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Abstract: The relativistic coupled-cluster (RCC) theory has been applied recently to a number of
heavy molecules to determine their properties very accurately. Since it demands large computational
resources, the method is often approximated to single and double excitations (RCCSD method).
The effective electric fields (Ee f f ) and molecular permanent electric dipole moments (PDMs) of SrF,
BaF, and mercury monohalides (HgX with X = F, Cl, Br, and I) molecules are of immense interest for
probing fundamental physics. In our earlier calculations of Ee f f and PDMs for the above molecules,
we neglected the non-linear terms in the property evaluation expression of the RCCSD method.
In this work, we demonstrate the roles of these terms in determining the above quantities and their
computational time scalability with the number of processors of a computer. We also compare our
results with previous calculations that employed variants of RCC theory, as well as other many-body
methods and available experimental values.

Keywords: relativistic coupled cluster theory; determining molecular properties; molecular electric
dipole moment; probing fundamental physics

1. Introduction

The coupled-cluster (CC) theory is considered to be the gold standard of electronic structure
calculations in atoms and molecules [1,2]. It owes the title to its ability to capture electron correlation
effects to a much better extent than other well-known many-body approaches such as configuration
interaction (CI) [3], at a given level of truncation. This feature has led to accurate calculations of many
properties in both the atomic and molecular systems (for example, see [4,5]). We shall focus on the
application of this method to evaluate molecular properties that are useful to probe fundamental
physics, specifically the permanent electric dipole moment (PDM) and parity and time-reversal
violating electric dipole moment of the electron (eEDM) [6,7]. The molecular PDM is a very interesting
property, and it plays a role in the sensitivity of an eEDM experiment through the polarizing factor [8,9].
The PDM is also an extremely relevant property in the ultracold sector, and molecules with large
PDMs find innumerable applications in that domain. For example, the SrF molecule possesses a fairly
large PDM and hence gives rise to long-range, tunable, and anisotropic dipole-dipole interactions.
This aspect, in combination with the fact that SrF is laser-coolable, makes the molecule important for
applications such as exploring new quantum phases and quantum computing [10].
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The extremely tiny eEDM is yet to be detected. The upper bounds to it are extracted by a
combination of relativistic many-body theory and experiment [11]. These bounds, in turn, help to
constrain several theories that lie beyond the Standard Model of particle physics, for example
supersymmetric theories [12]. The knowledge of the eEDM also aids in understanding the underlying
physics that describes the matter-antimatter asymmetry in the universe [13]. The theoretical molecular
property of interest to eEDM is the effective electric field, Eeff. It is the internal electric field that is
experienced by an electron due to other electrons and nuclei in a molecule. An accurate estimate
of this quantity is used in setting or improving an upper bound to eEDM (for example, [5]), or to
propose a new candidate for molecular eEDM experiments (for example, [8]). This quantity can only
be obtained using a relativistic many-body theory [14]. Calculating the PDM provides information on
the polarizing factor for molecules that are proposed for eEDM searches, where the property has not
been measured.

There have been several calculations of Eeff for various molecules using the single and double
excitations approximation in the relativistic CC theory (RCCSD method), for example [15,16].
In our earlier RCCSD calculations [5,8,17–20], the expectation value evaluating the expression was
approximated to only the linear terms (referred to as LERCCSDmethod). Later, the calculations
performed for HgX (X = F, Cl, Br, and I), SrF, and BaF besides other molecules were verified by using
the finite-field energy derivative approach of the RCCSD theory (FFRCCSD method) [9], by adding
the interaction Hamiltonians along with the residual Coulomb interaction operator. The LERCCSD
and the FFRCCSD approaches showed excellent agreements (within one percent) in the values of
Eeff. The results for the PDMs obtained in these methods were comparable for SrF and BaF and also
overestimated the property with respect to their experimental values, but they differed substantially
for HgX (with as much as 20 percent for HgI). The shortcomings of the above FFRCCSD method were
that the accuracy of the results depended on numerical differentiation. Moreover, orbital relaxation
effects were neglected by not including the perturbation in the Dirac–Fock (DF) level itself, in order to
avoid breaking of Kramer’s symmetry in the presence of a time-reversal symmetry violating eEDM
interaction, which has to be compensated for eventually with further iterations.

Here, we intend to calculate the values of Ee f f and PDM by including the non-linear terms in
the expectation value evaluation expression of the RCCSD method (nLERCCSD method). We adopt
the intermediate-diagram approach as discussed in [21,22] to implement these non-linear RCC terms.
For this purpose, we undertook molecules that were very relevant for eEDM studies. HgX molecules
were identified as promising candidates for future eEDM searches, owing to their extremely large
effective electric fields, as well as experimental advantages [8]. A recent work that proposed to
laser-cool HgF opened new avenues for an upcoming eEDM experiment with the molecule [23].
Another very important molecule in this regard is BaF, and two eEDM experiments are simultaneously
underway for this system [24,25]. Experimental values of the PDMs are available only for BaF among
the systems that we mentioned above. We also present results for the PDM of SrF, as it was the
first molecule to be laser-cooled [10], and a very precise measurement of this quantity has been
reported [26].

2. Theory and Implementation

In the RCC theory, the wave function of a molecular state is expressed as [27]:

|Ψ〉 = eT |Φ0〉, (1)

where T is the cluster operator and |Φ0〉 is the reference state obtained by mean-field theory. We used
the Dirac–Coulomb Hamiltonian in our calculations, and |Φ0〉 was obtained using the DF method.
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In the RCCSD method, we approximated T = T1 + T2 with subscripts 1 and 2 indicating single and
double excitations, respectively, and they are given using the second-quantization operators as:

T1 = ∑
i,a

ta
i a†

a ai and T2 =
1
2 ∑

i,j,a,b
tab
ij a†

a a†
b ajai, (2)

where the notation i, j is used to denote holes, a, b refer to particles, ta
i is the one hole-one particle

excitation amplitude, and tab
ij is the two-hole two-particle excitation amplitude.

We employed the UTChem [28–30] program for the DF calculations, the atomic orbital to molecular
orbital integral transformations, as well as generating the property integrals and the Dirac08 [31] code
to obtain the RCCSD excitation operator amplitudes. It is important to reiterate that all the non-linear
terms were included in the equations of the RCCSD method to determine the excitation amplitudes.

The expectation value of an operator, O, in the (R)CC method, can be written as follows:

〈O〉 = 〈Ψ|O|Ψ〉〈Ψ|Ψ〉 =
〈Φ0|eT†

OeT |Φ0〉
〈Φ0|eT† eT |Φ0〉

= 〈Φ0|(eT†OeT)|Φ0〉c, (3)

where the subscript, “c”, means that each term is fully contracted [32], or in the diagrammatic
terminology, connected [22].

The PDM of a molecule is determined as [33]:

µ = 〈Ψ|D|Ψ〉+ ∑
A

ZArA, (4)

where D is the electric dipole operator, the index A runs over the number of nuclei, ZA is the atomic
number of the Ath nucleus, and rA is the position vector from the origin to the site of the Ath
nucleus. The first term in the above expression is the electronic term, while the second term is the
nuclear contribution.

Similarly, Eeff is evaluated as:

Eeff = 〈Ψ|
Ne

∑
i=1

βΣi · Eintl
i |Ψ〉, (5)

where the summation is over the number of electrons, Ne, β is one of the Dirac matrices (also known
as γ0 in the literature), Σ is the (4 × 4) version of Pauli matrices, and Eintl

i is the internal electric
field that is experienced by the ith electron, and is given by the negative of the gradient of the sum
of electron-nucleus and electron-electron interaction potentials. Since the expression given above
involves evaluating integrals over a two-body Coulomb operator, 1

rij
, and is complicated, we resorted

to employing an effective eEDM Hamiltonian instead of the one introduced above [14]. It follows that:

Eeff = −2ic〈Ψ|
Ne

∑
i=1

βγ5 p2
i |Ψ〉, (6)

where γ5 is the product of the gamma matrices (given by iγ0γ1γ2γ3), while pi is the momentum of the
ith electron.

In the LERCCSD method, the following expression has been used in the evaluation of the
expectation values:

〈O〉 = 〈Φ0|(1 + T1 + T2)
†O(1 + T1 + T2)|Φ0〉c. (7)
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These terms are represented using Goldstone diagrams and are shown in Figure 1. Note that
OT2 and its Hermitian conjugate are zero, due to Slater–Condon rules [34,35]. Diagrammatically,
such a diagram will have at least two open lines, that is it is not fully connected. The evaluation of
the properties using the LERCCSD approximation misses the contributions corresponding to many
correlation effects that will arise from the relativistic third-order many-body perturbation theory
(RMBPT method). On the other hand, it is not possible to evaluate exactly Equation (3) even in the
RCCSD method as it contains a non-terminating expression. However, it is possible to demonstrate
the importance of contributions from the leading-order non-linear terms corresponding to the third-
and fourth-order effects of the RMBPT method. It is still extremely challenging to perform direct
calculations by incorporating the non-linear terms of Equation (3) in heavier molecules, due to the
amount of computations involved in it. In order to tackle this issue, we adopted an additional
computational step by breaking the non-linear terms into intermediate parts as described more
elaborately below. Further, we parallelized the program using Message Passing Interface (MPI) and
show the scalability of their calculations with the number of processors of a computer.

Figure 1. Depictions of Goldstone diagrams representing the linear terms of the expectation value
evaluation expression using the LERCCSDmethod. The notations i, j, k, · · · denote the hole lines,
while a, b, c, · · · denote the particle lines. Diagram (i) corresponds to contribution from the DF
method; (ii) is from the OT1 term; (iii,iv) are from T†

1 OT1; (v–viii) are diagrams for T†
1 OT2, with

(v,vii) corresponding to direct terms and (vi,viii) corresponding to exchange terms. Sub-figures
(ix–xvi) include direct and exchange diagrams from T†

2 OT2. We also note that the Hermitian conjugate
diagrams of those given above are not explicitly sketched here.

The approach can be understood by revisiting the diagrams in Figure 1, and relating each of them
to Figures 2, 3, and 4. As an example, we consider Sub-figure (ii). The property vertex has one incoming
particle line and an outgoing hole line. We define it as a particle-hole vertex. Such particle-hole vertices
can be found in Sub-figures (v) to (viii) as well. In the intermediate-diagram formalism, the vertex O is
removed and replaced successively by each of the particle-hole (p-h) diagrams (more precisely, their
Hermitian conjugates) of Figure 4. We assign the notation Op−h for such a vertex. This sequence of
operations already generates 28 diagrams from Op−hT1 and includes terms that occur in the RMBPT
method. We note that Op−hT1 in the case of the Hermitian conjugate of Sub-figure (i) of Figure 4
gives back the LERCCSD diagram for OT1. Similar to Op−h, we also construct the analogous Oh−h
and Op−p diagrams (as given in Figures 2 and 3, respectively), and generate more terms. We note
that the property vertex from the DF diagram in Figure 1 is not replaced with any intermediate
diagram, as otherwise there would be repetition of diagrams in the calculations. Further, one has to
be careful to avoid repetition of diagrams while contracting effective O operators with the T RCC
operators. For example, it can be shown that T†

1 OT1 diagrams can appear twice through T†
1 Op−h and

T†
1 Op−p/h−hT1 terms. Such diagrams are identified by careful analysis, and their double counting is

removed manually.
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(i) (ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi) (xvii) (xviii)

(xix) (xx) (xxi) (xxii) (xxiii) (xxiv)

(xxv) (xxvi) (xxvii)

Figure 2. The effective one-body terms representing particle-particle (p-p) diagrams considered in this
work. i, j, k, · · · and a, b, c, · · · refer to holes and particles, respectively. The symbol of the operator,
Op−p, is not mentioned explicitly in the diagrams, and the property vertex is the dashed line ending
with an “o” in each diagram.

(i) (ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi) (xvii) (xviii)

(xix) (xx) (xxi) (xxii) (xxiii) (xxiv)

(xxv) (xxvi) (xxvii)

Figure 3. The effective one-body terms representing the hole-hole (h-h) diagrams that are included in
this work. The notations are the same as in the figure for the particle-particle diagrams. The property
operator, Oh−h, is not explicitly mentioned in each of the diagrams, just as in Figure 2.
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(i) (ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi) (xvii) (xviii)

(xix) (xx) (xxi) (xxii) (xxiii) (xxiv)

(xxv) (xxvi) (xxvii) (xxviii)

Figure 4. The list of the effective one-body terms representing the particle-hole (p-h) diagrams in this
work. The notations are the same as in the particle-particle and the hole-hole diagrams.

As can be seen from the above discussions, some of the diagrams that were undertaken in
this procedure demanded up to the order of n3

hn3
p in computational cost for nh number of holes

and np number of particles. Therefore, the intermediate diagram approach systematically took into
account non-linear terms while simultaneously cutting down drastically on the computational cost as
compared to a direct brute-force evaluation of a non-linear expectation value expression. This could be
understood by choosing an example as follows. Replacing O of Figure 1v by the property vertex with
Sub-figure (xxv) from Figure 4 entailed a computational cost O(n4

pn4
h) for the direct evaluation of such

a diagram. However, the intermediate-diagram approach led to a cost of O(n2
pn2

h + n3
pn3

h). This became
especially relevant when we performed computations on heavy systems and with high-quality basis
sets, such as those that we chose for this work. For instance, the RCC calculations on HgF involved
nh = 89 and np = 429, and therefore, the computational cost with an intermediate-diagram approach
was a full five orders of magnitude smaller than a brute-force approach to computing the same
diagram (without considering any molecular point group symmetries). A similar level of reduction in
computational cost could be seen from the heaviest HgI as well. We add at this point that we exploited
the C8 double point group symmetry in our nLERCCSD code, as we had done for the earlier LERCCSD
program [5,36]. This aspect also substantially lessened the computational cost, as it restricted the
number of matrix elements to be evaluated based on group theoretic considerations. For example, OT1

involves computing matrix elements of the form 〈a|O|i〉. Given that we had 89 holes and 429 particles,
the number of possible matrix elements was ∼3.8× 105. However, since we imposed the restriction
that both i and a should belong to the same irreducible representation, we needed to evaluate only
∼7.2× 104 matrix elements. Similar considerations for the more complicated terms involving T2 led to
evaluating much fewer matrix elements.
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3. Results and Discussions

To carry out the calculations in the considered molecules, we chose values for the bond lengths as
2.00686 A◦, 2.42 A◦, 2.62 A◦, 2.81 A◦, 2.075 A◦, and 2.16 A◦ for HgF, HgCl, HgBr, HgI, SrF, and BaF,
respectively [37–42]. It is to be noted that the chosen values for the HgX molecules were from theory,
while those for SrF and BaF were from experiment. Furthermore, we opted for Dyall’s quadruple
zeta (QZ) basis for Hg and I [43], Dunning’s correlation consistent polarized valence quadruple zeta
(cc-pVQZ) basis for the halide atoms (F, Cl, and Br) [44], and Dyall’s QZ functions augmented with
Sapporo’s diffuse functions [45] for Sr and Ba. We chose Dyall’s basis for Hg and I as it was among
the most reliable and widely used basis functions for heavy atoms. We did not add diffuse functions
as it increased the computational cost drastically for QZ quality basis sets. Moreover, it was found
that the inclusion of diffuse functions changed the effective electric field by around 2.5 percent for
HgF, and it was expected to lead to a similar difference for the heavier HgX systems [9]. However,
in the foreseeable future, such computations could be performed to improve the calculated values
of the PDMs. To minimize steep computational costs that we incurred due to our choice of QZ basis
sets, as well as performing all-electron calculations, we cut-off the high-lying virtuals above 1000
atomic units (a.u.) for HgX and BaF. At such a high cut-off value, we could expect that the missing
contributions would be minimal, and possibly even negligible.

In Table 1, we present our results for HgX, SrF, and BaF, all using QZ basis sets. We discuss the
trends in the PDMs and Eeffs across HgX in the three different approaches, namely the LERCCSD
and nLERCCSD methods, while briefly making a comparison with the FFRCCSD method from [9]
wherever relevant, and we also examined the correlation effects in the property from lower to all-order
methods. SrF and BaF molecules were treated as stand-alone systems. Firstly, we observed that
the effect of non-linear corrections was to increase the PDM and decrease the effective electric field
(except in the case of SrF, where the difference was still within 0.5 percent). We find from Table 1
that for SrF and BaF, the nLERCCSD method yielded PDMs that were very close to their LERCCSD
counterparts (within 1.5 percent of each other for both the molecules), but were not in better agreement
with experiments than their LERCCSD counterparts. However, the nLERCCSD values agreed well
with the results from the earlier work that used the FFRCCSD approach (within 1.2 percent of each
other) that also employed a QZ quality basis with diffuse functions. Such a comparison could not
be made with the HgX molecules, as available FFRCCSD data used a double zeta (DZ) quality basis.
For HgX systems, we observed that unlike in the cases of SrF and BaF, the difference between the
LERCCSD and the nLERCCSD results widened from about six percent for HgF and HgCl, to about
25 percent for HgI. The values for Eeff for SrF and BaF showed that the LERCCSD, nLERCCSD, and
FFRCCSD methods all agreed to within one percent. In the case of HgX molecules, the LERCCSD
and nLERCCSD results were found to differ by at most 2.5 percent. We chose HgF as a representative
molecule and performed FFRCCSD calculations with a QZ basis, and we found that its effective electric
field was 110.87 GV/cm, which was lesser than the nLERCCSD value by 2.5 percent.

The individual contributions that arose from the diagrams given in Figure 1 to the effective electric
fields and PDMs of HgX, SrF, and BaF molecules are given in Tables 2 and 3. The tables give the
LERCCSD contributions, where the property vertex is O, as well as the nLERCCSD values, where the
property vertex could be of the p− p, h− h, or the p− h type, depending on the diagram. For example,
the contribution from Sub-figure (ii) of Figure 1, for the nLERCCSD case, involved a p-h vertex, that is
Op−hT1, and therefore included in it the contributions from the 26 diagrams in Figure 4. In general,
O or Ox−y (where “x” and “y” could be p or h) was the eEDM Hamiltonian for Eeff (which is given in
Table 2), while it was the dipole operator for the PDM (which is presented in Table 3).
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Table 1. Contributions from the Dirac–Fock (DF), LERCCSD, and nLERCCSDmethods to the Eeffs
(in GV/cm) and permanent electric dipole moments (PDMs) (in Debye) of HgX, SrF, and BaF molecules
from the present work (denoted as “This work” in the table). Comparison of the two properties from
various works with our results are also presented. CASSCF, complete active space self-consistent field;
RSPT2, second-order Rayleigh–Schrodinger perturbation theory; X2C-FSCC, exact two-component
Hamiltonian–Fock space coupled-cluster.

Molecule Method PDM Eeff

SrF CASSCF-MRCI [46] 3.36
CASSCF-RSPT2 [46] 3.61
Z-vector [47] 3.45
LERCCSD [9,33] 3.6 2.17
FFCCSD [9] 3.62 2.16
X2C-MRCI [48] 3.20
X2C-FSCC [48] 3.46
DF (This work) 2.99 1.54
LERCCSD (This work ) 3.57 2.15
nLERCCSD (This work) 3.60 2.16
Experiment [26] 3.4676(1)

BaF MRCI [49] 2.96
LERCCSD [33] 3.4 6.50
FFCCSD [9] 3.41 6.46
X2C-MRCI [48] 2.90
X2C-FSCC [48] 3.23
Z-vector [50] 3.08
ECP-RASSCF [51] 7.5
RASCI [52] 7.28
MRCI [53] 5.1
MRCI [54] 6.1
DF (This work) 2.61 4.81
LERCCSD (This work) 3.32 6.45
nLERCCSD (This work) 3.37 6.39
Experiment (PDM) [55] 3.17(3)

HgF CI [56] 4.15 99.26
LERCCSD [57] 2.61
MRCI [53] 68
MRCI [54] 95
DF (This work) 4.11 105.69
LERCCSD [8] 115.42
FFCCSD [9] 2.92 116.37
LERCCSD (This work) 3.25 114.93
nLERCCSD (This work) 3.45 113.77

HgCl CI [58] 3.28
LERCCSD [57] 2.72
LERCCSD [8] 113.56
FFCCSD [9] 2.96 114.31
DF (This work) 4.30 104.33
LERCCSD (This work) 3.26 112.51
nLERCCSD (This work) 3.45 110.94

HgBr CI [58] 2.62
LERCCSD [57] 2.36
LERCCSD [8] 109.29
FFCCSD [9] 2.71 109.56
DF (This work) 4.14 99.72
LERCCSD (This work) 2.62 109.38
nLERCCSD (This work) 2.94 107.42

HgI LERCCSD [57] 1.64
LERCCSD [8] 109.3
FFCCSD [9] 2.06 109.56
DF (This work) 3.61 99.27
LERCCSD (This work) 1.50 110.00
nLERCCSD (This work) 2.01 107.38

* The bond lengths chosen in our work were 2.00686 A◦, 2.42 A◦, 2.62 A◦, 2.81 A◦, 2.075 A◦, and 2.16 A◦ for
HgF, HgCl, HgBr, HgI, SrF, and BaF, respectively. We used Dyall’s quadruple zeta (QZ) basis for Hg and I,
Dunning’s correlation consistent polarized valence quadruple zeta (cc-pVQZ) basis for the halide atoms (F, Cl,
and Br), and Dyall’s QZ functions augmented with Sapporo’s diffuse functions for Sr and Ba.
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Table 2. Individual correlation contributions to the effective electric fields (in GV/cm) of mercury monohalides (HgX; X = F, Cl, Br, and I), SrF, and BaF, from the
LERCCSD (abbreviated as “L”) and nLERCCSD (denoted by “nL”) methods. In the first column, A could be O (which corresponds to LERCCSD diagrams) or Ox−y

(which is associated with nLERCCSD diagrams), where “x” and “y” could stand for the corresponding particle or hole line for a given term. The values are all
rounded-off to two decimal places for HgX, while numbers that are extremely small in the case of SrF and BaF are denoted in the scientific notation instead.

Molecule HgF HgCl HgBr HgI SrF BaF

Term Diagram L nL L nL L nL L nL L nL L nL

DF Figure 1i 105.69 104.33 99.72 99.27 1.54 4.81

AT1 Figure 1ii 17.09 13.11 17.05 12.21 19.83 14.76 23.85 15.71 0.63 0.61 1.79 1.60

T†
1 AT1 Figure 1iii −1.85 −0.28 −2.01 −0.25 −2.65 −0.62 −3.66 −0.41 −1.86×10−2 −1.00×10−3 −7.65×10−2 −2.00×10−4

Figure 1iv −1.41 0.16 −1.40 0.28 −1.21 0.47 −1.56 1.16 −9.01×10−3 4.80×10−4 −6.47×10−2 7.60×10−3

T†
1 AT2 Figure 1v 1.19 0.93 0.65 0.29 0.38 −0.11 0.38 −0.27 2.73×10−3 1.02×10−3 9.46×10−3 2.51×10−3

Figure 1vi 0.05 0.08 0.06 0.05 −0.01 −0.07 −0.03 −0.09 −4.91×10−4 −7.93×10−4 −1.49×10−3 −2.39×10−3

Figure 1vii 0.61 0.58 0.92 0.85 0.66 0.32 0.57 0.19 1.43×10−2 1.48×10−2 7.04×10−2 7.13×10−2

Figure 1viii −1.31 −1.27 −1.24 −1.18 −0.91 −0.63 −1.26 −0.98 9.63×10−3 9.91×10−3 −2.49×10−2 −2.32×10−2

T†
2 AT2 Figure 1ix −2.50 −2.46 −2.54 −2.49 −2.68 −2.65 −2.93 −2.89 8.58×10−3 6.15×10−3 3.22×10−2 2.17×10−2

Figure 1x −0.17 −0.17 −0.15 −0.14 −0.14 −0.13 −0.13 −0.11 −2.17×10−3 −1.93×10−3 −6.87×10−3 −6.83×10−3

Figure 1xi −1.22 −1.40 −1.50 −1.47 −1.65 −1.85 −1.96 −1.99 −1.96×10−2 −2.17×10−2 −7.54×10−2 −7.71×10−2

Figure 1xii −0.17 −0.17 −0.15 −0.14 −0.14 −0.13 −0.13 −0.11 −2.17×10−3 −1.93×10−3 −6.87×10−3 −6.83×10−3

Figure 1xiii −1.64 −1.57 −1.67 −1.57 −1.70 −1.58 −1.84 −1.69 −1.38×10−3 −1.96×10−3 −3.20×10−4 −9.61×10−4

Figure 1xiv −0.10 −0.10 −0.10 −0.10 −0.10 −0.10 −0.10 −0.10 −5.39×10−4 −5.53×10−4 −2.28×10−3 −2.33×10−3

Figure 1xv 0.77 0.74 0.36 0.37 0.08 0.12 −0.37 −0.21 4.42×10−3 4.51×10−3 2.82×10−3 3.18×10−3

Figure 1xvi −0.10 −0.10 −0.10 −0.10 −0.10 −0.10 −0.10 −0.10 −5.39×10−4 −5.53×10−4 −2.28×10−3 −2.33×10−3

Total 114.93 113.77 112.51 110.94 109.38 107.42 110.00 107.38 2.15 2.16 6.45 6.39
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Table 3. Correlation contributions to the PDMs (in Debye) of mercury monohalides (HgX; X = F, Cl, Br, and I), SrF, and BaF. The notation is the same as in Table 2.
The entry “NC” stands for nuclear contribution to the PDM.

Molecule HgF HgCl HgBr HgI SrF BaF

Term Diagram L nL L nL L nL L nL L nL L nL

DF Figure 1i −767.04 −925.61 −1002.31 −1075.83 −375.75 −578.39

AT1 Figure 1ii −0.60 −0.78 −0.83 −1.01 −1.26 −1.54 −1.92 −2.33 0.63 0.65 0.80 0.82

T†
1 AT1 Figure 1iii 0.21 0.04 0.26 0.06 0.34 0.11 0.48 0.23 0.14 −0.01 0.19 −0.02

Figure 1iv −0.45 0.05 −0.48 0.07 −0.62 0.13 −0.79 0.26 −0.18 −0.01 −0.23 −0.02

T†
1 AT2 Figure 1v 0.10 0.11 0.13 0.13 0.20 0.19 0.30 0.29 2.44×10−2 2.53×10−2 3.04×10−2 3.13×10−2

Figure 1vi 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 −1.99×10−3 2.13×10−3 2.40×10−3 2.55×10−3

Figure 1vii 0.01 0.01 0.01 −0.01 −0.01 −0.03 0.01 −0.01 9.48×10−3 9.15×10−3 9.46×10−3 9.42×10−3

Figure 1viii 0.02 0.01 0.01 0.01 0.02 0.03 0.04 0.04 1.47×10−3 1.45×10−3 −4.02×10−3 4.10×10−3

T†
2 AT2 Figure 1ix 1.19 1.19 1.48 1.47 1.66 1.66 1.84 1.85 0.82 0.82 0.98 0.97

Figure 1x −0.01 −0.01 0.00 0.00 0.00 0.00 0.00 0.00 9.92×10−4 1.57×10−3 −2.43×10−3 −2.99×10−3

Figure 1xi 1.14 1.16 1.40 1.41 1.57 1.62 1.73 1.81 0.79 0.78 0.95 0.94
Figure 1xii −0.01 −0.01 0.00 0.00 0.00 0.00 0.00 0.00 9.22×10−4 1.57×10−3 −2.43×10−3 −2.99×10−3

Figure 1xiii −1.26 −1.25 −1.53 −1.52 −1.72 −1.70 −1.91 −1.89 −0.84 −0.84 −1.01 −1.01
Figure 1xiv 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 7.35×10−3 7.37×10−3 −8.38×10−3 0.01
Figure 1xv −1.23 −1.21 −1.51 −1.48 −1.70 −1.67 −1.91 −1.85 −0.83 −0.83 −0.99 −0.98
Figure 1xvi 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 7.35×10−3 7.37×10−3 −8.38×10−3 0.01

NC 771.15 929.91 1006.45 1079.44 378.74 581.00

Total 3.25 3.45 3.26 3.45 2.62 2.94 1.50 2.01 3.57 3.60 3.32 3.37



Symmetry 2020, 12, 811 11 of 16

Table 2 shows that for all the systems, the AT1 term always dominated among the correlation terms,
where A could correspond to either OT1 or Ox−yT1 for LERCCSD or nLERCCSD, respectively. For the
effective electric fields of the HgX molecules, in the LERCCSD case, there were strong cancellations
among the positive AT1 and the negative T†

1 AT1 and T†
2 AT2 terms. However, the final values of

nLERCCSD and the LERCCSD calculations matched within 2.5 percent, since in the former case,
the AT1 values were significantly lower than the latter, and the T†

1 AT1 sector provided a far smaller
contribution. In the case of SrF, the AT1 terms were comparable for LERCCSD and the nLERCCSD
scenarios, and therefore, inclusion of non-linear terms did not change its effective electric field, while
for BaF, we observed a mechanism that was similar to that for the HgX systems. We observed a different
trend for the PDMs, in Table 3. As the DF value and the nuclear contribution were the same for a given
molecule, whether it be LERCCSD or an nLERCCSD calculation, the interplay between AT1 and T†

1 AT1

terms decided the importance of non-linear terms. For HgX, the AT1 term in nLERCCSD calculations
was always slightly larger in magnitude than the LERCCSD ones, while the net contributions from the
T†

1 AT1 terms, which were less significant, were the other way round. The resulting non-linear effects
were not so important for SrF and BaF, as seen in the earlier paragraph, while for HgX molecules,
it became significant, with their effects changing the PDM by up to about 25 percent for HgI.

We now conduct a survey of previous works on the effective electric fields and PDMs of the
molecules that we considered, in Table 1. For the effective electric fields of BaF, we observed that
the effective core potential-restricted active space SCF(ECP-RASSCF) [51] and restricted active space
CI(RASCI) [52] methods gave larger values, while the result from the MRCIapproach in [54] estimated
the values as being slightly lower, with respect to our nLERCCSD value. A discussion of the
previous works on the effective electric fields of HgX and our improved estimate of the quantity
using LERCCSD approach was already presented in [8], and hence, we re-direct the reader to the
earlier work. Our nLERCCSD results improved over the earlier LERCCSD and FFRCCSD results,
as both of those were calculated using a DZ quality basis. Most of the works that calculated PDMs and
that were not mentioned in the table, including [39,41,59–61], were expounded in our earlier works in
detail [9,33], and therefore, we only discuss in this paragraph the more recent works. The differences
in the PDMs between the LERCCSD results in our earlier work and those in the present work for
HgX were due to the choice of basis (DZ basis functions [8,57] in the former, as against a QZ basis
in the current work). We observed that the values of PDM for SrF that were obtained by using
the complete active space self-consistent field (CASSCF) approach to multi-reference CI (MRCI)
and second-order Rayleigh–Schrodinger perturbation theory (RSPT2) [46] (which agreed with our
nLERCCSD, as well as FFRCCSD results) underestimated and overestimated the results with respect
to the experiment, respectively. The results for PDMs of SrF and BaF from Hao et al. [48] using the
exact two-component Hamiltonian–Fock space coupled-cluster (X2C-FSCC) formalism and the PDM
of SrF from Sasmal et al. [47] using a relativistic Z-vector coupled-cluster approach (with both works
employing a QZ basis) agreed closely with the experimental values. However, we also note that while
the Z-vector approach predicted the PDM of SrF very accurately, it underestimated that of BaF [50].
This existing difference in the PDMs of SrF and BaF between the nLERCCSD and the FFRCCSD
approaches on one side and the Z-vector RCCSD approach on the other could possibly be resolved in
future works that employ methods that are even more refined.

We now check for the scalability of our code that was parallelized using MPI. We did so by testing
it with the SrF molecule, using a DZ basis. The code was to calculate both the effective electric field and
PDM of the molecule for this test. As the code was structured in a way that the extent of parallelization
was limited by the number of virtuals, which was 208 in this case, we chose to study scaling up
to 192 processors (across eight nodes, and with 24 processors employed per node). The details of
the computer (VIKRAM-100 super-computing facility at Physical Research Laboratory, Ahmedabad,
India) that we used are: a 100-teraflop IBM nx360 M5 machine with 1848 processors. Each node
had 24 processors (two Intel Xeon E5-2670 v3, each with 12 cores) and a memory of 256 GB RAM.
The inter-process communication was via a 100% non-blocking FAT Tree Topology FDR (56 Gbits/s)
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Infiniband network. We used an Intel 15.2 compiler and impi5.0 and mkl libraries. As Figure 5 shows,
our calculations indicated that the code was scalable up to this mark. In the figure, we plot the speedup
against the number of processors, where the former was defined as Sp = t1/tp, with tp referring to
the time taken for a computation with p processors. Performing the computations in serial mode took
about 6.5 days, while calculations with four processors consumed around two days. The code took
only 2.17 h to finish with 192 processors. The wall time approached saturation after 96 processors
(2.51 h to 2.17 h from 96 to 192 processors), and hence, the optimal number of processors to use was
around 96, where we still obtained a speed-up from 6.5 days to 2.51 h. The wall times were reliable
as estimates, but not extremely accurate, as the computations were performed on a common cluster,
and the speeds depended on other factors such as the number of users, the computer’s specifications,
and type of jobs during the time interval across which our computations were done, although we took
utmost care to ensure that no other application ran on the same node(s) as ours. However, our analysis
was sufficient for the purposes of broadly demonstrating that our code was scalable to a reasonably
large number of processors.

Figure 5. Plot showing the scaling behavior of the program in the property evaluating expression for
a representative system, SrF, with the number of processors of our computer. The X-axis gives the
number of processors, while the Y-axis is the speedup, Sp = t1/tp, where t is the time taken and the
subscript denotes the number of processors. We used a double-zeta quality basis for this purpose and
tested up to 192 processors, as the parallelism in our code was limited by the number of virtual orbitals,
which was 208 in this case.

We also estimated the errors in our calculations. We first examined the error due to the choice of
basis. We used QZ quality basis sets for our calculations, and as there was no five-zeta basis that was
available for us to carry out any kind of estimate, we calculated the effective electric fields and the
PDMs at the DZ level of the basis with our nLERCCSD code. We found that the percentage fraction
difference between the DZ and QZ basis for Eeff was around 3, 4, 5, and 7 percent for HgF, HgCl,
HgBr, and HgI, respectively. We did not anticipate the difference between the DZ and QZ estimates to
be over 10 percent for SrF and BaF either. Therefore, we did not expect that the difference between
results from a higher quality basis set than QZ and those from a QZ basis should exceed 10 percent.
Based on similar considerations, we estimated the error due to the choice of basis for the PDM to be
at most 15 percent. Next, we shall look at the errors due to the ignored non-linear terms. They were
expected to be negligible, and we ascribed a conservative estimate of two percent, which was the
percentage fraction difference between the DF values and the current nLERCCSD values for the HgX
molecules. Lastly, we comment on the importance of triple and other higher excitations. Based on our
previous works and error estimates in them, we expected that these excitations would be around three
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percent for the purposes of calculating Eeff [9], but could become important for PDMs. In conclusion,
we linearly added the uncertainties and set an optimistic error estimate for the effective electric fields
at about 15 percent. However, it was not so straightforward to set an error estimate for PDMs, as seen
above, but we did not anticipate it to exceed 20 percent.

4. Conclusions

We investigated the contributions from the non-linear terms of the property evaluating the
expression of the relativistic coupled-cluster theory in the determination of permanent electric dipole
moments and effective electric field due to the electron electric dipole moment of SrF, BaF, and mercury
monohalide (HgX with X = F, Cl, Br, and I) molecules. We found that the inclusion of these terms
at the single and double excitation approximation brought the permanent electric dipole moments
(PDMs) of SrF and BaF closer to the previously calculated finite-field relativistic coupled-cluster values,
which were found to have overestimated the PDMs of the two molecules with respect to available
measurements. The non-linear terms considerably changed the PDMs of HgX systems. For all of the
chosen molecules, the non-linear terms were found not to change significantly the values of effective
electric fields with respect to the results from the linear expectation value approach. However, such a
result was a consequence of several cancellations at work. Since accurate estimation of these quantities
are of immense interest to probe new physics from the electron electric dipole moment studies using
molecules, our analysis demonstrated the importance of considering non-linear terms in relativistic
coupled-cluster theory for their evaluations. We also presented the scaling behavior of our code with a
representative SrF molecule and discussed the error estimates.
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