
symmetryS S

Review

Calculations of QED Effects with the Dirac
Green Function

Vladimir A. Yerokhin * and Anna V. Maiorova

Center for Advanced Studies, Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaya 29,
195251 St. Petersburg, Russia; kovtun_anna@bk.ru
* Correspondence: yerokhin@spbstu.ru

Received: 28 April 2020; Accepted: 7 May 2020; Published: 11 May 2020
����������
�������

Abstract: Modern spectroscopic experiments in few-electron atoms reached the level of precision
at which an accurate description of quantum electrodynamics (QED) effects is mandatory. In many
cases, theoretical treatment of QED effects need to be performed without any expansion in the nuclear
binding strength parameter Zα (where Z is the nuclear charge number and α is the fine-structure
constant). Such calculations involve multiple summations over the whole spectrum of the Dirac
equation in the presence of the binding nuclear field, which can be evaluated in terms of the Dirac
Green function. In this paper we describe the technique of numerical calculations of QED corrections
with the Dirac Green function, developed in numerous investigations during the last two decades.
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1. Introduction

Few-electron highly-charged ions are widely considered as important tools in testing quantum
electrodynamics (QED) theory in the presence of the binding nuclear field [1–3]. Since the nuclear field
in highly-charged ions is strong, its binding strength cannot be used as an expansion parameter and
theoretical investigations of QED effects should be carried out to all orders in Zα, where Z is the nuclear
charge number and α is the fine structure constant. This is achieved by working in the so-called Furry
picture, where the classical binding field of the nucleus is included into the zeroth-order approximation.

Interaction of the electron(s) bound in the field of the nucleus with the quantized radiation field
gives rise to the QED effects, which are accounted for by an expansion in powers of α. General
expressions for individual QED corrections are derived within the dedicated methods, most notably,
the adiabatic S-matrix formalism by Gell-Mann, Low and Sucher [4,5] and by the two-time Green
function method by Shabaev [6].

The major difficulty encountered in calculations of QED corrections comes from the presence of
infinite summations over the whole spectrum of the Dirac equation with the binding nuclear potential.
These sums can be interpreted in terms of the so-called bound electron propagators, or the Dirac
Green function.

Calculations of QED effects with the Dirac Green functions started in 1970th with computations of
the one-loop self-energy [7–9] and vacuum-polarization [10,11]. Over the past years, the number and
the complexity of QED calculations performed to all orders in the binding field has been increasing
rapidly. These calculations have been successful not only in improving the achievable precision but
also in extending the range of the studied effects, from the classical Lamb shift to the QED corrections
to the hyperfine structure, the g factor, the transition amplitudes, the nuclear magnetic shielding, etc.
This progress was due to not merely the increased computing speed and the availability of parallel
computer resources, but also due to the development of new computational algorithms and methods.
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With the present work we summarize the computational technique developed for calculations
of various QED corrections with the bound-electron propagators, paying particular attention to
the notoriously problematic diagrams with several propagators inside the radiative photon loop.
This technique was developed in numerous calculations performed over the last two decades, notably,
in refs. [12–16].

The relativistic units (h̄ = c = m = 1) and the Heaviside charge units (α = e2/4π, e < 0) will be
used throughout this paper.

2. Dirac Green Function

The electron propagator S(x2, x1) is standardly defined as the vacuum expectation value of the
time-ordered product of the electron-positron field operators,

S(x2, x1) = −i〈0|T Ψ(x2)Ψ(x1)|0〉 , (1)

where T denotes the time-ordered product, Ψ = Ψ†γ0, and Ψ is the electron-positron field operator
(see, e.g., ref. [1]),

Ψ(x) = ∑
k

âk ϕ
(+)
k + ∑

k
b̂†

k ϕ
(−)
k . (2)

Here, â† (b̂†) and â (b̂) are the electron (positron) creation and annihilation operators, respectively;
ϕ
(±)
k (x) = ψ

(±)
k (x) exp(−iε(±)k t) are single-particle electron (positron) states in the external field

A(x), and ψ
(±)
k are the positive- and negative-energy eigenfunctions of the time-independent Dirac

HamiltonianHD,
HD ψk(x) ≡

[
α · (p− eA) + βm + eA0]ψk(x) = εkψk(x) , (3)

where β = γ0, α = βγ, and x = (t, x) is a four-vector. Substituting Equation (2) into Equation (1),
we get

S(x2, x1) = − iθ(t2 − t1)∑
k

ϕ
(+)
k (x2) ϕ

(+)
k (x1)

+ iθ(t1 − t2)∑
k

ϕ
(−)
k (x2), ϕ

(−)
k (x1) , (4)

where θ(t) is the Heaviside step function. This expression can be conveniently rewritten in
an equivalent form

S(x2, x1) =
1

2π

∫ ∞

−∞
dω e−iω(t2−t1) ∑

n

ψn(x2)ψn(x1)

ω− εn(1− i0)
, (5)

where the summation is carried out over both positive and negative energy states. Equivalence of
these two representations for the electron propagator can be checked by performing the ω integration
in Equation (5) by Cauchy’s theorem.

It can be easily shown (see, e.g., ref. [17]) that the electron propagator satisfies the
differential equation [

i/∂2 − e /A(x2)−m
]
S(x2, x1) = δ4(x2 − x1) , (6)

where slashed symbols denote contractions with γ matrices, /∂ = γµ∂µ and /A = γµ Aµ. In the absence of
the external field, this equation can be solved in a closed form. The result is the free-electron propagator,

S(0)(x2 − x1) =
∫ d4 p

(2π)4 e−ip·(x2−x1) /p + m
p2 −m2 + i0

, (7)

where p = (p0, p) is a four-vector.
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Within the Feynman-diagram technique (see, e.g., ref. [6]), the integration over the time
components of the arguments of the electron propagator is usually carried out in the general form, so
that in practical calculations one deals with the Fourier transform of S(x2, x1) with respect to the time
variable τ = t2 − t1. The result is referred to as the Dirac Green function,

G(E, x2, x1) =
∫ ∞

−∞
dτ eiEτ S(x2, x1)γ

0 = ∑
n

ψn(x2)ψ†
n(x1)

E− εn(1− i0)
. (8)

From Equation (6), we deduce that G(E, x2, x1) satisfies the differential equation

(E−HD) G(E, x2, x1) = δ3(x2 − x1) , (9)

whereHD is the Dirac Hamiltonian, see Equation (3).
In this work we are interested in the Dirac Green function in a central field. In this case the

angular structure of G(E, x2, x1) follows from Equation (8) and from the angular dependence of the
Dirac solutions [18],

ψn(x) =
(

gn(x) χκnµn(x̂)
i fn(x) χ−κnµn(x̂)

)
, (10)

where gn(r) and fn(r) are the upper and the lower radial components of the wave function, respectively,
χκµ(x̂) is the spin-angular spinor, κ is the relativistic angular-momentum quantum number, µ is the
angular momentum projection, x = |x|, and x̂ = x/|x|. We thus obtain the standard partial-wave
representation of the Dirac Green function [19,20]

G(E, x2, x1) = ∑
κ

(
G11

κ (E, x2, x1)π++
κ (x̂1, x̂2) −i G12

κ (E, x2, x1)π+−
κ (x̂1, x̂2)

i G21
κ (E, x2, x1)π−+κ (x̂1, x̂2) G22

κ (E, x2, x1)π−−κ (x̂1, x̂2)

)
, (11)

where π±±κ (x̂1, x̂2) = ∑µ χ±κµ(x̂1) χ†
±κµ(x̂2), and Gij

κ (E, x2, x1) are the radial components of the Dirac
Green function.

For a static potential [eA0(x) = V(x), A(x) = 0], Equation (9) in the matrix form reads(
E−m−V(x) −(σ · p)
−(σ · p) E + m−V(x)

)
G(E, x, x′) = δ(x− x′) I , (12)

where I is the 2 × 2 identity matrix. Substituting Equation (11) and using the identities

(σ · p) f (x) χκµ(x̂) = i
( ∂

∂x
+

1 + κ

x

)
f (x) χ−κµ(x̂) , (13)

and
δ(x− x′) =

1
xx′

δ(x− x′) ∑
κµ

χκµ(x̂)χ†
κµ(x̂′) , (14)

we obtain the equation for the radial Dirac Green function,

(
E I − hD,κ

)
Gκ(E, x, x′) ≡

 E−m−V(x)
d

dx
− κ − 1

x
− d

dx
− κ + 1

x
E + m−V(x)

Gκ(E, x, x′) =
1

xx′
δ(x− x′) I , (15)

where hD,κ is the radial Dirac Hamiltonian and Gκ is the 2 × 2 matrix of radial components of the
Green function Gij

κ , defined by Equation (11).
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2.1. Representation in Terms of Regular and Irregular Solutions

The solution of an inhomogeneous differential Equation (15) can be constructed from the solutions
of the corresponding homogeneous equation bounded at infinity (φ∞

κ ) and at origin (φ0
κ),

Gκ(E, x, x′) =
1

∆κ(E)

[
φ∞

κ (x) φ0T

κ (x′) θ(x− x′) + φ0
κ(x) φ∞T

κ (x′) θ(x′ − x)
]

, (16)

where the superscript T denotes the transposition, φ0
κ and φ∞

κ are the two-component solutions of the
homogeneous radial Dirac equation, and ∆κ(E) is their Wronskian,

∆κ(E) = x2φ0T

κ (x)

(
0 1
−1 0

)
φ∞

κ (x) , (17)

which is independent of x. When the energy parameter E of the Green function is an eigenvalue of the
Dirac Hamiltonian, the two solutions φ0

κ and φ∞
κ coincide (up to a constant factor) and their Wronskian

vanishes, ∆κ(En) = 0. This gives rise to poles of the Green function. The Green function has also
branch points at E = ±m, with cuts along the real axis for |E| > m, as will be discussed in more
details below.

For the point-nucleus Coulomb potential [V(x) = −Zα/x] the Equation (15) can be solved
analytically [19] in terms of the Whittaker functions. The result is commonly referred to as the
Dirac-Coulomb Green function. The radial Dirac-Coulomb Green function is represented by the form
(16), with the functions φ0 and φ∞ given by [8]

φ0
C(x) =

(
φ0

C,+(x)

φ0
C,−(x)

)
, φ∞

C (x) =

(
φ∞

C,+(x)
φ∞

C,−(x)

)
, (18)

φ0
C,±(x) =

√
1± ε

x3/2

[
(λ− ν)Mν−(1/2), λ(2cx)∓

(
κ − αZ

c

)
Mν+(1/2), λ(2cx)

]
, (19)

φ∞
C,±(x) =

√
1± ε

x3/2

[ (
κ +

αZ
c

)
Wν−(1/2), λ(2cx)±Wν+(1/2), λ(2cx)

]
, (20)

and

∆C,κ(E) = −4c2 Γ(1 + 2λ)

Γ(λ− ν)
, (21)

where ε = E/m, c =
√

1− ε2, λ =
√

κ2 − (αZ)2, ν = Zα ε/c, and Mα,β and Wα,β are the Whittaker
functions of the first and the second kind [21], respectively. We mention the opposite sign of the present
definition of the Green function as compared to the definition of refs. [1,8].

Zeros of the Wronskian (21) correspond to the bound-state energy levels, λ − ν = −nr

(nr = 0, 1, . . . is the radial quantum number), which yields the well-known formula for the Dirac
bound energies,

Eκ,nr = m

[
1 +

(
αZ

λ + nr

)2
]−1/2

. (22)

The cut structure of the Dirac-Coulomb Green function is defined by that of the square root√
m2 − E2. The square root function is defined to be positive in the gap −m < E < m on the real

E-axis. Outside of the gap, the sign of the square root is fixed by the condition Re(
√

m2 − E2) > 0.
Special care should be taken evaluating the Green function for real energies |E| > m. Behaviour of
the Green function on the real E axis is defined by the sign of the infinitesimal addition in the energy
denominator of Equations (5) and (8). In our case the addition is negative and, therefore, the cut E > m
should be approached from the upper half of the E plane, and the cut E < −m from the lower half.
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So, e.g., starting from the gap −m < E < m and approaching the branch cut E > m from the upper
half-plane, we have the following prescription [22] for the analytical continuation of the square root:√

m2 − E2 → −i
√

E2 −m2.
In the limit of Z → 0, the Dirac-Coulomb Green function is reduced to the free Dirac Green

function. The corresponding radial solutions are given by [8]

φ0
F,±(x) =

(
1

i κ
|κ|

)
√

1± ε jl±κ
(icx) , (23)

φ∞
F,±(x) =

(
1

i κ
|κ|

)
√

1± ε h(1)l±κ
(icx) , (24)

where lκ = |κ + 1/2| − 1/2, j(z) and h(1)(z) are spherical Bessel functions, and in (· · · ) the upper
value is chosen for the “+” component and the lower, for the “-” component. The Wronskian of the
above solutions is ∆F,κ(E) = 1/c.

The numerical computation of the Whittaker functions required in calculations of QED corrections
with the Dirac-Coulomb Green function was first tackled by Mohr in refs. [8,9] (see also the review [1]).
His approach enabled an accurate computation of the Whittaker functions in a wide range of arguments,
including high values of the relativistic angular parameter κ. A disadvantage of this numerical
approach was that it required the extended-precision arithmetic to be used in a certain range of
the arguments. A more economical variation of this approach was reported in ref. [12]. It allowed
a computation of Whittaker functions within the standard double-precision arithmetics, for not very
high partial waves (|κ| < 40), which turned out to be sufficient for many practical applications.

The representation (16) can also be used in computations of the Dirac Green function for potentials
other than the point-Coulomb potential. In particular, ref. [10] presented a numerical approach for
computing the Dirac Green function for the potential induced by the nuclear charge distribution given
by the shell nuclear model ρ(r) ∝ δ(r − R). The computation of the Dirac Green function for the
homogeneously charged nuclear model ρ(r) ∝ θ(r− R) was reported in ref. [1].

In practical calculations, more realistic models of the nuclear-charge distribution are often required,
first of all, the two-parameter Fermi distribution. A numerical approach for the computation of the
Dirac Green function with the spherically-symmetric Fermi nuclear model was described in ref. [23].
This approach can be easily generated for the case of an arbitrary central potential approaching the
Coulomb potential in the limit of r → ∞, in particular, for a wide class of screened nuclear potentials.

2.2. Finite Basis Set Representations

Using the spectral representation of the Green function (8), we can express the radial Dirac Green
function as

Gκ(E, x, x′) = ∑
n

φκ,n(x) φT
κ,n(x′)

E− εκ,n
, (25)

where φκ,n are the two-component radial Dirac functions with energies εκ,n satisfying the radial
Dirac equation

hD,κ φκ,n(x) = εκ,n φκ,n(x) . (26)

The sum over n in Equation (25) should be understood as a summation over the discrete part of
the spectrum and the integration over the positive and negative continuum parts of the spectrum.

A very useful approach to the numerical evaluation of the Dirac Green function is provided by
the finite basis set method. In this method, the radial Dirac solutions are approximately represented by
linear combinations of (a finite set of) two-component basis functions ui(x) ,

φn(x) =
N

∑
i=1

ci ui(x) . (27)
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within this representation, the solution of the radial Dirac Equation (26) is reduced to a generalized
eigenvalue problem for the coefficients ci,

1
2
[
〈ui|hD|uk〉+ 〈uk|hD|ui〉

]
ck = E 〈ui|uk〉 ck , (28)

where the summation over repeated indices is implied and i, k = 1 . . . N. This equation can be solved
numerically by the standard methods of linear algebra, which yields the set of N eigenvectors and
eigenvalues of the radial Dirac equation. After that, by using Equation (25) one obtains a finite basis-set
representation of the radial Dirac Green function.

The choice of the basis functions uk can vary. One of the most successful implementations is
delivered by the dual kinetic balance (DKB) basis [24] constructed with B-splines [25]. Within this
method, the radial Dirac solutions are represented as

φκ,n(x) =
N/2

∑
i=1

ci

 Bi(x)
1

2m

(
d

dx
+

κ

x

)
Bi(x)

+
N/2

∑
i=1

ci+N/2

 1
2m

(
d

dx
− κ

x

)
Bi(x)

Bi(x)

 , (29)

where {Bi(x)}N/2
i=1 is the set of B-splines [25] on the interval (0, R), where R is the cavity radius,

chosen to be sufficiently large in order to have no influence on the calculated properties of the atom.
The B-splines are chosen to vanish at x = 0 and x = R, thus yielding the zero boundary conditions for
the wave functions, φ(0) = φ(R) = 0.

It needs to be stressed that the DKB ansatz (29) assumes that the potential in the Dirac equation is
regular at r → 0. This means that it can be used for solving the Dirac equation for an extended-nucleus
potential, but not for the point-nucleus Coulomb potential. The advantages of the DKB basis is
the absence of the so-called spurious states, the correct behaviour of the upper and lower radial
components at r → 0 and, as a consequence, an improved convergence of the calculated atomic
properties with increase of the size of the basis set.

For the point nuclear model, one often uses the simpler ansatz of ref. [26],

φκ,n(x) =
N/2

∑
i=1

ci

(
Bi(x)

0

)
+

N/2

∑
i=1

ci+N/2

(
0

Bi(x)

)
. (30)

It should be noted that the ansatz (30) leads to appearance of spurious eigenstates (highly
oscillating eigenvectors with unphysical energies), as analytically proved in ref. [24]. In practical
calculations, these spurious states do not cause significant problems (since their contributions to
integrals is very small due to rapid oscillations), but their presence is manifested in a slower
convergence of the calculated results as N → ∞.

We also mention the space-discretization method for the solution of the Dirac equation [27,28],
which can be regarded as a variant of the finite basis-set method with the basis constructed with
δ-functions. For practical calculations, the B-spline basis has the advantages of being more compact and
consisting of continuous functions, while eigenvectors in the space-discretization method are defined
on a grid only. However, the space-discretization method was successfully used in many calculations
of QED effects by the Göteburg group, notably, in refs. [29–31]. Moreover, this method apparently
yields a better convergence than the B-spline approach in calculations of the Wichmann-Kroll
vacuum-polarization corrections [32].

2.3. Discussion

In Sections 2.1 and 2.2 we described the two main representations of the bound electron propagator
used in modern calculations of QED effects in atomic spectra. The first one is the representation in
terms of the regular and irregular Dirac solutions (in what follows, the Green’s function approach)
and the second is the finite basis set method. The other known representations of the Dirac-Coulomb
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Green function are not discussed in the present work, since they have not been proved useful in the
calculations we consider here. In particular, the Sturmian expansion of the Dirac-Green function,
widely used in the literature for the description of multiphoton processes (see, e.g., refs. [33–36]),
does not seem to be useful for the calculations considered here. The main reasons are the numerical
character of calculations and the lack of convergence of the Sturmian expansion when the energy
argument is in the complex plane.

We now give a comparative discussion of the two main approaches. The basis-set method has
several attractive features. The corresponding numerical routine is relatively simple, flexible and can
easily incorporate any spherical-symmetric potential. Moreover, this method allows one to perform
summations over a part of the Dirac spectrum (e.g., over the positive or the negative part only) and
evaluate sums over spectrum with energy denominators different from the one in Equation (25).

Another attractive feature of the basis-set method is that it provides an approximation to the
Green function which is a continuous function of the radial arguments at x ≈ x′. This is not the case for
the exact Green function (16), whose components contain the discontinuous step function θ(x− x′)
(which yields a δ-function in Equation (15) after differentiation). This feature is often referred to as
the radial ordering, since the exact Green function depends on x< and x>, rather than just on x and
x′. This feature complicates the numerical evaluation of matrix elements, especially for higher-order
diagrams with multiple radial integrations.

The basis-set method has also some important draw-backs as compared to the Green-function
approach. It has an additional parameter, the number of basis functions N, and the final result should
be investigated for stability when N is increased. In practice, the dependence on the basis size often sets
a limitation on the accuracy of calculations. In addition, the number of partial waves (i.e., the maximal
value of |κ|) included in the numerical evaluation is rather limited in the basis-set method. The typical
number of partial waves employed in actual calculations with the basis-set method is ∼20, while in
the Green-function approach it can be of order 104 and more.

We conclude that the basis-set method has computational advantages for a restricted
(but sufficiently broad) class of problems, where the partial-wave expansion is well converging and
(or) the required numerical accuracy is not very high. The Green-function approach is preferable for
problems where (i) high numerical accuracy is needed, (ii) large numerical cancellations occur, (iii) the
partial-wave expansion does not converge rapidly, (iv) the contribution of high-energy intermediate
electron states is enhanced, leading to slow convergence of the basis-set calculations with respect to N.

We now mention some of the calculations of QED corrections which used the above-mentioned
methods for computing the bound electron propagators. Historically, the first was the Green-function
approach elaborated, most notably, by Mohr in refs. [8,9]. This method was developed further
in calculations of the one-loop self-energy [12,37–40], the self-energy correction to the hyperfine
splitting and g factor [13,41,42], the screened QED corrections [43,44], and the QED corrections to the
magnetic shielding [45]. The B-spline basis-set method was used in calculations of the two-photon
exchange diagrams [46–49], the one-loop self-energy [50], the nuclear recoil [51–53], the screened QED
corrections [54,55]. The space-discretization method was extensively applied by the Göteburg group in
calculations of the first-order self-energy and vacuum polarization [32], two-photon exchange [29,31],
the self-energy corrections to the bound-electron g factor [30], to the hyperfine structure [56], to the
electron-electron interaction [57].

3. General Formulas

In the present work we will consider actual calculations of three contributions originating from the
electron self-energy, specifically, the matrix elements of the self-energy operator, the magnetic vertex
operator, and the double vertex operator, graphically represented in Figures 1–3. The corresponding
diagrams involve one, two, and three bound electron propagators in the radiative photon loop,
respectively. Calculations of self-energy diagrams with one electron propagator started already
in 1970th [7–9]. First calculations of the vertex diagrams with two electron propagators were
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performed in 1990th [43,58–61], whereas the double vertex diagrams have been tackled only relatively
recently [45,62]. There have been no calculations of diagrams with more than three bound electron
propagators in the radiative loop performed so far.

�

Figure 1. The one-loop self-energy correction. The double line represents the electron propagating in
the binding field of the nucleus. The wavy line denotes the virtual photon.

Figure 2. The magnetic-vertex self-energy correction. The wavy line terminated by a cross denotes the
interaction with an external magnetic field.

Figure 3. The double-vertex self-energy correction. The wavy line terminated by a triangle denotes the
hyperfine interaction.

The matrix element of the one-loop self-energy operator depicted on Figure 1 yields the dominant
contribution to the Lamb shift of the energy levels. It is given by

〈a|Σ(εa)|a〉 =
i

2π

∫ ∞

−∞
dω ∑

n

〈an|I(ω)|na〉
εa −ω− uεn

, (31)

where the summation over n is extended over the complete spectrum of the Dirac equation and
u ≡ 1− i0 ensures the positions of the singularities of the Green function with respect to the integration
contour. I(ω) is the operator of the electron-electron interaction, defined as

I(ω, r1, r2) = e2 α
µ
1 αν

2 Dµν(ω, r12) , (32)

where αµ = (1, α) are the Dirac matrices, r12 = r1 − r2, and Dµν(ω, r12) is the photon propagator.
The photon propagator takes the simplest form in the Feynman gauge, where it is given by

Dµν(ω, r12) = gµν
ei
√

ω2+i0 r12

4πr12
, (33)

with r12 = |r12|.
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The matrix element of the magnetic vertex operator depicted in Figure 2 is the most problematic
part of the self-energy correction to the g factor [14]. The magnetic vertex operator, accompanied by
the corresponding reducible part, is defined by its matrix elements as

〈a|Λvr(εa)|a〉 =
i

2π

∫ ∞

−∞
dω ∑

n1n2

〈an2|I(ω)|n1a〉
[
〈n1|Vg|n2〉 − 〈n1|n2〉 〈a|Vg|a〉

]
(εa −ω− u εn1)(εa −ω− u εn2)

, (34)

where Vg is the effective magnetic operator responsible for the g factor [14], Vg = (1/µa) [r × α]z,
with µa being the angular momentum projection of the reference state a. We note that the scalar
product 〈n1|n2〉 in Equation (34) can be trivially performed due to the orthogonality of the wave
functions, 〈n1|n2〉 = δn1n2 , but we find it convenient to keep it in the integral form.

The double-vertex operator matrix element shown in Figure 3 is the most problematic part of the
self-energy correction to the nuclear shielding [45,63]. It is defined, together with the corresponding
reducible parts, as

〈
a
∣∣Λdvr(εa)

∣∣a〉 = 2
i

2π

∫ ∞

−∞
dω

{
∑

n1n2n3

〈an3|I(ω)|n1a〉
(εa −ω− u εn1 )(εa −ω− u εn2 )(εa −ω− u εn3 )

×
[
〈n1|Vg|n2〉 〈n2|Vhfs|n3〉 − 〈n1|n2〉 〈n2|Vhfs|n3〉 〈a|Vg|a〉

− 〈n1|Vg|n2〉 〈n2|n3〉 〈a|Vhfs|a〉+ 〈n1|n2〉 〈n2|n3〉 〈a|Vg|a〉 〈a|Vhfs|a〉
]

(35)

− ∑
µa′n2

〈aa′|I(ω)|a′a〉
(−ω + i0)2 〈a|Vg|n2〉

1
εa − εn2

〈n2|Vhfs|a〉
}

,

where Vhfs is the effective magnetic operator responsible for the hyperfine interaction [15], Vhfs =

(1/µa) [r× α]z/r3, a′ denotes the reference state a with a different momentum projection (µa′ ), and the
factor of 2 in the front accounts for two equivalent diagrams.

The above general formulas for the self-energy and magnetic-vertex matrix elements contain
ultraviolet (UV) divergences. The standard approach to handle them [64] is to separate out one or
two first terms of the expansion of the electron propagators in terms of the interaction with the binding
nuclear field. In order to get UV-finite results, the self-energy operator needs a subtraction of the
two first terms of the potential expansion,

Σ(εa)→ Σ(2+)(εa) = Σ(εa)− Σ(0)(εa)− Σ(1)(εa) , (36)

whereas the vertex operator needs the subtraction of the first term only,

Λvr(εa)→ Λ(1+)
vr (εa) = Λvr(εa)−Λ(0)

vr (εa) , (37)

where the superscript indicates the number of interactions with the binding field in the electron
propagator(s) inside the radiative photon loop. The double-vertex operator Λdvr contains three electron
propagators inside the loop and thus is UV finite.

The separated terms containing zero and one interaction with the binding field (Σ(0), Σ(1), Λ(0)
vr )

are regularized by using the dimensional regularization and calculated in momentum space.
Their calculation does not involve bound electron propagators and thus is beyond the scope of
the present paper; we refer the reader for the original investigations, ref. [12] for the self-energy matrix
element, and ref. [14] for the magnetic vertex matrix element.
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4. Angular Integration

The integration over the angular variables in the above formulas is conveniently carried out with
help of the following representation of the matrix elements of the electron-electron interaction operator,

〈ab|I(ω)|cd〉 = α
Lmax

∑
L=Lmin

JL(abcd) RL(ω, abcd) , (38)

where JL contains all the dependence on the angular momenta projections, RL are the radial integrals
defined in Appendix A, and the summation over L goes from Lmin = max(|ja − jc|, |jb − jd|) to Lmax =

min(ja + jc, jb + jd), with jn being the total angular momentum of the electron state n. The function JL
is given by

JL(abcd) = ∑
mL

(−1)L−mL+jc−µc+jd−µd

2L + 1
CLmL

jaµa ,jc−µc
CLmL

jdµd ,jb−µb
, (39)

where Cjµ
j1µ1,j2µ2

denotes the Clebsch-Gordan coefficient and µn is the angular momentum projection of
the electron state n.

Substituting Equation (38) into Equation (31) and performing the sum of two Clebsch-Gordan
coefficients, we immediately obtain the result for the matrix element of the self-energy operator,

〈a|Σ(εa)|a〉 =
iα
2π

∫ ∞

−∞
dω ∑

n,L

(−1)ja−jn+L

2ja + 1
RL(ω, anna)
εa −ω− uεn

. (40)

In order to perform the angular integrations in the magnetic vertex operator, we first apply the
Wigner-Eckart theorem to the matrix element of the magnetic interaction Vg (which is the rank-1
spherical tensor),

〈n1|Vg|n2〉 =
(−1)j1−µ1
√

3
C10

j2−µ2,j1µ1
(n1||Vg||n2) , (41)

where (.||.||.) denotes the reduced matrix element. Now we can perform the angular integration in the
magnetic vertex matrix element as

∑
µ1µ2

〈an2|I(ω)|n1a〉 〈n1|Vg|n2〉 = ∑
L

XL RL(ω, an2n1a) (n1||Vg||n2) , (42)

where µ1 and µ2 are the angular momentum projections of the electron states n1 and n2, respectively,
and XL are the angular coefficients defined by

XL = ∑
µ1µ2

(−1)j1−µ1
√

3
C10

j2−µ2,j1µ1
JL(an2n1a) . (43)

Performing the summation of three Clebsch-Gordan coefficients with help of formulas from
ref. [65], we obtain

XL =
(−1)j1−j2 µa√

ja(ja + 1)(2ja + 1)

{
j1 j2 1
ja ja L

}
, (44)

where {. . .} denotes the 6j-symbol.
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Analogously, evaluating summations of four Clebsch-Gordan coefficients with help of formulas
from ref. [65], we perform the angular integration for the double vertex matrix elements,

∑
µ1µ2µ3

〈an3|I(ω)|n1a〉 〈n1|Vg|n2〉 〈n2|Vhfs|n3〉 =

∑
L

ZL RL(ω, an3n1a) (n1||Vg||n2) (n2||Vhfs||n3) , (45)

where the angular coefficients ZL are

ZL = ∑
jk

(−1)jk+ja
[
Cjkµa

jaµa ,10

]2


1 j1 j2
ja L j3
jk ja 1

 , (46)

where {. . .} denotes the 9j-symbol. In practical calculations, summations over the angular momentum
projections can be just as well carried out numerically.

The formulas above are written in terms of explicit summations over the Dirac spectrum, assuming
the spectral representation of the radial Green function. In order to use the analytical representation
of the Green function in terms of regular and irregular solutions, we would need to rewrite these
formulas, identifying the components of the radial Green function, as

∑
n

gκ,n(x) gκ,n(x′)
E− εn

→ G11
κ (E, x, x′) , etc. (47)

This is possible but often leads to long and unnecessary cumbersome expressions, especially
for complicated diagrams with multiple radial integrations. One can avoid this tedious work by
introducing [66] the following formal representation for the radial Green function

Gκ(E, x, x′) = ψκ(E, x) τT
κ (E, x′) , (48)

where the two-component functions ψκ and τκ depend on one radial argument only. The price to pay is
that ψκ and τκ have different forms depending on the ordering of the radial arguments x and x′,

ψκ(E, x) =
1

∆1/2
κ

×
{

φ0
κ(E, x), when x < x′ ,

φ ∞
κ (E, x), when x > x′ ,

(49)

and

τκ(E, x′) =
1

∆1/2
κ

×
{

φ ∞
κ (E, x′), when x < x′ ,

φ 0
κ (E, x′), when x > x′ .

(50)

Here,φ0
κ and φ∞

κ are the two-component solutions of the radial Dirac equation bounded at the
origin and infinity, respectively, and ∆κ is their Wronskian, see Equations (16) and (17). Employing the
representation (48), we can immediately use formulas written via summations over the Dirac spectrum
for calculations with the analytical representation of the Green function. The only complication is that
the Green function is discontinuous when the two radial arguments are equal, x = x′. This implies that
radial integrations in different matrix elements cannot be performed independently. Their computation
requires a special procedure, described in Section 7.

5. Choice of the Integration Contour

The formulas presented so far contained the integration over the virtual-photon energy ω

performed along the real axis. This choice of the integration contour, however, is not favorable
for numerical calculations, since the Dirac Green function is a highly oscillating function for large and
real energy arguments and x, x′ → ∞. It is advantageous to deform the integration contour to the
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region of large imaginary ω since the Dirac Green function acquires an exponentially damping factor
in this case. Deforming the contour of integration, one should take care about poles and branch cuts of
the integrand, however.

The analytical structure of the Dirac Green function is outlined in Section 2. The branch cuts of
the photon propagator (15) are defined by the square root function, which should be understood as
a limit of the regularized expression with a photon mass µ > 0,√

ω2 + i0→ lim
µ→0

√
ω2 − µ2 + i0 = lim

µ→0

√
ω− µ + i0

√
ω + µ− i0 . (51)

The photon propagator thus has two branch cuts starting from ω = µ− i0 and ω = −µ + i0.
The analytical structure of the integrand of the self-energy matrix element is shown in Figure 4.

CH+

CL-

CL+

CH-

CL-

Figure 4. The poles and the branch cuts of the integrand of the matrix element of the self-energy
operator and the integration contour CLH in the complex ω plane. The dashed lines (green) show the
branch cuts of the photon propagator. The poles and the branch cuts of the electron propagator are
shown by dots and the dashed-dot line (blue). The solid line (red) shows the integration contour CLH .

Figure 4 also presents the deformed contour of the ω integration, which we found to be optimal
for most practical calculations. Specifically, the contour CLH consists of the low-energy part CL and the
high-energy part CH .

The low-energy part of the integration contour CL consists of two parts, CL+ and CL−, the first of
which runs on the upper bank of the cut of the photon propagator and the second, on the lower bank
and in the opposite direction. On the upper bank

√
ω2 = ω, whereas on the lower bank

√
ω2 = −ω.

The integrands for CL+ and CL− differ only by the sign of ω in the photon propagator (and the overall
sign due to the opposite directions of the integration), thus allowing the following simplification,

eiω x12 → eiω x12 − e−iω x12 = 2 i sin(ω x12).

The high-energy part CH is parallel to the imaginary axis and consists of two parts CH− =

(∆− i∞, ∆− iε) and CH+ = (∆ + iε, ∆ + i∞). The integrands for CH+ and CH− are typically complex
conjugated, so that one can perform the integration over CH+ only, take the real part of the result and
multiply by two.

In the general case of an excited reference state, the low-energy part CL is bent in the complex
plane, in order to avoid singularities coming from virtual bound states with energies εn < εa in
the electron propagator. Specifically, the contours CL+ and CL− consist of 3 sections: (0, δx,1 − iδy),
(δx,1 − iδy, δx,2), and (δx,2, ∆), as shown on Figure 4. The parameters of the contour δx,1, δx,2, δy, and ∆
may be chosen differently. In our calculations, we used the following choice (assuming the reference
state a to be an excited state): ∆ = Zα εa; δx,1 = εa − ε1s; δx,2 = 2 δx,1; δy = δx,1/2. If the reference state
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a is the ground state, there is no need to bend the low-energy part of the contour in the complex plane
(as there are no intermediate states with energy 0 < εn < εa); so we just integrate along the real axis
(setting δy = 0).

We note that the described contour CLH resembles the contour used by P. Mohr in his
calculations [8]. The difference is that he did not bend the low-energy part in the complex plane
and used a different choice of the parameter ∆, ∆ = εa.

Another choice of the ω integration contour frequently encountered in the literature
(e.g., in refs. [50,67,68]) is the standard Wick rotation from the real into the imaginary axis, ω → iω.
In this case the intermediate states with energy 0 < εn ≤ εa lead to appearance of the pole terms,
which need a special treatment. Apart for the pole contributions, small energy differences εa − εn

appear in the denominators of the electron propagators, leading to a rapidly varying structure of the
integrand for small ω in this choice of the contour, which may lead to numerical difficulties.

6. Infrared Divergencies

In this section we address the infrared (IR) reference-state divergencies which appear in the QED
corrections involving bound-electron propagators.

We start with pointing out that the bound-state QED corrections do not possess the standard
free-QED IR divergences which arise when the four-momentum p of the intermediate electron states
approaches the mass shell, ρ = (m2 − p2)/m2 = (m2 − p2

0 + p2)/m2 → 0. For the bound-state
QED corrections, the intermediate electron states are always off mass shell (p0 = εa < m ⇒ ρ > 0)
and the would-be IR divergences are cut off by the binding energy of the reference state. However,
the bound-state QED corrections often contain IR divergences of a different kind, also known as the
reference-state divergences. They appear when two or more denominators in the electron propagators
vanish at ω → 0. Specifically, IR divergences arise in the magnetic vertex operator (34) when n1 =

n2 = a and in the double vertex operator (35) when n1 = n3 = a.
The general approach to the treatment of the IR divergencies is to separate out the divergent

contributions, regularize them by introducing a finite photon mass µ in the photon propagator, evaluate
the integral over ω analytically, and separate out the µ-dependent divergent terms. The divergent
terms should of course cancel out when all relevant contributions are summed together. The evaluation
of the IR-divergent integrals with the finite photon mass is illustrated in Appendix B.

Using formulas from Appendix B, the magnetic vertex matrix element (34) can be transformed to
a form that is explicitly free from any IR divergences,

〈a|Λvr(εa)|a〉 =
i

2π

∫ ∞

−∞
dω

[
∑

n1n2

〈an2|I(ω)|n1a〉
[
〈n1|Vg|n2〉 − δn1n2 〈a|Vg|a〉

]
(εa −ω− u εn1)(εa −ω− u εn2)

− ∑
µa′µa′′

〈aa′′|I(ω)|a′a〉
[
〈a′|Vg|a′′〉 − δa′a′′ 〈a|Vg|a〉

]
(−ω + i0)2

]
+

α

π ∑
µa′µa′′

〈aa′′|αµαµ ln x12|a′a〉
[
〈a′|Vg|a′′〉 − δa′a′′ 〈a|Vg|a〉

]
, (52)

where a′ and a′′ denote the reference state a with a different angular momentum projection (µa′ and
µa′′ , respectively).

For the double-vertex matrix element (35) the situation is somewhat more complicated because
there are two types of divergences, the one ∝ 1/µ coming from three vanishing denominators (n1 =

n2 = n3 = a) and the other ∝ ln µ coming from two vanishing denominators (n1 = n3 = a 6= n2). Still,
the divergences in the double-vertex matrix can be handled with help of formulas from Appendix B
analogously to that for the magnetic vertex case.

There exists also a more economic method of handling IR divergences in actual calculations.
It relies on the fact that the matrix elements (34) and (35) are defined so that they are overall IR
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finite, i.e., have a well-defined limit at µ → 0. This means that they can be numerically evaluated
with the zero photon mass. As long as the ω integration is performed after all parts of the integrand
are combined together, the integrand will have a smooth small-ω behaviour when integrated along
the low-energy part of the integration contour CLH . The would-be IR divergences will be cancelled
numerically at a given ω between different parts of the integrand. It is easy to check that for the
magnetic vertex matrix element, both methods give the identical numerical results. For the double
vertex matrix element, the numerical treatment of IR divergences was used in the calculation of the
diamagnetic shielding in refs. [45,63].

It should be mentioned that vanishing denominators in the electron propagators could arise not
only from the intermediate states n = a, but also from the intermediate states having the same energy
but the opposite parity as the reference state (e.g., n = 2p1/2 for a = 2s for the point nuclear model).
Such intermediate states do not cause IR divergences, since the radial matrix element in the numerator
vanishes due to the orthogonality of the wave functions, as can be seen from formulas in Appendix B.

A different approach for handling the IR divergencies was used by the Notre-Dame
group [67,69,70]. In their works, numerical calculations were performed with an explicit regularization
parameter δ shifting the position of the reference-state energy, εa → εa(1− δ); the numerical limit of
δ→ 0 was then performed in the end of the calculations.

7. Radial Integration

In actual calculations it is very important to find an efficient way to perform multiple radial
integrations. The number of radial integrations is two for the self-energy matrix element, three for the
magnetic vertex, and four for the double-vertex matrix element. In what follows we will assume that
the analytical representation of the Dirac Green function is used, since in the basis-set representation,
the radial integrations do not cause particular difficulties.

We now formulate a general numerical approach suitable for carrying out multiple radial
integrations, first introduced in the context of the two-loop self-energy in ref. [66]. We start with
the simplest case of the self-energy matrix element, in which the radial integral is two-dimensional.
The two-dimensional radial integrals can be schematically represented to be a linear combination of
terms of the following structure∫ ∞

0
dx1

∫ ∞

0
dx2 H(x1) I(x<) L(x>) M(x2) , (53)

where x> = max(x1, x2) and x< = min(x1, x2) and H, I, L, M are some functions of the specified
arguments. It is important that the integrand can be represented as a product of functions that depend
on one radial argument only, some of those being x< and x>. In particular, I(x<) involves φ0(x<)
from the Dirac Green function and jl(ωx<) from the photon propagator, and L(x>) involves φ∞(x>)
and h(1)l (ωx>). It is clear that if we store all functions on a suitably chosen radial grid, it should be
possible to compute the integral (53) just by summing up the pre-stored data.

In order to do this, we introduce a 3-dimensional radial grid
{

ri,j,k

}
on the interval (0, rmax) as

follows. First, we fill the elements of the first layer, ri,0,0 with i = 0, . . . , Ni, which coarsely span the
whole interval, e.g., as

ri,0,0 = r0
1− t2

t2 , (54)

where t is uniformly distributed on the interval (tmin, 1) and tmin ≈ 0 is defined by the cavity radius
rmax. Next, we introduce a finer grid of the second layer. Specifically, on each interval (ri,0,0, ri+1,0,0)

we introduce the set of the Gauss-Legendre abscissae
{

ri,j,0
}Nj

j=1. We see that in order to perform the
outer radial integration, it is sufficient to know the integrand on the grid

{
ri,j,0

}
.

In order to perform the inner radial integral, we have to split the integration interval at the point
x2 = x1, since it is the discontinuity point of the integrand. We achieve this by introducing a yet finer
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grid of the third layer,
{

ri,j,k

}
. Specifically, for fixed values of i and j, the set

{
ri,j,k

}Nk

k=1
represents

the Gauss-Legendre abscissae on the interval (ri,j,0, ri,j+1,0) if j < Nj and on the interval (ri,j,0, ri+1,0,0)

if j = Nj. Now, for each point ri,j,0 of the outer radial integration, we can perform the inner integral
splitted into parts, (0, ri,j,0) and (ri,j,0, rmax).

We conclude that when all functions in the integrand of Equation (53) are stored on the radial
grid

{
ri,j,k

}
, the two-dimensional numerical integration can be carried out by just summing up the

pre-stored numerical values. The described procedure can be easily generalized for integrals of higher
dimensions. So, for a computation of a four-dimensional radial integral, we need a 5-dimensional grid{

ri,j,k,l,m

}
introduced in the same way as

{
ri,j,k

}
.

An additional complication arises from the fact that the regular Dirac solution φ0
κ(ε, r) in the

Dirac Green function has typically the exponentially-growing behaviour for large values of the radial
argument and complex values of ε, whereas the irregular solutions φ∞

κ (ε, r) is exponentially decreasing
in this region. In order to avoid numerical overflow and underflow, we store the “normalized” solutions
φ̃0 and φ̃∞, with the approximate large-r and small-r behaviour pulled out,

φ0
κ(ε, r) = r|κ| ecr φ̃0

κ(ε, r) , (55)

φ∞
κ (ε, r) = r−|κ| e−cr φ̃∞

κ (ε, r) , (56)

where c =
√

1− (ε/m)2 . When φ0
κ(ε, r) and φ∞

κ (ε, r) multiply together in the Dirac Green function,
the result is usually in the range accessible in the standard double-precision (8-byte) arithmetics.
A similar normalization is required also for the regular jl and irregular h(1)l Bessel solutions, originating
from the photon propagator. With these precautions, we are able to perform calculations completely
within the standard double-precision arithmetics typically for κ ≤ 50. For κ ≤ 100, it is usually
possible to use the quadruple-precision arithmetics for computation of Dirac (φ0

κ , φ∞
κ ) and Bessel

(jl , h(1)l ) solutions but the double-precision arithmetics for the radial integrations. For even higher
values of κ, use of the extended-precision arithmetics becomes unavoidable [71].

8. Magnetically-Perturbed Green Function

The computation of radial integrations in diagrams with various kind of potentials can be
significantly accelerated by introducing the first-order perturbations of the Green function by this
potentials. Such an approach was used long ago by Gyulassy in his evaluation of the vacuum
polarization [72]. More recently, similar algorithms were used in calculations of various self-energy
corrections (in particular, in refs. [23,73,74]).

In this section we describe the computation of the Dirac Green function perturbed by a magnetic
potential Vg, which will be referred to as the magnetically-perturbed Green function. Specifically, we
are interested in the radial part of the magnetically-perturbed Green function, defined as

Gκ1κ2(x1, x3) =
∫ ∞

0
dx2 x2

2 Gκ1(x1, x2)Vg(x2) Gκ2(x2, x3) , (57)

where Vg(x) = x σx is the radial part of the magnetic potential Vg(x). Using the representation of
the radial Green functions in terms of the regular and irregular Dirac solutions, see Equation (16),
we obtain the following expressions for the magnetically-perturbed Green function. For x1 < x3,
we get

Gκ1κ2(x1, x3) = φ∞
κ1
(x1)Φ0 0

κ1κ2
(x1)φ

∞T

κ2
(x3)

+ φ0
κ1
(x1)Φ∞ ∞

κ1κ2
(x3)φ

0T

κ2
(x3) ,

+ φ0
κ1
(x1)

[
Φ∞ 0

κ1κ2
(x3)−Φ∞ 0

κ1κ2
(x1)

]
φ∞T

κ2
(x3) , (58)
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whereas for x1 > x3,

Gκ1κ2(x1, x3) = φ∞
κ1
(x1)Φ0 0

κ1κ2
(x3)φ

∞T

κ2
(x3)

+ φ0
κ1
(x1)Φ∞ ∞

κ1κ2
(x1)φ

0T

κ2
(x3) ,

+ φ∞
κ1
(x1)

[
Φ0 ∞

κ1κ2
(x1)−Φ0,∞

κ1κ2
(x3)

]
φ0T

κ2
(x3) , (59)

where for simplicity we assumed that φ0
κ and φ∞

κ are normalized so that their Wronskian is unity and
the functions Φκ1κ2 are defined by the integrals

Φ0 0
κ1κ2

(x) =
∫ x

0
dx2 x2

2 φ0T

κ1
(x2)Vg(x2) φ0

κ2
(x2) , (60)

Φ0 ∞
κ1κ2

(x) =
∫ x

0
dx2 x2

2 φ0T

κ1
(x2)Vg(x2) φ∞

κ2
(x2) , (61)

Φ∞ 0
κ1κ2

(x) =
∫ x

0
dx2 x2

2 φ∞T

κ1
(x2)Vg(x2) φ0

κ2
(x2) , (62)

Φ∞ ∞
κ1κ2

(x) =
∫ ∞

x
dx2 x2

2 φ∞T

κ1
(x2)Vg(x2) φ∞

κ2
(x2) . (63)

We observe that after storing the functions φκ(x) and Φκ1,κ2(x) on a radial grid, we are able to
construct the magnetically-perturbed Green function Gκ1κ2(x1, x2) for any radial arguments needed
in our computation. The integral functions Φκ1κ2(x) are evaluated by numerical integration with
help of Gauss-Legendre quadratures. It is important that only one integral over (0, ∞) needs to be
evaluated (for a given value of the energy argument) in order to store Φκ1κ2(x) on the whole radial
grid. Analogously to the case of the plain Green function, all manipulations with the regular and
irregular solutions need to be carried out after normalizing them according to Equations (55) and (56)
in order to prevent numerical overflow.

9. Numerical Calculations

In this section we demonstrate the technique described in previous sections with three examples
of actual calculations. The first one is the calculation of the one-loop self-energy correction to
the Lamb shift of a hydrogen-like ion. In Table 1 we present numerical results for the one-loop
self-energy correction to the Lamb shift of the 2s state of hydrogen-like calcium (Z = 20), for the point
nuclear model.

The many-potential part 〈Σ(2+)〉 defined by Equation (36) is calculated in coordinate space
by the method described in the present work. Specifically, the one-potential Green function was
calculated by the method described in Section 8. (Alternatively, it can also be calculated as
a derivative over the nuclear charge Z, as described in ref. [12].) For the radial integration, we
used a four-dimensional grid

{
ri,j,k,l

}
constructed as discussed in Section 7 with the number of

integration points (Ni, Nj, Nk, Nl) = (15, 10, 6, 6). The ω integration is carried out along the contour
CLH introduced in Section 5 using the Gauss-Legendre quadratures, after mapping of the integration
intervals to the range (0, 1). The summation over the partial waves was extended up to |κ| = 60,
with the remaining tail of the expansion estimated by a least-square fitting in polynomials in 1/|κ|.
The remaining zero- and one-potential part 〈Σ(0+1)〉 is calculated in momentum space. Their
computation is relatively simple and can be performed up to essentially arbitrary accuracy. This
part is not discussed here; we refer the reader to the original work [12].

As follows from Table 1, the uncertainty of the final numerical result for the self-energy correction
comes exclusively from the truncation of the partial-wave expansion. It can be seen that despite
the inclusion of 60 partial waves, the resulting accuracy is significantly lower than that of the best
literature values. There are two ways described in the literature that allow to achieve a better numerical
precision. One method was developed originally by Mohr [8,9,75] and extended by Jentschura and
Mohr [38,39]. This method involves a summation of many thousands of partial waves and usage of
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extended-precision arithmetics in order to obtain very accurate numerical results. Another method
was developed in ref. [76]. It involves an additional subtraction in Σ(2+) which greatly accelerates
the convergence of the partial-wave expansion and allows one to obtain accurate numerical results
with just 20–30 partial waves. Both these methods are difficult to extend for computations of more
complicated diagrams, unfortunately.

Table 1. Numerical results for the one-loop self-energy correction for the 2s state of hydrogen-like
calcium (Z = 20), for the point nucleus, in terms of the standard scaled function F(Zα) =

δE/[(α/π) (Zα)4/n3], where δE is a contribution to the energy in relativistic units. Sl denotes the sum
of partial-wave expansion ∑l

|κ|=1; δSl is the increment with respect to the previous line.

l Sl δSl

〈Σ(2+)〉 1 82.268 19
2 85.541 56 3.273 37
3 86.515 41 0.973 85
4 86.967 68 0.452 26
5 87.223 70 0.256 02

10 87.675 13 0.451 44
15 87.790 89 0.115 75
20 87.836 31 0.045 42
30 87.869 99 0.033 68
40 87.881 51 0.011 52
50 87.886 57 0.005 06
60 87.889 17 0.002 61
∞ 87.894 34 (26) 0.005 17 (26)

〈Σ(0+1)〉 −84.387 704
Total 3.506 64 (26)
P. J. Mohr [75] 3.506 648 (2)
Refs. [76,77] 3.506 647 (5)

Table 2 presents our numerical results for the self-energy correction to the g factor of the 2s state
of hydrogen-like calcium (Z = 20), for the point nuclear model. The many-potential part 〈Λ(2+)

vr 〉 is
calculated in coordinate space by the method described in the present work. It is important that we
calculate the magnetic vertex after subtracting two first terms of its potential expansion, not just one as
in Equation (37). This is done in order to accelerate the convergence of the partial-wave expansion of
the matrix element, following refs. [14,30]. The subtracted part 〈Λ(0+1)

vr 〉 is calculated in momentum
space as described in ref. [14]. The irreducible part 〈Λir〉 is expressed as a non-diagonal matrix element
of the self-energy operator; its numerical values were taken from ref. [14]. The total result presented in
Table 2 is in good agreement with the previous value obtained in ref. [14]. Its numerical uncertainty
comes exclusively from the truncation of the partial-wave expansion. Even more accurate results can
be achieved if one extends the partial-wave expansion further, as was done for the 1s state in ref. [71],
but it requires significant efforts and intensive usage of extended-precision arithmetics.

In Table 3 we present numerical results for the self-energy correction to the diamagnetic
shielding constant of the 1s state of hydrogen-like calcium (Z = 20), for the point nuclear model.
The many-potential part 〈Λdvr〉 is calculated in coordinate space by the method described in the
present work. We observe a slow convergence of the partial-wave expansion of the results presented in
the table. It can probably be accelerated by separating out the leading term of the potential expansion
(i.e., the contribution of the free propagators) and calculating it in the momentum space, but this has
not been accomplished so far. The other contributions to the shielding constant are defined in ref. [63];
the corresponding numerical results are taken from that work. Again, we observe that the dominant
uncertainty of the final result comes from the truncation of the partial-wave expansion.
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Table 2. Numerical results for the self-energy correction to the g factor of the 2s state of hydrogen-like
calcium (Z = 20), for the point nucleus (in units of 10−6).

l Sl δSl

〈Λ(2+)
vr 〉 1 36.130 52

2 17.563 35 −18.567 17
3 14.605 25 −2.958 10
4 13.586 86 −1.018 39
5 13.115 22 −0.471 64
10 12.489 16 −0.626 06
15 12.379 38 −0.109 78
20 12.343 92 −0.035 46
25 12.328 78 −0.015 15
30 12.321 11 −0.007 67
35 12.316 76 −0.004 35
∞ 12.306 43 (50) −0.010 33 (50)

〈Λ(0+1)
vr 〉 2237.914 11

〈Λir〉 75.453 02
Total 2325.673 56 (50)
Ref. [14] 2325.674 (5)

Table 3. Numerical results for the self-energy correction to the nuclear magnetic shielding constant σ

of the 1s state of hydrogen-like calcium (Z = 20), for the point nucleus, in units of the scaled function
D(Zα) = δσ/[α2(Zα)3], where δσ is a contribution to the shielding constant.

l Sl δSl

〈Λdvr〉 1 −3.409 2
2 −5.550 9 −2.141 7
3 −6.559 8 −1.008 9
4 −7.111 6 −0.551 7
5 −7.438 5 −0.327 0
10 −7.941 8 −0.503 2
15 −7.986 1 −0.044 3
20 −7.968 3 0.017 7
25 −7.945 0 0.023 3
30 −7.925 5 0.019 5
35 −7.910 4 0.015 1
∞ −7.846 7 (32) 0.063 7 (32)

〈Λder〉 7.782 4
〈Λvr,Zee〉 1.760 7
〈Λvr,hfs〉 −0.404 9
〈Λpo〉 −2.217 0
Total −0.925 5 (32)

10. Summary

In this paper we described the technique used in modern calculations of QED corrections with the
bound-electron propagators, including the notoriously problematic diagrams with several propagators
inside the radiative photon loop. The bound-electron propagators are described by the Green function
of the Dirac equation with the binding nuclear potential. We considered two most widely used ways
to represent the Dirac Green function, the representation via the regular and irregular Dirac solutions
and the finite basis set representation. These representations are applicable for a wide range of binding
potentials, including the case of the nuclear field modified by a spherically-symmetric screening
potential caused by the presence of other electrons in the atom.

We demonstrated that the dominant uncertainty of the obtained results usually comes from
the truncation of the partial-wave expansion. Further extension of the partial-wave expansion is
possible but often associated with large technical difficulties. In view of this, it is important to look
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for ways to accelerate convergence of the partial-wave expansion. This was accomplished for the
one-loop self-energy in ref. [76], for the self-energy correction to the g factor in refs. [14,41], and for the
self-energy correction to the hyperfine splitting in refs. [15,42]. Unfortunately, all these methods turned
out to be problem-specific, i.e., they do not allow straightforward extensions to more complicated
corrections. It would be thus of great importance to find a more universal approach to improve the
convergence of the partial-wave expansion in such calculations.
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Appendix A. Relativistic Slater Radial Integral

The matrix element of the electron-electron interaction operator (32) is represented in the form (38),
where RJ(ω, abcd) is the relativistic generalization of the Slater radial integral. The explicit expression
for RJ can be obtained, e.g., by reformulating formulas presented in Appendix of ref. [78]. The result
for the radial integral RJ in the Feynman gauge is written as [12]

RJ(ω, abcd) = (2J + 1)
∫ ∞

0
dx2 dx1 (x1x2)

2
[
(−1)JCJ(κa, κc)CJ(κb, κd) gJ(ω, x<, x>)Wac(x1)Wbd(x2)

−∑
L
(−1)LgL(ω, x<, x>) Xac,JL(x1) Xbd,JL(x2)

]
, (A1)

where x> = max(x1, x2), x< = min(x1, x2), the functions Wab and Xab,JL are defined by

Wab(x) = ga(x) gb(x) + fa(x) fb(x) , (A2)

Xab,JL(x) = ga(x) fb(x) SJL(−κb, κa)− fa(x) gb(x) SJL(κb,−κa) . (A3)

Here, gn, fn are the upper and the lower radial components of the Dirac wave function,
respectively. The function gl(ω, x<, x>) is the radial part of the partial-wave expansion of the
photon propagator,

eiωx12

x12
= ∑

l
(2l + 1) gl(ω, x<, x>) Pl(ξ) , (A4)

where Pl(ξ) is the Legendre polynomial, ξ = x̂1 · x̂2,

gl(0, x<, x>) =
1

2l + 1
xl
<

xl+1
>

, (A5)

gl(ω, x<, x>) = iω jl(ωx<)h
(1)
l (ωx>) , (A6)

and jl(z), h(1)l (z) are the spherical Bessel functions. The angular coefficients SJL(κa, κb) differ from the
zero only for L = J − 1, J, J + 1 and can be written for J 6= 0 as follows:

SJ J+1(κa, κb) =

√
J + 1

2J + 1

(
1 +

κa + κb
J + 1

)
CJ(−κb, κa) , (A7)

SJ J(κa, κb) =
κa − κb√
J(J + 1)

CJ(κb, κa) , (A8)

SJ J−1(κa, κb) =

√
J

2J + 1

(
−1 +

κa + κb
J

)
CJ(−κb, κa) . (A9)
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In the case J = 0 there is only one nonvanishing coefficient S01(κa, κb) = C0(−κb, κa).
The coefficients CJ(κb, κa) are given by

CJ(κb, κa) = (−1)jb+1/2
√
(2ja + 1)(2jb + 1)

(
ja J jb

1/2 0 −1/2

)
Π(la, lb, J) , (A10)

where the symbol Π(la, lb, J) is unity if la + lb + J is even, and zero otherwise.

Appendix B. Infrared Divergent Integrals

In this section we evaluate the infrared divergent integrals Jα with α = 2 and 3, defined as

Jα(abcd) =
i

2π

∫ ∞

−∞
dω
〈ab|Iµ(ω)|cd〉
(−ω + i0)α

, (A11)

where Iµ(ω) is the electron-electron interaction operator with a finite photon mass µ, written in the
Feynman gauge as

I(ω, x12) = α
(
1− α1 · α2

) ei
√

ω2−µ2+i0 x12

x12
. (A12)

The integral over ω with α = 2 is evaluated as

i
2π

∫ ∞

−∞
dω

1
(−ω + i0)2

ei
√

ω2−µ2+i0 x12

x12
= − 1

πx12

∫ ∞

µ

1
ω2 sin

(√
ω2 − µ2 + i0 x12

)
= − 1

πx12

∫ ∞

0
dt

t sin tx12

(t2 + µ2)3/2

= − 1
π

∫ ∞

0
dt

cos tx12

(t2 + µ2)1/2 = − 1
π

∫ ∞

0
dt

cos tx12 − cos t
t

− 1
π

∫ ∞

0
dt

cos t
(t2 + µ2)1/2 =

1
π

(
ln

µ

2
+ γ + ln x12

)
+ O(µ) . (A13)

Therefore,

J2(abcd) =
α

π

(
ln

µ

2
+ γ

)[
〈a|c〉 〈b|d〉 − 〈a|α|c〉〈b|α|d〉

]
+

α

π

〈
ab
∣∣(1− α1 · α2

)
ln x12

∣∣cd
〉

, (A14)

where we dropped terms vanishing in the limit µ→ 0. Analogously, we obtain

J3(abcd) =
α

4µ

[
〈a|c〉 〈b|d〉 − 〈a|α|c〉〈b|α|d〉

]
− α

4
〈

ab
∣∣(1− α1 · α2

)
x12
∣∣cd
〉

. (A15)

One can see that infrared divergences arise from terms of the type Jα(abab), since in this case

〈a|a〉 〈b|b〉 − 〈a|α|a〉〈b|α|b〉 = 1 .

We need also consider the case of c = ã and d = b̃, where the state ñ has the same energy as n
but the opposite parity (e.g., ñ = 2p1/2 and n = 2s for the point nucleus). Such states do not cause
any infrared divergences since 〈a|ã〉 = 0 due to orthogonality and the matrix element with α vanishes
because of degeneracy in energy,

〈a|α|ã〉 = 〈a|i[HD, r]|ã〉 = i(εa − ε ã) 〈a|r|ã〉 = 0 . (A16)
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