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Abstract: A graph G is called an `-apex tree if there exist a vertex subset A ⊂ V(G) with cardinality `

such that G− A is a tree and there is no other subset of smaller cardinality with this property. In the
paper, we investigate extremal values of several monotonic distance-based topological indices for
this class of graphs, namely generalized Wiener index, and consequently for the Wiener index and
the Harary index, and also for some newer indices as connective eccentricity index, generalized
degree distance, and others. For the one extreme value we obtain that the extremal graph is a join of
a tree and a clique. Regarding the other extreme value, which turns out to be a harder problem, we
obtain results for ` = 1 and pose some open questions for higher `. Symmetry has always played
an important role in Graph Theory, in recent years, this role has increased significantly in several
branches of this field, including topological indices of graphs.

Keywords: apex trees; distances in apex trees; generalized Wiener index; extremal graphs

1. Introduction

All graphs considered in this paper are simple, finite, connected and undirected. The distance
between two vertices u and v is the length of the shortest path between them, it is denoted as distG(u, v).
If two vertices u, v are adjacent, we write u ∼ v. The maximum distance from v ∈ V(G) to any other
vertex in G is called the eccentricity, ε(v), of v. For a vertex v ∈ V(G), G− v is a subgraph obtained
by removing the vertex v and all the edges adjacent to v. Similarly for any edge e ∈ E(G), G− e is
a subgraph obtained by removing the edge e from G. For a subset U ⊂ V(G), G−U is a subgraph
achieved by removing all the vertices in U and all the edges adjacent to any vertex of U.

A graph is said to be an apex graph if it contains a vertex whose removal yields a planar graph.
In topological graph theory, apex graphs play a vital role [1]. Alkanes play in an important role in
chemistry, pharmaceutics and related fields. The apex graph produces trees (alkanes) after removing
certain vertices. A graph G is called an `-apex tree if there exists a vertex subset A ⊂ V(G) with
cardinality l such that G − A is a tree and there is no other subset of smaller cardinality with this
property. Elements of the set A are called apex vertices, and A is called an `-apex vertex set. We denote
the set of all `-apex trees of order n by A(n, `). The elements of the set A(n, 1) are called just apex trees.
Note that a tree is always an 0-apex tree.
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When vertices represent the atoms and the edge between them are the bonds, then the graph G
is called a molecular graph. In 1947, Wiener [2] proposed the first topological index, W(G), nowdays
called Wiener index,

W(G) = ∑
{u,v}⊆V(G)

distG(u, v).

In [2–4], Wiener showed that there exists correlations between the Wiener index of the molecular
graph of an organic compound and different physical and chemical properties of the molecular
compound. Later were introduced many variatoins, like hyper-Wiener index

WW(G) = ∑
{u,v}⊆V(G)

(dist(u, v) + dist2(u, v)),

and the generalized Wiener index

Wλ(G) = ∑
{u,v}⊆V(G)

distλ(u, v).

Notice that for λ = −1 and 1, we obtain the Wiener index and the Harary index, respectively. For
further studies on the Wiener index and its variations, we refer [5–13] and references there in. In the
paper we consider also some other newer indices as eccentric connectivity index, generalized degree
distance, and others. We define them in the sequel.

In recent years, many papers on `-apex trees have published. Here we mention only few of
them. In [14], authors found the extremal `-apex trees with respect to matching energy. Xu et al. [15]
obtained the sharp bounds on weighted Harary indices for apex trees and `-apex trees. Extremal first
and second Zagreb indices of apex trees have investigated in [16] and they also characterized the
extremal `-apex trees.

2. One Extremum

Let I be a graph invariant which is strictly monotonic with respect to adding edges. That is,
either for every graph G and every e /∈ E(G) we have I(G + e) < I(G), in which case we say that I is
decreasing; or for every graph G and every e /∈ E(G), we have I(G + e) > I(G), in which case we say
that I is increasing.

Let G be an `-apex tree. Denote by A an `-apex set of vertices of G, add an edge connecting
two vertices of A and denote by G′ the resulting graph. Obviously, G′ − A is a tree. However, it can
happpen that G′ is a κ-apex tree for κ < `. For example, take the graph G from Figure 1 consisting of
two triangles sharing a vertex. Notice that G has five vertices and it is a 2-apex tree. Then, A = {u2, u3}
is a 2-apex set of G, but G + u2u3 is just a 1-apex tree. Hence to obtain extremal graphs, one cannot
apply the monotonicity of I in a random way. Nevertheless, the following holds.

u4

u3u2

u1

v

Figure 1. A 2-apex graph that turns into a 1-apex graph by introducing an edge.

Theorem 1. Let I be a strictly monotonic invariant and let G be an `-apex tree on n vertices, where ` ≥ 1 and
n ≥ `+ 2, such that

• G has the minimum possible value of I if I is decreasing;
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• G has the maximum possible value of I if I is increasing.

Then, G is the join K` + T, where T is a tree on n− ` vertices.

Proof. We present proof for the case when I is decreasing, the proof for the case when I is increasing
is generally the same.

So let G be an `-apex tree of order n with the minimum value of I, and let A be an ` apex set of
vertices of G. Then G− A is a tree with n− ` vertices. Denote this tree by T.

Consider all pairs of vertices u, v such that u ∈ A and v 6= u. Some such pairs are edges of G, but
some are not. Denote by G′ a graph obtained from G after adding all such pairs uv, where uv /∈ E(G).
Since I is decreasing, we have I(G′) ≤ I(G) with equality if and only if G′ = G. It remains to prove
that G′ is `-apex tree.

Since G′ − A is T, the graph G′ is a k-apex tree for k ≤ `. Let B be a set of vertices of G′ which
has less than ` vertices. Then G′ − B has at least 3 vertices. If B ⊂ A then by the construction of G′ we
have G′ − B is the join T + (A−B), and since T is a tree on at least 2 vertices, G′ − B is not a tree. On
the other hand if B 6⊆ A then there are at least two vertices in A− B. Let x, y ∈ A− B. Then both x
and y are connected to all vertices of G′ − B, and so G′ − B is not a tree. Thus, G′ is `-apex tree.

In what follows, we will apply the above result to several topological indices. We start with
generalized Wiener index and several derived indices, afterwards we consider connective eccentricity
index, and finally we deal with generalized degree distance.

2.1. Generalized Wiener Index

Observe that in T + K` all pairs of vertices are at distance 1 with the exception of pairs of
non-adjacent vertices of T, which are at distance 2. Since there are (n−`

2 )− (n−`−1) such pairs of
vertices regardless of the shape of T, for invariants depending only on dist(u, v) the tree T can be
arbitrary. Hence, for the generalized Wiener index we have the following corollary.

Corollary 1. Let G be an `-apex tree on n vertices, where ` ≥ 1 and n ≥ `+ 2, and let λ 6= 0. Then, the
following two claims hold:

• If λ > 0 then Wλ(G) has the minimum value if and only if G = K` + T, where T is any tree on n− `

vertices;
• If λ < 0 then Wλ(G) has the maximum value if and only if G = K` + T, where T is any tree on n− `

vertices.

Moreover, in the extremal case

Wλ(G) = (n2 − 2n`− 3n + `2 + 3`+ 2)2λ−1 + (2n`+ 2n− `2 − 3`− 2)2−1.

Proof. Since Wλ is decreasing if λ > 0 and increasing if λ < 0, the structural part is a direct
consequence of Theorem 1. Since there are (n−`

2 )− (n−`−1) pairs of vertices of G which distance is 2
while all other (n

2)− (n−`
2 ) + (n−`−1) pairs are adjacent, we get the value of Wλ(G).

The above corollary has consequences on some derived indices.

2.1.1. Wiener Index.

Observe that for λ = 1 the invariant Wλ is the Wiener index, and by Corollary 1 the extremal
value is

W(G) = (2n2 − 2n`− 4n + `2 + 3`+ 2)2−1.
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2.1.2. Harary Index.

On the other hand for λ = −1 the invariant Wλ is the Harary index, and by Corollary 1 the
extremal value is

H(G) = (n2 + 2n`+ n− `2 − 3`− 2)2−2.

2.1.3. Hyper-Wiener Index.

Summing up W1 and W2 gives us the hyper-Wiener index WW, and again by Corollary 1 regarding
the minimum value, the extremal graph is T +K` and the extremal value can be again similarly derived
as in the previous two indicies

WW(G) = 2 l2 − 4 ln + 3 n2 + 6 l − 7 n + 4.

2.2. Connective Eccentricity Index

Regarding Theorem 1, there are strictly monotonic invariants for which T cannot be arbitrary.
One such is connective eccentricity index, defined as

ξce(G) = ∑
v∈V(G)

deg(v)
ε(v)

.

Mathematical properties and applications of the connective eccentricity index can be found
in [17–21], while the authors in [22] discussed the extramal total eccentricity of l-apex trees. For this
index, we have the following.

Corollary 2. Let G be an `-apex tree on n vertices, where ` ≥ 1 and n ≥ `+ 2. Then ξce(G) has the maximum
value if and only if G = K` + T, where T is the star on n− ` vertices. Moreover, in the extremal case

ξce(G) = 1
2 (`+ 1)(3n− `− 3).

Proof. Since ξce is increasing, the extremal graph is T + K` by Theorem 1. Thus,

ξce(G) = ∑
v∈V(T)

deg(v)
e(v)

+ ∑
v∈V(K`)

deg(v)
e(v)

.

Now the contribution of every v ∈ V(K`) is n − 1 since e(v) = 1 and deg(v) = n − 1 in this
case. If v ∈ V(T) then its contribution is n− 1 if v is connected to all vertices of T − v, and deg(v)/2
otherwise. Notice that the former case happens only if T is a star and v is its center. Since

∑
v∈V(T)

degG(v)
2

=
1
2

(
(n− `)`+ ∑

v∈V(T)
degT(v)

)
= 1

2
(
(n− `)`+ 2(n− `− 1)

)
,

which is a constant not depending on T, for any tree T on n− ` vertices ξce(G) is a constant with a
unique exception when T is the star, for which ξce(G) is bigger. Hence, the maximum value of ξce(G)

is attained when G = T + K` when T is the star.
The extremal value of ξce(G) could be easily calculated using the fact that n− `− 1 endvertices

of T contribute by (`+ 1)/2, while the other `+ 1 vertices of G contribute by n− 1.
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2.3. Generalized Degree Distance Index

Analogous situation occures for generalized degree distance

Hλ(G) = ∑
u 6=v

(
deg(u) + deg(v)

)
distλ(u, v))

if λ < 0. We have the following result.

Corollary 3. Let G be an `-apex tree on n vertices, where ` ≥ 1 and n ≥ `+ 2, and let λ < 0. Then Hλ(G)

has the maximum value if and only if G = K` + T, where T is the star on n− ` vertices. Moreover, in the
extremal case

Hλ(G) = (`+ 1)
(
(n− `− 1)(n− `− 2)2λ + n2 + n`− n− `2 − 2`

)
.

Proof. Since Hλ is increasing if λ < 0, the extremal graph is T + K` by Theorem 1. Denote D(u, v) =(
deg(u) + deg(v)

)
distλ(u, v). Then

Hλ(G) = ∑
u,v∈V(T)

u 6=v

D(u, v) + ∑
u∈V(T)
v∈V(K`)

D(u, v) + ∑
u,v∈V(K`)

u 6=v

D(u, v). (1)

If u, v ∈ V(K`) then D(u, v) = 2(n− 1), so the third sum of (1) is 2(`2)(n− 1) which is a constant
depending on n and `, but not on the structure of T. If u ∈ V(T) and v ∈ V(K`) then D(u, v) =(

deg(u) + n− 1
)
. For fixed v, the sum of D(u, v) in the second sum sums to 2(n− `− 1) + (n− `)`+

(n− `)(n− 1). Hence, also the second sum in (1) is a constant depending on n and `, but not on the
structure of T.

Now consider u, v ∈ V(T). Then

D(u, v) =
(

degG(u) + degG(v)
)
distλ(u, v) =

(
degT(u) + degT(v) + 2`

)
distλ(u, v).

For u, v ∈ V(T) exactly n− `− 1 distances are 1 while the others are 2. Hence, for u, v ∈ V(T)
the sum ∑ 2`distλ(u, v) is a constant, and so it suffices to consider

∑
u,v∈V(T)

u 6=v

(
degT(u) + degT(v)

)
distλ(u, v). (2)

Observe that running through all distinct u, v ∈ V(T) also ∑
(

deg(u)+deg(v)
)

is a constant since
it equals (n− `− 1)∑v∈V(T) degT(v) = 2(n− `− 1)2. So, we can rewrite (2) in the following way:

= ∑u,v∈V(T)
u∼v

(
degT(u) + degT(v)

)
1λ + ∑u,v∈V(T)

u 6∼v,u 6=v

(
degT(u) + degT(v)

)
2λ

= ∑u,v∈V(T)
u∼v

(
degT(u) + degT(v)

)
1λ + ∑u,v∈V(T)

u 6=v

(
degT(u) + degT(v)

)
2λ

−∑u,v∈V(T)
u∼v

(
degT(u) + degT(v)

)
2λ

= ∑u,v∈V(T)
u∼v

(
degT(u) + degT(v)

)
(1− 2λ) + ∑u,v∈V(T)

u 6=v

(
degT(u) + degT(v)

)
2λ

= (1− 2λ)∑u,v∈V(T)
u∼v

(
degT(u) + degT(v)

)
+ (n− `− 1)22λ+1.
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The second sum in the above expression turns to be a constant depending only of n and `, so the
maximum value of Hλ is achived when we maximize

∑
u,v∈V(T)

u∼v

(
degT(u) + degT(v)

)
,

and it is obtained when for all adjacent pairs the sum of degrees deg(u) + deg(v) is maximum possible.
Since u and v are adjacent vertices in a tree on n− ` vertices, degT(u) + degT(v) ≤ n− `. Moreover,
every pair of adjacent vertices in T satisfies degT(u) + degT(v) = n− ` if and only if every endvertex
of T has eccentricity at most 2 in T. Therefore the extremal graph is T + K` where T is the star on
n− ` vertices.

For calculating the extremal value of Hλ observe that n− `− 1 vertices of G have degree `+ 1
while the other have degree n− 1. Thus,

Hλ(G) =

(
n− `− 1

2

)
(2`+ 2)2λ + (n− `− 1)(`+ 1)(n + `) +

(
`+ 1

2

)
(2n− 2).

We state here one consequences of the above corollary.

2.3.1. Additively Weighted Harary Index.

Observe that for λ = −1 the invariant Hλ is additively weighted Harary index (also known as
reciprocal degree distance), and by Corollary 3 the extremal value is

HA(G) = 1
2 (`+ 1)(3n2 − 5n− `2 − `+ 2).

3. Other Extremum

Now we consider the opposite extremum. Since this case is more complicated, we concentrate on
1-apex trees, i.e. apex trees. Though, it will be interesting to be conisdered the case ` ≥ 2 itself.

We have:

Theorem 2. Let I be a strictly monotonic invariant and let G be an apex tree on n ≥ 3 vertices such that

• G has the maximum possible value of I if I is decreasing;
• G has the minimum possible value of I if I is increasing.

Then G is a unicyclic graph and its unique cycle has a vertex of degree 2.

Proof. We present proof for the case when I is decreasing, the proof for the case when I is increasing
is generally the same.

So let G be a 1-apex tree of order n with the maximum value of I, and let a be the apex vertex of
G. Then G− a is a tree with n− 1 vertices. Denote this tree by T.

Suppose first deg(a) = 1 then G is a tree, and hence G is not a 1-apex tree. Therefore deg(g) ≥ 2.
Now suppose that deg(a) ≥ 3. Then, remove one edge incident with a and denote the resulting

graph by G′. Observe that G′ consists of a tree T and a vertex a incident to at least two vertices of T, so
G′ has a cycle. Since G′ − a is a tree, G′ is an 1-apex tree, and I(G′) > I(G), a contradiction.

By the above two paragraphs, we conclude that deg(a) = 2 and a lies in a unique cycle of G. Thus,
the claim follows.

3.1. Generalized Wiener Index

For the generalized Wiener index Wλ we have the following result. But before we state it, we
give one definition. The dumbbell graph Dc(a, b) is obtained from a path Pc = v1v2 · · · vc and disjoint
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Ka and Kb by connecting v1 to a vertex of Ka and connecting vc to a vertex of Kb. Thus the order of so
constructed graph is a + b + c. Note that without loss of generality, we can always assume that a, b 6= 2.
For an illustration, see the graph shown in Figure 2. If a, b ≥ 3 then it is an (a + b− 2)-apex graph, if
a ≥ 3 and b = 1, then it is a (a− 1)-apex graph, and finally if a = b = 1, it is a 0-apex graph.

Figure 2. The dumbbell graph D4(1, 3).

Corollary 4. Let G be an apex tree on n ≥ 3 vertices, and let λ 6= 0. Then the following two claims hold:

• If λ > 0 then Wλ(G) has the maximum value if and only if G = Dn−4(3, 1);
• If λ < 0 then Wλ(G) has the minimum value if and only if G = Dn−4(3, 1).

Moreover, in the extremal case

Wλ(G) = 1 +
n−2

∑
i=1

(n− i)iλ.

Proof. We present proof for the case λ > 0 when Wλ is decreasing. The proof for the case λ < 0 when
Wλ is increasing is generally the same.

By Theorem 2, G consists of a tree T and a vertex a of degree two attached to two vertices of T.
We have

Wλ(G) = ∑
u,v∈V(T)

distλ(u, v) + ∑
u∈V(T)

distλ(a, u). (3)

Denote the vertices of T by v1, v2, . . . , vn−1 so that for every i, 1 ≤ i ≤ n − 1, the vertex set
{v1, v2, . . . , vi} induces a connected graph. This connected graph is a tree and we denote it by Ti. Then
T = Tn−1. For i ≥ 2, we have

Wλ(Ti) = Wλ(Ti−1) +
i−1

∑
j=1

distλ(vi, vj).

Since Ti is connected, Wλ(Ti) −Wλ(Ti−1) is maximum if ∑i−1
j=1 distλ(vi, vj) = 1λ + 2λ + · · · +

(i−1)λ. Since Wλ(T1) = 0 and the maximum for Wλ(Ti)−Wλ(Ti−1) is achieved for all i, 2 ≤ i ≤ n− 1,
only if T is a path, Wλ(T) is maximum if T is a path on n− 1 vertices.

Since a is connected to two vertices of T, we have

∑
u∈V(T)

distλ(a, u) ≤ 1λ + 1λ + 2λ + 3λ + · · ·+ (n−2)λ

and equality is attained only if T is a path on n− 1 vertices and a is adjacent to one endvertex of T and
to its neighbour. Hence, G is Dn−4(3, 1).

From (3) we get

Wλ(G) =
n−2

∑
i=1

(n− i− 1)iλ + 1 +
n−2

∑
i=1

iλ

which gives the formula.
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For λ = 1 the invariant Wλ is Wiener index, and by Corollary 4 the extremal value is

W(G) = 1
6 (n

3 − 1n + 12).

On the other hand for λ = −1 the invariant Wλ is Harary index, and by Corollary 1 the extremal
value is

H(G) = 3− n + n
n−2

∑
i=1

1
i

.

It seems to be that Dn−4(3, 1) is the extremal graph also for ξce if n ≥ 7. Analogously, Dn−4(3, 1)
seem to be extremal graph also for Hλ and H∗λ if λ < 0.

4. Further Work

We considered in the paper the extremal values of monotonic distance-based topological indices
for the class of `-apex trees. In particular we have done this for Wiener index, and henceforth for the
Wiener index and the Harary index, and also for some newer indices as connective eccentricity index,
generalized degree distance, and others. For the one extreme value we obtain that the extremal graph
is a join of a tree and a clique. Regarding the other extreme value, which turn to be a harder problem,
we obtain results here only for ` = 1. Furthermore, it will be a challenge for the readers to consider
higher `.

It seems that the study of topological indices on apex graphs is wide open, and one can take many
directions. Just to mention few of them:

• Modified generalized degree distance. This index is defined as

H∗λ(G) = ∑
u 6=v

deg(u)deg(v)distλ(u, v)

is increasing if λ < 0. However, it seems to be that if n− ` is big enough then H∗λ(G) is maximum
if G = T + K` where T is the balanced double star.

• Maximum of Wiener index for bigger `. Let G be an `-apex tree on n vertices, where ` ≥ 3 and
n ≥ `+ 1, such that G has maximum Wiener index. It seems that G is the balanced dumbbell
graph. i.e. G ∼= Dc(a, b), where a = d`/2e, b = b`/2c, and c = n− `.

• Minimum of connective eccentricity index for bigger `. For n ≥ `+ 4, let C(n, `) be the graph obtained
from a path v1v2 · · · vn−` by connecting v2 and v3 to every vertex of a stable set of size n− `. See
Figure 3. It is easy to see that C(n, `) is an `-apex graph under assumption that n− ` ≥ 4. It
seems graphs C(n, `) and Dn−`−1(`+ 2, 1) are good candidates for the smallest possible value
for the connective eccentricity index.

Figure 3. The graph C(10, 3).

Author Contributions: All the authors contributed equally. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was partially supported by Slovenian research agency ARRS, program no. P1-0383, Slovak
research grants APVV-15-0220, APVV-17-0428, VEGA 1/0142/17 and VEGA 1/0238/19. The research was also
supported by the UPAR Grants of United Arab Emirates University, Al Ain, UAE via Grant No. G00002590 and
G00003271.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2020, 12, 802 9 of 9

References

1. Mohar, B. Apex graphs with embeddings of face-width three. Discret. Math. 1997, 176, 203–210. [CrossRef]
2. Wiener, H. Structural determination of paraffin boiling point. J. Am. Chem. Soc. 1947, 69, 17–20. [CrossRef]
3. Wiener, H. Vapor pressure-temperature relationships among the branched paraffin hydroarbons. J. Phys.

Chem. 1948, 52, 425–430. [CrossRef]
4. Wiener, H. Correlation of heats of isomerization, and differences in heats of vaporization of isomers, among

the paraffin hydroarbons. J. Am. Chem. Soc. 1944, 69, 2636–2638. [CrossRef]
5. Diudea, M.V. Wiener and hyper—Wiener numbers in a single matrix. J. Chem. Inf. Comput. Sci. 1996, 36,

833–836. [CrossRef]
6. Dobrynin, A.A.; Entringer, R.; Gutman, I. Wiener index of trees: Theory and applications. Acta Appl. Math.

2001, 66, 211–249. [CrossRef]
7. Knor, M.; Škrekovski, R. Wiener index of line graphs. In Quantitative Graph Theory: Mathematical Foundations

and Applications; Dehmer, M., Emmert–Streib, F., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 279–301.
8. Knor, M.; Skrekovski, R.;̇ Tepeh, A. Mathematical aspects of Wiener index. ARS Math. Contemp. 2016, 11,

327–352. [CrossRef]
9. Randic, M.; Gou, X.; Oxley, T.; Krishnapriyan, H.; Naylor, L. Wiener matrix invariants J. Chem. Inf. Comput.

Sci. 1994, 34, 361–367. [CrossRef]
10. Shang, Y. Bounds of distance Estrada index of graphs. Ars Comb.-Waterloo 2016, 128, 287–294.
11. Shang, Y. Further Results on Distance Estrada Index of Random Graphs. Bull. Malays. Math. Soc. Ser. 2018,

41, 537–544. [CrossRef]
12. Zhou, B.; Gutman, I. Relations between Wiener, hyper-Wiener and Zagreb indices Chem. Phys. Lett. 2004,

394, 93–95.
13. Xu, K.; Liu, M.; Das, K.C.; Gutman, I.; Furtula, B. A Survey on Graphs Extremal with Respect to

Distance–Based Topological Indices. MATCH Commun. Math. Comput. Chem. 2014, 17, 461–508.
14. Xu, K.; Zheng, Z.; Das, K.C. Extremal t-apex trees with respect to matching energy. Complexity 2015, 21,

238–247. [CrossRef]
15. Xu, K.; Wang, J.; Das, K.C.; Klavžar, S. Weighted Harary indices of apex trees and k-apex trees. Discret. Appl.

Math. 2015, 189, 30–40. [CrossRef]
16. Akhter, N.; Jamil, M.K.; Tomescu, I. Extremal first and second Zagreb indices of apex trees. UPB Sci. Bull.

Ser. A 2016, 78, 221–230.
17. De, N.; Nayeem, S.A.; Pal, A. Connective eccentricity index of some thorny graphs. Ann. Pure Appl. Math.

2014, 7, 59–64.
18. Gupta, S.; Singh, M.; Madan, A.K. Connective eccentricity Index: A novel topological descriptor for

predicting biological activity. J. Mol. Graph. Model. 2000, 18, 18–25. [CrossRef]
19. Yu, G.; Qu, H.; Tang, L.; Feng, L. On the connective eccentricity index of trees and unicyclic graphs with

given diameter. J. Math. Anal. Appl. 2014, 420, 1776–1786. [CrossRef]
20. Xu, K.; Das, K.C.; Liu, H. Some extremal results on the connective eccentricity index of graphs. J. Math. Anal.

App. 2016, 433, 803–817. [CrossRef]
21. Yu, G.; Feng, L. On Connective Eccentricity Index of Graphs. MATCH Commun. Math. Comput. Chem. 2013,

69, 611–628.
22. Akhter, N.; Yasin, H.I. Extremal total eccentricity of k-apex trees. Open J. Discret. Appl. Math. 2020, 3, 8–10.

[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0012-365X(96)00363-9
http://dx.doi.org/10.1021/ja01193a005
http://dx.doi.org/10.1021/j150458a014
http://dx.doi.org/10.1021/ja01203a022
http://dx.doi.org/10.1021/ci9501857
http://dx.doi.org/10.1023/A:1010767517079
http://dx.doi.org/10.26493/1855-3974.795.ebf
http://dx.doi.org/10.1021/ci00018a022
http://dx.doi.org/10.1007/s40840-016-0306-6
http://dx.doi.org/10.1002/cplx.21651
http://dx.doi.org/10.1016/j.dam.2015.01.044
http://dx.doi.org/10.1016/S1093-3263(00)00027-9
http://dx.doi.org/10.1016/j.jmaa.2014.06.050
http://dx.doi.org/10.1016/j.jmaa.2015.08.027
http://dx.doi.org/10.30538/psrp-odam2020.0023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	One Extremum
	Generalized Wiener Index
	Wiener Index.
	Harary Index.
	Hyper-Wiener Index.

	Connective Eccentricity Index
	Generalized Degree Distance Index
	Additively Weighted Harary Index.


	Other Extremum
	Generalized Wiener Index

	Further Work
	References

