application on Human Development Dimensions Data 
	Conclusions 
	
	References

