
symmetryS S

Article

Unified Inflation and Late-Time Accelerated
Expansion with Exponential and R2 Corrections in
Modified Gravity

Luis Granda

Departamento de Fisica, Universidad del Valle, Cali 25360, Colombia; luis.granda@correounivalle.edu.co

Received: 9 April 2020; Accepted: 6 May 2020; Published: 9 May 2020
����������
�������

Abstract: Modified gravity models with and exponential function of curvature and R2 corrections
are proposed. At low curvature, the model explains the matter epoch and the late time accelerated
expansion while at the inflation epoch the leading term is R2. At R→ 0 the cosmological constant
disappears, giving unified description of inflation and dark energy in pure geometrical context.
The models satisfy the stability conditions, pass local tests and are viable in the (r, m)-plane, where the
trajectories connect the saddle matter dominated critical point (r = −1, m = 0) with the late time
de Sitter attractor at r = −2 and 0 < m ≤ 1. Initial conditions were found, showing that the density
parameters evolve in a way consistent with current cosmological observations, predicting late time
behavior very close to the ΛCDM with future universe evolving towards the de Sitter attractor.
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1. Introduction

The possibilities of unification of the early time inflationary era with late time accelerated
expansion of the universe is one of the attractive facts of modified gravity theories; this captured the
attention of the researchers in this field. This approach, based on geometrical grounds, avoids the
introduction of additional degrees of freedom for the inflation or dark energy.

The modified gravity models represent an appealing alternative to a dynamical explanation of
dark energy (for review see [1–4]), despite the success of the cosmological constant as the source of dark
energy, but which is clouded by the known fine tuning problem. These theories introduce additional
non-linear corrections to the Einstein model, which are subject to local systems tests and cosmological
observational constraints that determine the viability of the model (see [5–11] for reviews). A variety
of models for modified gravity were proposed and some of them are [6,12–32]. Models that can satisfy
both cosmological and local gravity constraints were proposed in [31,33–37], and exact cosmological
solutions were studied in [38–44]. Modified gravity with arbitrary function of the 4-dimensional
Gauss-Bonnet invariant was introduced in [45–47]. There are also models that attempt to unify early
time inflation with late time acceleration, among which we can highlight: [15] in which negative and
positive powers of curvature were introduced in order to unify inflation and cosmic acceleration,
in [48] an extension of the Hu-Sawyki model [31] was proposed that includes inflation and late-time
accelerated expansion, in [49] a modified gravity that unifies power-law curvature inflation with
late-time ΛCDM epoch was considered, in [36] a class of exponential modified gravity models was
introduced, in which the inflation and accelerated expansion are present, a simple modified model with
exponential gravity was considered in [37,50], a model with exponential and logarithmic corrections
was considered in [51] and constant roll inflation with exponential modified gravity was studied in [52].
Unified models of inflation and dark energy with modified Gauss-Bonnet contribution were studied
in [45–47,53,54]. In [55] a comprehensive study of the cosmological constraints for general f (R) theory
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was performed, where a classification of f (R) models was proposed, depending on the existence of
the standard matter era and on the final accelerated state. The viability of several models was also
analyzed by using the autonomous system approach. In [56], local and cosmological constraints are
discussed and the evolution of matter density perturbations was studied. A dynamical analysis and
study of critical points for locally anisotropic cosmological models of modified gravity were carried
out in [57,58].

The aim of this paper is to propose a simple viable model of f (R) gravity that consistently
describes both the inflationary epoch and the late time accelerated expansion of the universe,
while satisfies the stringent local gravity constraints. This model contains a new exponential gravity
correction that gives compatible with observations description of the cosmic evolution, mimicking the
ΛCDM model, and R2 term [32] that becomes relevant at high curvature and gives successful
explanation of the early-time inflation. The viability of the model is shown in the (m, r) diagram
which describes trajectories connecting the matter dominated saddle point at r = −1, m = 0 with
late-time de Sitter attractor at r = −1 and 0 < m ≤ 1. The model also satisfies the more stringent local
gravity constraints.

This paper is organized as follows. In Section 2 we present the general features of the f (R)
models, including the autonomous system and the relevant critical points for our study in terms of
the (r, m) parameters. In Section 3 we present the model, showing the conditions for viability and its
trajectories in the (r, m)-plane, including some numerical cases of cosmic evolution. In Section 4 we
present some discussion.

2. Field Equations

The modified gravity can be the described by the following action

S =
∫

d4x
√
−g
[

1
2κ2 f (R) + Lm

]
(1)

where κ2 = 8πG and Lm is the Lagrangian density for the matter component which satisfies the usual
continuity equation. The equation of motion is given by

f,R(R)Rµν −
1
2

gµν f (R) +
(

gµν�−∇µ∇ν

)
f,R(R) = κ2T(m)

µν (2)

where T(m)
µν is the matter energy-momentum tensor assumed as

Tm
µν = (ρ + p) uµuν + pgµν

and f,R ≡ d f
dR . The trace of Equation (2) gives

R f,R(R)− 2 f (R) + 3� f,R(R) = κ2T(m) = κ2 (3p− ρ) (3)

Extracting the time and spatial components of Equation (2) gives by the expressions

3H2 f,R =
1
2
(R f,R − f )− 3H ḟ,R + κ2ρ (4)

and
− 2Ḣ f,R = f̈,R − H ḟ,R + κ2 (ρ + p) (5)
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where dot represents derivative with respect to cosmic time. The effective equation of state (EoS) from
these expressions is

we f f = −1− 2Ḣ
3H2 = −1 +

f̈,R − H ḟ,R + κ2 (ρ + p)
1
2 (R f,R − f )− 3H ḟ,R + κ2ρ

, (6)

where ρ and p include both matter and radiation components, i.e., ρ = ρm + ρr and p = pm + pr.
The viability conditions begin with the stability which demands that

f,R > 0, f,RR > 0 (7)

where the first condition is necessary to avoid change of sign in the effective Newtonian coupling,
and the second is necessary in order to avoid tachyonic behavior of the scalaron and is also a condition
of stability under perturbations, especially at the matter dominated epoch. In fact, the scalar particle
associated with f (R), dubbed scalaron with mass

M2 =
1
3

(
f,R

f,RR
− R

)
(8)

which in matter epoch or in the regime M2 >> R, when R f,RR << 1 and f,R ' 1 can be reduced to

M2 ' 1
3 f,RR

, (9)

which requires f,RR > 0. Apart from that, the model must be compatible with the observational
evidence at both local and cosmological scales. The mass M plays an important role in local gravity
constraints since it defines the range of the force mediated by the scalaron which determines the
Compton wavelength λC = 2πM−1. If ` is the typical size of a local gravitational system, then the
local gravity constraints on f (R) are satisfied whenever ` >> λC or M` >> 1 [55,56]. On the
other hand, to demonstrate the viability of modified gravity as cosmological model it is useful to
consider the autonomous system with the following dimensionless variables that can be obtained
from Equation (4) [55] (we will use indistinctly f,R or F = f,R)

x = − Ḟ
HF

, y = − f
6H2F

, z =
R

6H2 =
Ḣ
H2 + 2, w =

κ2ρr

3H2F
, Ωm =

κ2ρm

3H2F
(10)

which lead to the following dynamical system

x + y + z + w + Ωm = 1 (11)

dx
dN

= x2 − xz− 3y− z + w− 1 (12)

dy
dN

= xy +
xz
m
− 2y(z− 2) (13)

dz
dN

= − xz
m
− 2z(z− 2) (14)

dw
dN

= xw− 2zw (15)

where N = ln a, w = Ωr is the density parameter of the radiation component, and m is given by

m =
R f,RR

f,R
. (16)
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Along with the parameter m there is another useful parameter r defined as

r = −R f,R

f
. (17)

These parameters are useful to analyze the cosmological viability of f (R) models and characterize
the deviation of a given f (R) model from the standard ΛCDM model, which corresponds to the line
m = 0. In terms of the dynamical variables the effective EoS (6) is written as

we f f = −
1
3
(2z− 1) , (18)

while the dark energy equation of state from (4) and (5) can be written as [55,56]

wDE = −1
3

2z− 1 + (F/F0)w
1− (F/F0)(1− x− y− z)

, (19)

where F0 is the current value of f,R.
The critical points of the dynamical system (11)–(15), that are the solutions of the

equations ([55,56])
dx
dN

= 0, ...
dw
dN

= 0, (20)

allow analyzing asymptotic cosmological solutions of the model (1) and their stability properties.
Among the solutions of the system (20) there are three important critical points that we will consider
to analyze the viability of our models (in this analysis we do not consider the contribution of radiation,
which does not change the stability properties of the critical points).

The first critical point corresponds to scaling solutions which include the matter dominated era,
has the following coordinates in terms of the parameter m

PS = (xc, yc, zc) =

(
3m

1 + m
,− 1 + 4m

2(1 + m)2 ,
1 + 4m

2(1 + m)

)
, (21)

with eigenvalues

EV(PS) :

(
3(1 + m′),

−3m±
√

m(256m3 + 160m2 − 31m− 16)
4m(m + 1)

)
, (22)

where m is given by (16) and prime represents derivative with respect to r. At this point the matter
density parameter and the effective EoS take the form

Ωm = 1− m(7 + 10m)

2(1 + m)2 , we f f = −
m

1 + m
, (23)

The second point has the coordinates

PdeS = (xc, yc, zc) = (0,−1, 2), (24)

with eigenvalues

EV(PdeS) :

(
−3,−3

2
±
√

25− 16/m(r = −2)
2

)
, (25)

and lead to the de Sitter solution with

Ωm = 0, we f f = −1 (26)
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The third critical point, that leads to accelerated expansion scenarios, has the coordinates

PC = (xc, yc, zc) =

(
2(1−m)

1 + 2m
,

1− 4m
m(1 + 2m)

,− (1− 4m)(1 + m)

m(1 + 2m)

)
, (27)

with the eigenvalues

EV(PC) :
(
−4 +

1
m

,
2− 3m− 8m2

m(1 + 2m)
,−2(m2 − 1)(1 + m′)

m(1 + 2m)

)
. (28)

The matter density parameter and effective EoS corresponding to this point are

Ωm = 0, we f f =
2− 5m− 6m2

3m(1 + 2m)
, (29)

From the coordinates y and z for the points PS and PC it can be seen that they are connected by
the line m(r) = −1− r, where the relation

r(N) =
z(N)

y(N)
(30)

is used.
From (21) follows that the matter dominated point corresponds to (r, m)=(−1, 0). The existence

of a viable saddle matter era requires m(r → −1) > 0 and −1 < dm/dr(r → −1) ≤ 0. This last
condition implies that all the m(r) trajectories must be between the lines m = 0 and m = −r − 1.
In order to be viable, the trajectory of a given f (R) model in the (r, m) plane should be such that it
contains the matter dominated point PM = (−1, 0) and starting from PM intersects the line r = −2
in the region 0 < m ≤ 1 [55]. The ΛCDM model, for instance, connect the points PM = (−1, 0) and
PdS = (−2, 0). There are also viable trajectories connecting the saddle matter point PM = PS(m→ 0)
with the curvature dominated point that leads to stable accelerated expansion PC, whenever m′ > −1.

3. The Models

The following model, as will be shown satisfies all above discussed conditions of stability
and viability

f (R) = R− 2λ1µ2e
−
(

µ2
R

)η

+
λ2

µ2 R2 (31)

where the dimensionless constants η, λ1 and λ2 are positive, and 0 < η ≤ 1. This function is well
defined for any R and describes the physical regimes related to the crucial cosmological epochs
epochs of the universe: the inflationary regime where the relevant contribution comes from the R2

Starobinsky term and the small curvature regime covering from the matter era to the current stage of
accelerated expansion, where gravity is described mainly by the first two terms in (31). The Lagrangian
composed of

R +
λ2

µ2 R2, (32)

which is the dominant sector of the model (31) for large curvature, typical of the inflationary
epoch, gives the well known and still consistent with observational data Starobinsky inflation.
Hence, these two corrections are of different nature and are introduced for different purposes. Then to
analyze the viability of the model to explain the late time accelerated expansion, the R2 term should
be irrelevant, which imposes restrictions on the parameter λ2. In fact the scale µ2 was introduced
in the last term with the sole objective to make λ2 dimensionless, since at the end λ2 must satisfy
the restrictions imposed by the curvature at the inflationary period. The properties of the model (31)
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must be reflected in the behavior of the autonomous system, as we show below. First we note that the
exponential function satisfies the limits

lim
R→0

e
−
(

µ2
R

)η

= 0, lim
R→∞

e
−
(

µ2
R

)η

= 1. (33)

The first limit allows the existence of flat spacetime solutions and the second is necessary for
consistency with high redshift CMB observations.

To check the stability conditions (7) we analyze the corresponding expressions for f,R and f,RR

f,R = 1− 2λ1η

(
µ2

R

)1+η

e
−
(

µ2
R

)η

+
2λ2R

µ2 , (34)

f,RR =
2ηλ1

µ2

(
µ2

R

)2+η
[

1 + η − η

(
µ2

R

)η
]

e
−
(

µ2
R

)η

+
2λ2

µ2 . (35)

The condition f,R > 0 can be easily meet under the assumption µ2 < R and taking into account
that 0 < η ≤ 1. Since the last term in (34) is positive and the R-dependent terms are always less than 1,
it can be satisfied under the following restriction on λ1

λ1 <
1

2η
. (36)

From (35) follows that f,RR > 0 is always true for µ2 < R and 0 < η ≤ 1. This is compatible with
the criteria we will use below to redefine the stability conditions, by setting λ1 such that the de Sitter
critical point takes place at R = R1.

The r and m parameters for the model (31), that determine its cosmological viability, are obtained
from (17) and (16) respectively and are given by

r = −

R
µ2

2λ1
R
µ2 − 2ηλ2e

−
(

µ2
R

)η (
µ2

R

)η+1
+ 1


R
µ2 + λ1

(
R
µ2

)2
− 2λ2e

−
(

µ2
R

)η (37)

and

m =

2λ1e

(
µ2
R

)η (
R
µ2

)2
+ 2ηλ2

(
µ2

R

)η
(

1 + η

(
1−

(
µ2

R

)η
))

R
µ2 e

(
µ2
R

)η

+ 2λ1

(
R
µ2

)2
e

(
µ2
R

)η

− 2ηλ2

(
µ2

R

)η

. (38)

where the expressions for f,R and f,RR from (34) and (35) were used.
To analyze the stability at the de Sitter point 0 < m(r = −2) ≤ 1, we fix λ1 in such a way that the

de Sitter point r = −2 takes place at R = R1. From (37) it is found

λ1 =

R1
µ2 e

(
µ2
R1

)η

2
[
2− η

(
µ2

R1

)η] . (39)
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Please note that this value does not depend on λ2 because de de Sitter solution is automatically
satisfied by the R2-model. The restriction λ1 > 0 can be solved by imposing(

µ2

R1

)η

<
2
η

(40)

And for the stability condition at the de sitter point 0 < m(r = −2) ≤ 1, using the above value
for λ− 1, leads to

0 <

η
(

µ2

R1

)η
(

1 + η

(
1−

(
µ2

R1

)η
))

+ 2λ2
R1
µ2

(
2− η

(
µ2

R1

)η
)

2
(

1− η
(

µ2

R1

)η)
+ 2λ2

R1
µ2

(
2−

(
µ2

R1

)η) ≤ 1 (41)

This inequality cannot be solved explicitly in terms of R1, but it we choose the parametrization

µ2

R1
=

(
1

pη

)1/η

, p > 1 (42)

which satisfies (40), then the inequality (41) becomes

0 <
η
(

1
pη

)1+1/η
(1 + η − 1/p) + 2λ2 (2− 1/p)

2
(

1
pη

)1/η
(1− 1/p) + 2λ2 (2− 1/p)

≤ 1 (43)

that is satisfied by

p ≥ η + 3
4

+
1
4

√
η2 + 6η + 1, 0 < η ≤ 1. (44)

In fact, given that 0 < η ≤ 1, this inequality is always satisfied by any p ≥ 1 + 1/
√

2 which is
consistent with (42).

Turning to the stability conditions and taking into account λ1 from (39) and R1 from (42), we find
after replacing in (34)

f,R = 1− e
1

pη−
(

µ2
R

)η

(2p− 1) (pη)1/η−1

(
µ2

R

)1+η

+ 2λ2
R
µ2 (45)

as λ2 > 0, then a sufficient condition to satisfy the inequality f,R > 0 is

e
1

pη−
(

µ2
R

)η

(2p− 1) (pη)1/η−1

(
µ2

R

)1+η

< 1. (46)

From the fact that R > R1 follows that µ2/R < µ2/R1 or

µ2

R
<

(
1

pη

)1/η

,

then the inequality (46) also takes place if we assume the maximum value for µ2/R, which reduces to

(2p− 1) (pη)2/η > 1 (47)
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which takes place if additionally to p > 1, we impose the restriction pη ≥ 1. For the second derivative
f,RR we obtain

f,RR =
1

(2p− 1)µ2 (pη)1+1/η e
1

pη−
(

µ2
R

)η (
µ2

R

)2+η
(

1 + η − η

(
µ2

R

)η
)
+

2λ2

µ2 (48)

And the stability condition f,RR is automatically satisfied since p > 1 and R > µ2 (we can also
use the maximum value of µ2/R coming from the inequality R > R1 to find that 1 + η − 1/p > 0,
which leads to f,RR > 0). Thus, we found the conditions for stability without compromising the
constant λ2 which will be useful in adjusting the Starobinsky R2 term with the scale of inflation. It is
worth noticing that the stability condition f,RR > 0 holds for any R > R1, and there are not any
instability problems related to the matter epoch and at local systems scales. Note also that the stability
conditions derived after fixing λ1 maintain the consistency with the general stability conditions derived
for f,R and f,RR given by the expressions (34) and (35) respectively. The restriction (36) on λ1 can be
satisfied assuming, for instance, pη = 1 (i.e., µ2/R1 = 1) one finds

η <
2

e + 1
. (49)

To analyze the viability of the model in the (r, m)-plane we resort to the parametric plot of some
trajectories, since m cannot be expressed analytically in terms of r. Using (37) and (38) and defining
the variable y = R/µ2 with de Sitter value y1 = R1/µ2 (see (42)) we can write the corresponding
expressions for r and m as follows

r = − (2p− 1) (1 + 2λ2y) yη+1 − (pη)1+1/η e
1

pη−
1

yη

(2p− 1) (1 + λ2y) yη+1 − p (pη)1/η yηe
1

pη−
1

yη
(50)

m =
2λ2(2p− 1)y2η+2 + (pη)1+1/η ((1 + η) yη − η) e

1
pη−

1
yη

(2p− 1) (1 + 2λ2y) y2η+1 − (pη)1+1/η yηe
1

pη−
1

yη
(51)

where we used the expression for λ1 from (39). It can be confirmed that at y = (pη)1/η , r takes the
value r = −2. To simplify the numerical analysis, in what follows we assume the restriction

pη = 1, (52)

that satisfies all above restrictions and, according to (42), gives R1 = µ2.
On the other hand, the value of λ2 must be chosen in such a way that

λ2

µ2 ∼
6

M2 (53)

where M ∼ 1013Gev, which is the typical value required for inflation. If Ri is the typical curvature
during inflation, then the coefficient λ2/µ2 should be of the order of

λ/µ2 ∼ 1/Ri

to ensure that in the small curvature regime, when R << Ri, it is verified that

R >>
R2

Ri
, (54)
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necessary to avoid the effect of the R2-term in the small curvature regime. Thus, for the model (31) the
physical criteria to establish the value of λ2 involves the curvature (mass) scale µ. At the same time,
this scale is set so that local gravity constraints are satisfied. In any case since, after the restriction (52),
the de Sitter curvature satisfies R1 = µ2, then this scale should be smaller than the current curvature
R0 ∼ H2

0 , i.e., µ2 < H2
0 , which implies, according to (53), that

λ2 <
H2

0
6M2 ∼ 10−112 (55)

In Figure 1 we present some trajectories in the (r, m)-plane. The model contains the matter
dominated point PM = (−1, 0) and cosmologically viable trajectories that connect the matter era with
the final de Sitter attractor at r = −2. As can be seen from Figure 1 the value of λ2 is such that it
avoids the effects of the R2 term during the matter era. Nevertheless numerical calculations show
that the curves in Figure 1 practically remain unchanged for any λ2 < 10−7, which reflects the fact
that the scale µ is not relevant for the cosmological trajectories in the (r, m)-plane. The real stringent
restrictions on µ, and therefore on λ2 through (53), come from the local gravity tests.

PM

de Sitter

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0

0.00

0.01

0.02

0.03

0.04

0.05

r

m

Figure 1. Trajectories in the (r, m)-plane for four different scenarios with λ2 = 10−7 and
(η, p) = (0.1, 10) (solid line), (0.05, 20) (dashed), (0.02, 50) (dotdashed), (0.01, 100) (dotted). In all
cases pη = 1, but for smaller η and larger p the trajectories become closer to ΛCDM. All trajectories
connect the matter dominated saddle point PM with the late time de Sitter attractor at r = −2 with
0 < m < 1.

Local Gravity Constraints.

The effective mass corresponding to the modified gravity f (R) model is given by

M2 =
R
3

(
f,R

R f,RR
− 1
)
=

R
3m

(1−m) . (56)

This mass characterizes the range of the force mediated by the scalaron and defines the Compton
wavelength λC = 2π/M. To avoid the propagation of this scalar degree of freedom and satisfy the
local gravity constraints, this Compton length must be negligible small compared to the typical size of
the system `, λC << `. Thus, to satisfy the local gravity constraints it is necessary that

M` >> 1. (57)

If we use the approximation for the local curvature Rs ∼ `−2, then using this in (56) we can write

M2 ∼ `−2

3m
(1−m) (58)
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then from (57) it follows that √
1−m√

3m
>> 1 ⇒ m << 1, (59)

which gives from (56)

M2 ' R
3m

. (60)

This allows us to write the constraint (57) as

m(Rs) << `2Rs. (61)

Making use of the relationship R ∼ H2 ∼ 8πGρ applied to the current universe (R0, ρ0) and to
the local structure (Rs, ρs), we can write Rs ∼ H2

0 ρs/ρ0 and the above constraint becomes [56]

m(Rs) <<
ρs

ρ0

(
`

H−1
0

)2

. (62)

For the solar system with ρs ∼ 10−23 gr/cm3 and ` ∼ 1013 cm one finds that m << 10−24,
where we used H−1

0 ∼ 1028 cm.
Applied to the model (31) the local gravity constraints can be addressed using the representation

for m given by (51). For the solar system one has ys = Rs/µ2, where Rs ' 106H2
0 . For the parameters η

and p used in Figure 1, we will set µ2 = 10−16H2
0 , which gives ys = 1022 and λ2 ∼ 10−127 (assuming

m ∼ 1013Gev in (53)
(η = 0.1, p = 10) ⇒ m = 9.8× 10−26

(η = 0.05, p = 20) ⇒ m = 5.3× 10−25

(η = 0.02, p = 50) ⇒ m = 7× 10−25

(η = 0.01, p = 100) ⇒ m = 4.5× 10−25

Hence, the model (31) can pass solar system tests, assuming µ ∼ 10−8H0 for the viable trajectories
depicted in Figure 1. If we consider larger values of η then the results for local systems improve as
shown bellow.

(η = 1/5, p = 5) ⇒ m = 1.4× 10−27

(η = 1/4, p = 4) ⇒ m = 1.5× 10−28

(η = 1/3, p = 3) ⇒ m = 3.4× 10−30

(η = 1/2, p = 2) ⇒ m = 1.4× 10−33

(63)

It is worth noting that the above numerical values for local restrictions on m can be obtained for
λ2 . 10−55, even though λ2 is subject to the restriction (53) which results in much smaller values than
this limit.

In Figure 2 we present the evolution of the density parameters for the radiation Ωr, matter Ωm

and the geometrical dark energy ΩDE, with parameters η and p that satisfy cosmological constraints.
Since there is no explicit expression for m(r), we used a polynomial fit to the paths depicted in Figure 1.
Taking, for instance, the cosmological scenario with µ = 0.01 and p = 100, the corresponding trajectory
in Figure 1 can be approximated by the following function of the dynamical variables y[t] and z[t]
(t = − ln(1 + z))

m = c0 + c1

√
− z[t]

y[t]
+ c2

z[t]
y[t]

(64)

with
c0 = −0.0339961′, c1 = 0.0495968′, c2 = 0.0155756′
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where (′) represents more digits taken into account for the numerical calculations.

Ωr

Ωm

ΩDE

-10 -8 -6 -4 -2 0 2

0.0

0.2

0.4

0.6

0.8

1.0

-Ln(1+z)

Ω

Figure 2. The cosmic evolution of the density parameters for matter, radiation and dark energy for the
model (31). In this example we take the path of Figure 1 for the parameters η = 0.01, p = 100 and
λ2 = 10−7, using the numerical fit for m(r) given by Equation (64), with initial conditions x(−5) = 0,
y(−5) = −0.5, z(−5) = 0.5000134 and w(−5) = 0.05. The behavior is compatible with the current
cosmic observations on the evolution of density parameters. The obtained current densities are
Ωm(0) ' 0.3, ΩDE(0) ' 0.7 and Ωr(0) ' 10−4.

Numerical calculations show that as in the case of the (r, m)-plane in Figure 1, the evolution of
the densities does not substantially change if we choose λ2 < 10−7 (including λ2 ∼ 10−127 obtained
after inflationary restrictions). This indicates that cosmological constraints on λ2 are not as stringent
as local gravity constraints. In Figure 3 we show the behavior of the effective and geometrical dark
energy equations of state for this numerical sample.

weff

wDE

-1 0 1 2 3 4

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

-Log(1+z)

w

Figure 3. The effective equation of state we f f and the equation of state associated with the geometric
dark energy wDE for the cosmological evolution of the density parameters described in Figure 2.
The initial conditions lead to a scenario very close to the ΛCDM.

Please note that these numerical results are consistent with those obtained in [59], showing that
the R2 corrections in the matter era are negligible. The R2 term is also consistent with local gravity
tests according to the above numerical values of m. It is worth noting that if we continue lowering
the values of η, the model becomes practically undistinguishable from ΛCDM, but the local gravity
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constraints become more relaxed in the sense that the scale µ does not have to be so small compared to
H0. Thus, we find the following behavior

(η = 10−8, p = 108, µ = 10−5H0) ⇒ m = 5× 10−25

(η = 10−10, p = 1010, µ = 10−4H0) ⇒ m = 5× 10−25

(η = 10−10, p = 1010, µ = 10−5H0) ⇒ m = 5× 10−27

(η = 10−12, p = 1012, µ = 10−3H0) ⇒ m = 5× 10−25

(η = 10−12, p = 1012, µ = 10−4H0) ⇒ m = 5× 10−27

(65)

In this case, the local restrictions on m can be obtained for λ2 . 10−45.

Model 2.

A viable model with characteristics similar to those of the model (31) has the following form

f (R) = R−
(

2λ1µ2 − λ2

µ2 R2
)

e
−
(

µ2
R

)η

(66)

where as in the case of the model (31), λ1, λ2 > 0 and 0 < µ ≤ 1. This model satisfies the limits

lim
R→∞

f (R) = R− 2λ1µ2, lim
R→0

f (R) = 0. (67)

showing closeness to ΛCDM model with the cosmological constant vanishing in the flat spacetime.
Let us first look at the model’s ability to produce inflation. To this end we consider the model

f1(R) = R +
λ2

µ2 e
−
(

µ2
R

)η

R2 (68)

where the second term in (66) was neglected. The corresponding scalar field in the Einstein frame has
the form

φ =

√
3
2

ln

1 + e
−
(

µ2
R

)η

λ

(
µ2

R

)(
2 + η

(
µ2

R

)η
) . (69)

The scalar potential in the Einstein frame for f (R) models

V(R(φ)) =
M2

p

2
R f1(R),R − f1(R)

( f1,R)
2 , (70)

gives for the model (68)

V =
µ2M2

p

2

λ2

(
R
µ2

)2
[

1 + η
(

µ2

R

)η
]

e

(
µ2
R

)η

2

λ2

(
R
µ2

) (
2 + η

(
µ2

R

)η)
+ e

(
µ2
R

)η
2 (71)

Using parametric method, in Figure 4 we show the shape of the potential, which maintains
similarity with the Starobinsky potential and is appropriate for slow-roll inflation. The slow-roll
parameters defined for the potential

εv =
M2

p

2

(
V,φ

V

)2
and ηv = M2

p
V,φφ

V
, (72)
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take the following form using the variable y = R/µ2

εv =

(
e1/yη − ηλ2y1−η

)
3λ2

2y2 (1 + ηy−η)2 , (73)

ηv =
2e2/yη − 2λ2ye1/yη (

4 + 2ηy−η
(
7− 3η(1− y−η)

))
+ 2η2λ2

2y2−η
(
2 + (2− η)y−η + ηy−2η

)
3λ2

2y2 (1 + ηy−η) (2 + ηy−η (3− η(1− y−η)))
. (74)

-1 0 1 2 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ϕ/Mp

V
/(
μ
2
M
p2
)

Figure 4. The scalar field potential in the Einstein frame for the model (68) for η = 0.03, λ2 = 1. It can
be observed that the potential has the appropriate behavior to develop slow-roll inflation.

These parameters are evaluated at the horizon crossing where the curvatures takes the value
Ri, i.e., y = yi. The inflaton value at the end of inflation is found from the condition εv(ye) ' 1,
which leads to the approximate equation for ye

1− ηλy1−η '
√

3λy
(
1 + ηy−η

)
(75)

where we neglected the exponential for y >> 1. Additionally if we consider η << 1, then y1−η ∼ y
and we ca appreciate the magnitude of the curvature at the end of inflation from

ye ∼
1

η +
√

3(1 + η)

1
λ2
∼ 1√

3λ2
. (76)

In the slow-roll approximation the duration of inflation is measured by the e-folding number N

N ' 1
M2

p

∫ φi

φe

V
V,φ

dφ =
3
2

λ2
2

∫ yi

ye

y (1 + ηy−η) (2 + ηy−η (3− η(1− y−η)))(
1− ηλ2y1−η

)
(1 + λ2y (2 + ηy−η))

dy, (77)

where yi is the curvature at the horizon crossing. Numerical integration gives yi for a given number of
e-foldings before the end of inflation, sufficient to prove the viability of the model to predict the values
of inflationary observables. The spectral index of scalar perturbations and the tensor-to-scalar ratio are
among the most important observables and for the potential driven inflation are given in therms of the
slow-roll parameters by

ns = 1− 6εv + 2ηv, and r = 16ε0. (78)

To evaluate ns and r we will consider the case with numerical parameters that were used to obtain
the evolution of density parameters in Figure 2 (η = 0.01) (dotted line in Figure 1) and that satisfy
local gravity constraints (µ = 10−8H0) and λ2 = 10−127 from (53). We can use these results from
the model (31) because the intermediate matter era and the late time behavior is the same for both
models, including the local gravity restrictions. After numerical calculations, taking ye = 6.06× 10126
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(suggested by (76)) and N ≈ 55 we find that yi ≈ 3.87× 10128 which gives, after replacing in (73)
and (74),

ns ≈ 0.963 and r ≈ 0.0038, (79)

which are in good agreement with the current Planck observations. From (69) we find φe ≈ 0.93Mp and
φi ≈ 5.28Mp. The corresponding Hubble parameter during inflation is Hi ≈ 5.7 × 1013 Gev ∼
2.3 × 10−5Mp. Then the model is capable of describing inflation, matter era and late time
accelerated expansion.

To analyze the stability conditions we first define the constant λ1 in such a way that the de Sitter
solution at r = −2 is reached at R = R1. The r and m parameters take the form

r = −y1+ηe1/yη − 2ηλ1 + λ2y2 (η + 2yη)

y1+ηe1/yη − 2λ1yη + λ2y2+η
(80)

m =
2ηλ1 ((1 + η)yη − η) + λ2

(
2y2η+2 + 3ηyη+2 + η2y2 (1− yη)

)
yη
(
λ2y2 (2yη + η) + yη+1e1/yη − 2ηλ1

) (81)

where y = R/µ2. The equation r = −2 at R = R1 (y = y1) gives

λ1 =
yη+1

1 e1/yη
1 − ηλ2y2

1

4yη
1 − 2η

, (82)

which lead to λ1 > 0 for

yη
1 >

η

2
, and λ2 <

1
η

yη−1
1 e1/yη

1 . (83)

Replacing λ1 in m (81), the stability condition for de Sitter point, 0 < m(r = −2) ≤ 1 leads to
the inequality

0 <
ηe1/yη

1

(
(1 + η)yη

1 − η
)
+ 2λ2y1

(
2y2η

1 + η(2− η)yη
1 − η2

)
2yη

1

(
e1/yη

1

(
yη

1 − η
)
+ 2λ2y1+η

1

) ≤ 1. (84)

To facilitate the numerical analysis, in what follows we will set y1 = 1, equivalent to R1 = µ2.
Setting y1 = 1 in (84) we find

0 <
eη + 4λ2

(
1 + η − η2)

2e(1− η) + 4λ2
≤ 1 ⇒ 0 < η ≤ 3e + 4λ2

8λ2
− 1

8λ2

√
9e2 − 8eλ2 + 16λ2

2 (85)

which given the fact that 0 < η ≤ 1, is satisfied by any λ2 > 0. The first derivative of f (R),
after replacing λ1 and setting y1 = 1 becomes

f,R = e−1/yη
[

e1/yη
+ λ2y

(
η

yη + 2
)
+

η2λ2

(2− η)yη −
eη

(2− η)yη

]
(86)

Since all the terms, except the last one, are positive then to satisfy the condition f,R > 0 it is
enough that it is fulfilled

e1/yη − eη

(2− η)yη > 0 (87)

Since e1/yη
> 1, and y > 1 then the sufficient condition to satisfy f,R > 0 is

η <
2

1 + e
. (88)
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Repeating the same procedure with f,RR we find

f,RR =
1

µ2 e
− 1

yη

[
λ2

(
η2 1

y2η
+ η(3− η)

1
yη + 2

)
+

η(e− ηλ2)

2− η

(
1 + η − η

1
yη

)
1

y2+η

]
(89)

which automatically satisfies f,RR > 0 since 0 < η ≤ 1, y > 1 and, according to (83), λ2 < e/η.
Then the model (66) satisfies all conditions of stability and cosmological viability.

Concerning the local gravity restrictions, for the solar system the model gives the same values
for m shown in (63) and (65). Likewise the density parameters and the equation of state, present
the same behavior as shown in Figures 2 and 3. As is the case for most of the realistic models,
the stringent local gravity constraints forces the models (31) and (66) to be practically indistinguishable
form ΛCDM. The possibility remains that further analysis of matter perturbations allows finding a
departure from ΛCDM.

The exponential term in the models (31) and (66) is useful to avoid some type of singularities.
Excluding the last term in (31) and (66) we can see that f (R) → R− 2µ2Λ as R → ∞, f,R(R → ∞)

tends to 1 and f,RR, f,RRR, .... → 0 at R → ∞. Then the r.h.s. of Equation (4), excluding the matter
density, for the models (31) and (66), which gives the corresponding ρe f f , tends to a constant value
on singular solutions with R→ ∞, avoiding in this way the appearance of type I and type III future
singularities [37]. From Figures 1 and 2 it is clear also that the inflationary term in the models (31)
and (66) does not have any influence on the stability of matter era.

4. Discussion

Two models of modified gravity that are able to explain early time inflation and late time
accelerated expansion were studied. The models include an exponential function of de form e−(µ

2/R)η

and the R2 term. The factor e−(µ
2/R)η

, which is present in both models, leads to the limit f (R) → 0
at R → 0 implying the disappearance of the cosmological constant. i.e., the models contain the flat
space-time solution. The stability, cosmological viability and local gravity restrictions were studied.
The dynamical system was solved under appropriate initial conditions, and the cosmological evolution
for the density parameters corresponding to radiation, matter and (geometrical) dark energy was
obtained, which is closely adjusted to current observations. Consequently, the equation of state evolves
according to observations with we f f showing the transition to the accelerated phase at the currently
observed zt ∼ 0.5, and wDE ' −1.

The local gravity constraints, as expected, impose very stringent conditions for m to achieve values
of the order m . 10−24, which demand very small values for the scale µ (µ ∼ 10−8H0), although this
scale may increase as we take smaller values of η. However, at the same time, making η smaller brings
the model closer to ΛCDM, making it practically indistinguishable from it. In any case the general
result is that the stronger the local gravity restrictions are, the further in the future the final de Sitter
attractor of the system is. It is also interesting to note that the numerical results for local restrictions
on m can be obtained for λ2 . 10−55, even though λ2 is subject to the restriction (53) which results in
much smaller values than this limit. On the other hand, the cosmological constraints, which do not
depend on the scale µ, impose softer conditions on λ2, being sufficient to consider λ2 . 10−7.

The expressions for m given by (51) for the model (31) and by (81) for the model (66) suggest a
correlation between the curvature dependent parameter m and λ2, which could be useful to fix λ2 by
local gravity constraints on m. This is an interesting alternative mechanism to fix λ2, other than the
condition (53) where the mass M2 is determined from the amplitude of the scalar power spectrum.
On the other hand, at high curvature typical of inflation, the model (31) leads to the Starobinsky
inflation while the model (66) gives a new potential with the appropriate behavior to develop successful
slow-roll inflation. A peculiarity of this potential is its dependence on η and λ2 that is transferred
to the slow-roll parameters, allowing exploring a wider region of possibilities for the inflationary
observables, compared to the Starobinsky potential.
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A more detailed analysis of local gravity restrictions is necessary, particularly to test whether local
gravity constraints can independently and uniquely determine a value of λ2 that is consistent with
inflation. Further study of cosmological effects that distinguish the models form ΛCDM is needed,
for instance, the evolution of the background and matter density perturbations which could give
patterns in the growth of structures that mark the difference with ΛCDM.
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