
symmetryS S

Article

A Study of Chaotic Maps Producing Symmetric
Distributions in the Fish School Search Optimization
Algorithm with Exponential Step Decay

Liliya A. Demidova * and Artyom V. Gorchakov *

Institute of Integrated Safety and Special Instrumentation, Federal State Budget Educational Institution of Higher
Education «MIREA–Russian Technological University», 78, Vernadskogo Avenye, 119454 Moscow, Russia
* Correspondence: liliya.demidova@rambler.ru (L.A.D.); worldbeater-dev@yandex.ru (A.V.G.)

Received: 17 April 2020; Accepted: 6 May 2020; Published: 8 May 2020
����������
�������

Abstract: Inspired by the collective behavior of fish schools, the fish school search (FSS) algorithm is
a technique for finding globally optimal solutions. The algorithm is characterized by its simplicity
and high performance; FSS is computationally inexpensive, compared to other evolution-inspired
algorithms. However, the premature convergence problem is inherent to FSS, especially in the
optimization of functions that are in very-high-dimensional spaces and have plenty of local minima
or maxima. The accuracy of the obtained solution highly depends on the initial distribution of agents
in the search space and on the predefined initial individual and collective-volitive movement step
sizes. In this paper, we provide a study of different chaotic maps with symmetric distributions, used
as pseudorandom number generators (PRNGs) in FSS. In addition, we incorporate exponential step
decay in order to improve the accuracy of the solutions produced by the algorithm. The obtained
results of the conducted numerical experiments show that the use of chaotic maps instead of other
commonly used high-quality PRNGs can speed up the algorithm, and the incorporated exponential
step decay can improve the accuracy of the obtained solution. Different pseudorandom number
distributions produced by the considered chaotic maps can positively affect the accuracy of the
algorithm in different optimization problems. Overall, the use of the uniform pseudorandom
number distribution generated by the tent map produced the most accurate results. Moreover, the
tent-map-based PRNG achieved the best performance when compared to other chaotic maps and
nonchaotic PRNGs. To demonstrate the effectiveness of the proposed optimization technique, we
provide a comparison of the tent-map-based FSS algorithm with exponential step decay (ETFSS) with
particle swarm optimization (PSO) and with the genetic algorithm with tournament selection (GA)
on test functions for optimization.

Keywords: evolutionary optimization; dynamical systems; chaotic maps; bifurcations; fish school
search; swarm intelligence; logistic map; tent map

1. Introduction

With the increased use of artificial intelligence, decision support systems, forecasting, and expert
systems in many enterprises, optimization problems arise more often in modern economic sectors.
Such problems are widespread in computer science, engineering [1], and economics [2]. Optimization
problems lie at the heart of many machine learning algorithms [3], including neural networks [4],
clustering algorithms, support vector machines, and random forests. By convention, optimization
denotes a minimization problem—the selection of element

→
x min ∈ X such that ∀

→
x i ∈ X : f

(
→
x min

)
≤

f
(
→
x i

)
, where f is the objective function, often named the fitness function in evolutionary computation.

The maximization problem, conversely, can be formulated as the selection of
→
x max ∈ X such that

Symmetry 2020, 12, 784; doi:10.3390/sym12050784 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-1977-8165
http://www.mdpi.com/2073-8994/12/5/784?type=check_update&version=1
http://dx.doi.org/10.3390/sym12050784
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 784 2 of 18

∀
→
x i ∈ X : f

(
→
x max

)
≥ f

(
→
x i

)
. Evolutionary algorithms represent a subset of optimization algorithms.

Such algorithms use heuristic techniques inspired by biological evolution, and they process a variety of
solutions to an optimization problem in a single iteration. Therefore, such biology-inspired algorithms
are also known as population-based techniques.

The recent research in evolutionary computation has introduced a number of effective
heuristic population-based optimization techniques, including genetic algorithms [5], particle swarm
optimization [6], ant colony optimization [7], cuckoo search [8], bee swarm optimization [9], memetic
algorithm [10], differential evolution [11], fish school search [12], and others. These effective algorithms
have found their applications in many real-world problems [1,2] and continue gaining popularity
among researchers. According to the No Free Lunch (NFL) theorem in optimization, no universal
method exists that could be used for solving all optimization problems efficiently [13]. Consequently,
the recent research in optimization has introduced a variety of hybrid algorithms applied to solve
practical problems, including big data classification using support vector machine (SVM) algorithms
and modified particle swarm optimization [14] and predictive modelling of medical data using a
combined approach of random forests and a genetic algorithm [15]. Hybrids of evolution-inspired
and classical optimization methods have been proposed as well, applied in neural network model
training [16,17] and in accurate inverse permittivity measurement [18]. In order to take advantage
of the several population-based optimization algorithms, a novel meta-heuristic approach, COBRA
(Co-Operation of Biology-Related Algorithms), was proposed in [19], based on the parallel and
simultaneous work of multiple evolution-inspired algorithms.

In this paper, we consider the fish school search (FSS) algorithm, proposed by Bastos Filho et al.
in [12]. Inspired by the collective behavior of fish schools, this effective and computationally
inexpensive optimization technique outperformed the genetic algorithm in image reconstruction of
electrical impedance tomography in [20] and proved its superiority over particle swarm optimization
in [21]. Moreover, FSS outperformed back propagation and the bee swarm algorithm in neural network
training for mobility prediction in [22]. In addition, FSS was used in intellectual assistant systems [23]
and in solving assembly line balancing problems [24]. Compared to other evolution-inspired algorithms,
FSS is a relatively lightweight optimization technique. A multiobjective version of FSS exists [25],
as well as modifications intended to improve the performance of the algorithm [26].

However, the premature convergence problem inherent to many evolutionary optimization
algorithms is inherent to FSS as well. The core idea of FSS is to make the randomly initialized
population of agents move towards the positive gradient of a function, without the need to perform
computationally expensive operations, except for fitness function evaluations. Given that, the quality
of the obtained solution heavily depends on the initial locations of agents in a population and on the
predefined step sizes. If the considered fitness function is multimodal and agents do not fill the search
space uniformly, then the algorithm has a higher chance to converge to a locally optimal solution,
probably different on each test run.

Therefore, the characteristics of the pseudorandom number generator (PRNG) used to initialize
the locations of agents and to perform individual and collective movements have a great impact on
the accuracy of the obtained solution and on the execution time of the algorithm as well. Plenty of
PRNGs have been invented [27–29]; the generators vary per platform and per programming language.
The characteristics of PRNGs differ, depending on the considered domain. PRNGs have applications
in simulations, electronic games, and cryptography, and each area implies its own limitations and
requirements. In some cases, the generator has to be cryptographically secure. In other cases, the
speed of a PRNG can be a crucial measure of quality.

Chaotic behavior exists in many natural systems, as well as in deterministic nonlinear dynamical
systems. Chaos-based systems have applications in communications, cryptography, and noise
generation. A dynamical system is denoted by a state space S, a set of times T , and a map

Symmetry 2020, 12, 784 3 of 18

R : S×T→ S which describes the evolution of the dynamical system. An example of a chaotic mapping
is the logistic map, introduced by Robert May in 1976 [30]. The map is given by the following equation:

yn+1 = µyn(1− yn). (1)

Here, yn represents the current state of the dynamical system, and µ is the control parameter.
The control parameter determines whether a dynamical system stabilizes at a constant value, stabilizes
at periodic values, or becomes completely chaotic. The logistic-mapping-based system becomes chaotic
when µ = 4.0. In the completely chaotic state, the logistic map (1) can be used as a simple PRNG.
Guyeux et al. in [31] proposed a novel chaotic PRNG based on a combination of chaotic iterations and
well-known generators with applications in watermarking. Hobincu et al. proposed a cryptographic
PRNG targeting secret communication [32]; the algorithm was based on the evolution of the chaotic
Henon map.

Zhiteng Ma et al. in [33] used a modified version of the logistic map (1) to generate the initial
locations of agents in the proposed chaotic particle swarm optimization algorithm. They conducted
a series of experiments that verified the effectiveness of the implemented optimization technique.
A novel hybrid algorithm based on chaotic search and the artificial fish swarm algorithm was proposed
in [34], where Hai Ma et al. used the logistic map (1) to perform the local search. The results of the
numerical experiment proved that the proposed technique was characterized by higher convergence
speed and better stability compared to the original algorithm. El-Shorbagy et al. in [35] proposed a
hybrid algorithm that integrates the genetic algorithm and a chaotic local search strategy to improve the
convergence speed towards the globally optimal solution. They considered several chaotic mappings,
including the logistic map (1). The obtained results confirmed that integrating the genetic algorithm
with chaos-based local search speeds up the convergence, even when dealing with nonsmooth and
nondifferentiable functions.

In this paper, we provide a comparative study of optimization algorithms based on FSS and
different chaotic mappings, including (1). We consider the modified logistic map [36], the tent map [37],
the sine map, and the circle map with zero driving phase, which are parts of the fractional Caputo
standard α-family of maps, as described in [38]. Additionally, we consider the simple cosine map,
mentioned in [29]. We analyze the distributions produced by chaotic PRNGs, and compare the
performance of the mappings with that of other commonly used PRNGs, such as Mersenne Twister [28],
Philox [39], and Parallel Congruent Generator (PCG) [40]. In addition, we incorporate exponential step
decay into FSS and compare the accuracy of the modified algorithm with that of PSO and GA on both
unimodal and multimodal test functions for optimization. We apply the Wilcoxon signed-rank test to
determine whether significant differences exist between the considered algorithms. The results of the
numerical experiments show the outstanding advantage of tent-map-based chaotic PRNG performance,
as well as the superiority of tent-map-based FSS with exponential step decay over PSO and GA.

2. Materials and Methods

2.1. Chaotic Mappings, Bifurcations, and Lyapunov’s Exponent

The accuracy of optimization results obtained by FSS heavily depends on the initial locations of
agents in a fish school—the initial population X of solutions

→
x i ∈ X—and the shape of the distribution

produced by the PRNG that is used to generate individual and collective-volitive random movement
vectors. If the agents are not distributed uniformly in the search space, the optimization process can be
prone to stagnation or to premature convergence towards local minima or maxima.

On the other hand, the performance of the algorithm depends on the performance of the
incorporated PRNG. The chaos generated by nonlinear dynamical systems, such as (1), has the
potential to outperform most default pseudorandom number generators due to the simplicity of the
chaotic maps. Compared to other PRNGs, the chaotic maps can be far less computationally expensive.

Symmetry 2020, 12, 784 4 of 18

The shape of the generated distribution depends on the specific chaotic mapping. In this study, we
considered different chaotic maps, including the logistic map (1), the modified logistic map proposed
in [36] (and named the square map hereafter), the digital tent map, first mentioned in [37], sine and
circle maps, belonging to the fractional Caputo standard α-family of maps [38], and the simple cosine
map [29]. For each of the considered chaotic maps, we used different µ parameter values to make
the maps completely chaotic. The iterative equations representing the mappings and their respective
µ parameter values are listed in Table 1. In dynamical systems, a bifurcation diagram shows the
values visited by a system as a function of the bifurcation parameter µ of the system. The bifurcation
diagrams of the dynamical systems listed in Table 1 are shown in Figure 1.

Table 1. Chaotic maps used as pseudorandom number generators (PRNGs) in this study.

Name Equation µ

Logistic map yn+1 = µyn(1− yn) 4.0
Square map yn+1 = 1− µy2

n 2.0
Cosine map yn+1 = cos(µyn) 6.0

Tent map yn+1 = µ min
{
yn, 1− yn

}
1.9999

Sine map yn+1 = −µ sin(y) 4.0
Circle map yn+1 = yn − µ sin(yn) 4.5

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 18

simple cosine map [29]. For each of the considered chaotic maps, we used different 𝜇 parameter
values to make the maps completely chaotic. The iterative equations representing the mappings and
their respective 𝜇 parameter values are listed in Table 1. In dynamical systems, a bifurcation diagram
shows the values visited by a system as a function of the bifurcation parameter 𝜇 of the system. The
bifurcation diagrams of the dynamical systems listed in Table 1 are shown in Figure 1.

Table 1. Chaotic maps used as pseudorandom number generators (PRNGs) in this study.

Name Equation 𝝁
Logistic map 𝑦 𝜇𝑦 1 𝑦 4.0
Square map 𝑦 1 𝜇𝑦 2.0
Cosine map 𝑦 cos 𝜇𝑦 6.0

Tent map 𝑦 𝜇 min 𝑦 , 1 𝑦 1.9999
Sine map 𝑦 𝜇 sin 𝑦 4.0

Circle map 𝑦 𝑦 𝜇 sin 𝑦 4.5

(a) (b)

(c) (d)

(e) (f)

Figure 1. Bifurcation diagrams of the chaotic maps listed in Table 1: (a) Logistic map; (b) Square map;
(c) Cosine map; (d) Tent map; (e) Sine map; (f) Circle map.

In order to compare the chaotic maps and to select the appropriate values for the 𝜇 parameter,
we used the Lyapunov exponent metric 𝜆, which provides a detailed characterization of chaos in

Figure 1. Bifurcation diagrams of the chaotic maps listed in Table 1: (a) Logistic map; (b) Square map;
(c) Cosine map; (d) Tent map; (e) Sine map; (f) Circle map.

In order to compare the chaotic maps and to select the appropriate values for the µ parameter,
we used the Lyapunov exponent metric λ, which provides a detailed characterization of chaos in

Symmetry 2020, 12, 784 5 of 18

dynamical systems. A positive value of λ indicates that the dynamical system is chaotic. In chaotic
motion, two points move apart as time increases, making it impossible to predict the locations of new
points in the long-term future [41]. Negative values of the λ metric denote that a fixed point or a
stable orbit attracts the orbits of the system. In cases when λ = 0, the system is in steady state. Such a
system is considered conservative; the orbits maintain constant separation [30]. For a discrete time
system, the Lyapunov exponent formula is given by

λ(y0) = lim
n→∞

1
n

n−1∑
i=0

ln
∣∣∣ f ′(yi)

∣∣∣. (2)

Here, n denotes the total number of iterations; yi+1 = f (yi); y0 is the starting point; and f ′(yi)

denotes the derivative of the mapping function f , which can be computed either analytically or
numerically by using finite difference approximation.

Plots of the Lyapunov exponent (2) values for the chaotic maps defined in Table 1 are shown in
Figure 2. For all of the µ parameter values listed in Table 1, the Lyapunov exponent values are positive
(λ > 0); hence, all of the considered maps are in the chaotic state.

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 18

dynamical systems. A positive value of 𝜆 indicates that the dynamical system is chaotic. In chaotic
motion, two points move apart as time increases, making it impossible to predict the locations of new
points in the long-term future [41]. Negative values of the 𝜆 metric denote that a fixed point or a
stable orbit attracts the orbits of the system. In cases when 𝜆 0 , the system is in steady state. Such
a system is considered conservative; the orbits maintain constant separation [30]. For a discrete time
system, the Lyapunov exponent formula is given by 𝜆 𝑦 lim→ 1𝑛 ln|𝑓 𝑦 |. (2)

Here, 𝑛 denotes the total number of iterations; 𝑦 𝑓 𝑦 ; 𝑦 is the starting point; and 𝑓 𝑦 denotes the derivative of the mapping function 𝑓, which can be computed either analytically
or numerically by using finite difference approximation.

Plots of the Lyapunov exponent (2) values for the chaotic maps defined in Table 1 are shown in
Figure 2. For all of the 𝜇 parameter values listed in Table 1, the Lyapunov exponent values are positive
(𝜆 0); hence, all of the considered maps are in the chaotic state.

(a) (b) (c)

(d) (e) (f)

Figure 2. Lyapunov exponent plots of the chaotic maps listed in Table 1: (a) Logistic map; (b) Square
map; (c) Cosine map; (d) Tent map; (e) Sine map; (f) Circle map.

According to Figure 1d–f, the tent, sine, and circle mappings are those most likely to produce
more symmetric and uniform pseudorandom number distributions when compared to other
mappings. In order to either confirm or disprove this, we generated 10 pseudorandom numbers
using each of the chaotic mappings listed in Table 1. The obtained histogram plots illustrating the
relative occurrence frequencies of numbers in different distributions and probability density curves
are shown in Figure 3.

The biology-inspired FSS algorithm does not imply any additional limitations to the PRNG used
to generate the initial locations of agents and movement vectors, except for the shape of the
probability density curve. Notably, all of the probability density curves shown in Figure 3 are almost
symmetric with respect to the line 𝑦 0.5 . The probability density curve of the chaotic cosine
mapping is slightly less symmetric compared to the other curves, as shown in Figure 3c. Potentially,
further 𝜇 parameter tuning could make the distribution more symmetric, as shown in [29]. The
distributions generated by the chaotic tent, circle, and sine mappings show the most promising
results. The tent map produces the most uniformly distributed pseudorandom numbers, as shown in
Figure 3d.

Figure 2. Lyapunov exponent plots of the chaotic maps listed in Table 1: (a) Logistic map; (b) Square
map; (c) Cosine map; (d) Tent map; (e) Sine map; (f) Circle map.

According to Figure 1d–f, the tent, sine, and circle mappings are those most likely to produce
more symmetric and uniform pseudorandom number distributions when compared to other mappings.
In order to either confirm or disprove this, we generated 104 pseudorandom numbers using each of the
chaotic mappings listed in Table 1. The obtained histogram plots illustrating the relative occurrence
frequencies of numbers in different distributions and probability density curves are shown in Figure 3.

The biology-inspired FSS algorithm does not imply any additional limitations to the PRNG used
to generate the initial locations of agents and movement vectors, except for the shape of the probability
density curve. Notably, all of the probability density curves shown in Figure 3 are almost symmetric
with respect to the line y = 0.5. The probability density curve of the chaotic cosine mapping is slightly
less symmetric compared to the other curves, as shown in Figure 3c. Potentially, further µ parameter
tuning could make the distribution more symmetric, as shown in [29]. The distributions generated by
the chaotic tent, circle, and sine mappings show the most promising results. The tent map produces
the most uniformly distributed pseudorandom numbers, as shown in Figure 3d.

In evolutionary optimization, the considered chaotic mappings have the potential to outperform
most PRNGs used in modern programming languages by default, such as the Mersenne Twister [28] or
PCG [40]. In order to experimentally confirm or disprove the advantages of the chaotic maps listed in

Symmetry 2020, 12, 784 6 of 18

Table 1 over the mentioned default PRNGs, in Section 3.1 we benchmark the discussed pseudorandom
generation algorithms.

Symmetry 2020, 12, x FOR PEER REVIEW 6 of 18

(a) (b) (c)

(d) (e) (f)

Figure 3. Histogram comparison of the relative occurrence frequency of random numbers generated
by chaotic maps: (a) Logistic map; (b) Square map; (c) Cosine map; (d) Tent map; (e) Sine map; (f)
Circle map.

In evolutionary optimization, the considered chaotic mappings have the potential to outperform
most PRNGs used in modern programming languages by default, such as the Mersenne Twister [28] or
PCG [40]. In order to experimentally confirm or disprove the advantages of the chaotic maps listed in
Table 1 over the mentioned default PRNGs, in Section 3.1 we benchmark the discussed pseudorandom
generation algorithms.

2.2. The Chaotic Fish School Search Algorithm with Exponetial Step Decay

In the proposed chaotic FSS algorithm with exponential step decay, the initial population 𝕏 is
initialized with �⃗� ∈ 𝕏 vectors. Here, �⃗� is a random 𝑛-dimensional vector generated using one of
the chaotic mappings listed in Table 1, and the �⃗� vector represents the location of the 𝑖th agent.
The initial �⃗� vector, used as the initial state for a chaotic mapping, is generated by the default
PRNG. After the initialization of the population 𝕏 , the FSS applies the individual movement
operator to every agent in the population, according to �⃗� , �⃗� , 𝑠𝑡𝑒𝑝 , 𝑟. (3)

Here, �⃗� , denotes the location of the 𝑖th agent at iteration 𝑡. Unlike the original FSS algorithm,
in chaotic FSS, the 𝑟 vector contains uniformly distributed random numbers belonging to the
interval 0, 1 , generated using one of the chaotic mappings listed in Table 1. The 𝑠𝑡𝑒𝑝 , term is
the scalar individual movement step size, which decays each iteration according to 𝑠𝑡𝑒𝑝 , 𝑠𝑡𝑒𝑝 , 𝑒 . (4)

Here, 𝑠𝑡𝑒𝑝 , denotes the step size at iteration 𝑡 , 𝑠𝑡𝑒𝑝 , is the initial step size, and 𝑖𝑡𝑒𝑟 denotes the predefined total number of iterations, 𝑡 𝑖𝑡𝑒𝑟 . A comparison of the step
decay curve produced by (4) with the linear step decay used in the original FSS algorithm is shown
in Figure 4.

Figure 4. Visual representation of linear and exponential step decays.

Figure 3. Histogram comparison of the relative occurrence frequency of random numbers generated
by chaotic maps: (a) Logistic map; (b) Square map; (c) Cosine map; (d) Tent map; (e) Sine map;
(f) Circle map.

2.2. The Chaotic Fish School Search Algorithm with Exponetial Step Decay

In the proposed chaotic FSS algorithm with exponential step decay, the initial population X
is initialized with

→
x i ∈ X vectors. Here,

→
x i is a random n-dimensional vector generated using one

of the chaotic mappings listed in Table 1, and the
→
x i vector represents the location of the ith agent.

The initial
→
y 0 vector, used as the initial state for a chaotic mapping, is generated by the default PRNG.

After the initialization of the population X, the FSS applies the individual movement operator to every
agent in the population, according to

→
x i,t+1 =

→
x i,t + stepind,t

→
r . (3)

Here,
→
x i,t denotes the location of the ith agent at iteration t. Unlike the original FSS algorithm, in

chaotic FSS, the
→
r vector contains uniformly distributed random numbers belonging to the interval

[0, 1], generated using one of the chaotic mappings listed in Table 1. The stepind,t term is the scalar
individual movement step size, which decays each iteration according to

stepind,t = stepind,initial e
−5t

itermax . (4)

Here, stepind,t denotes the step size at iteration t, stepind,initial is the initial step size, and itermax

denotes the predefined total number of iterations, t ≤ itermax. A comparison of the step decay curve
produced by (4) with the linear step decay used in the original FSS algorithm is shown in Figure 4.

Symmetry 2020, 12, x FOR PEER REVIEW 6 of 18

(a) (b) (c)

(d) (e) (f)

Figure 3. Histogram comparison of the relative occurrence frequency of random numbers generated
by chaotic maps: (a) Logistic map; (b) Square map; (c) Cosine map; (d) Tent map; (e) Sine map; (f)
Circle map.

In evolutionary optimization, the considered chaotic mappings have the potential to outperform
most PRNGs used in modern programming languages by default, such as the Mersenne Twister [28] or
PCG [40]. In order to experimentally confirm or disprove the advantages of the chaotic maps listed in
Table 1 over the mentioned default PRNGs, in Section 3.1 we benchmark the discussed pseudorandom
generation algorithms.

2.2. The Chaotic Fish School Search Algorithm with Exponetial Step Decay

In the proposed chaotic FSS algorithm with exponential step decay, the initial population 𝕏 is
initialized with �⃗� ∈ 𝕏 vectors. Here, �⃗� is a random 𝑛-dimensional vector generated using one of
the chaotic mappings listed in Table 1, and the �⃗� vector represents the location of the 𝑖th agent.
The initial �⃗� vector, used as the initial state for a chaotic mapping, is generated by the default
PRNG. After the initialization of the population 𝕏 , the FSS applies the individual movement
operator to every agent in the population, according to �⃗� , �⃗� , 𝑠𝑡𝑒𝑝 , 𝑟. (3)

Here, �⃗� , denotes the location of the 𝑖th agent at iteration 𝑡. Unlike the original FSS algorithm,
in chaotic FSS, the 𝑟 vector contains uniformly distributed random numbers belonging to the
interval 0, 1 , generated using one of the chaotic mappings listed in Table 1. The 𝑠𝑡𝑒𝑝 , term is
the scalar individual movement step size, which decays each iteration according to 𝑠𝑡𝑒𝑝 , 𝑠𝑡𝑒𝑝 , 𝑒 . (4)

Here, 𝑠𝑡𝑒𝑝 , denotes the step size at iteration 𝑡 , 𝑠𝑡𝑒𝑝 , is the initial step size, and 𝑖𝑡𝑒𝑟 denotes the predefined total number of iterations, 𝑡 𝑖𝑡𝑒𝑟 . A comparison of the step
decay curve produced by (4) with the linear step decay used in the original FSS algorithm is shown
in Figure 4.

Figure 4. Visual representation of linear and exponential step decays. Figure 4. Visual representation of linear and exponential step decays.

Symmetry 2020, 12, 784 7 of 18

Similar to the original FSS algorithm, the new location
→
x i,t+1 produced by (3) is accepted only if

f
(
→
x i,t+1

)
> f

(
→
x i,t

)
, where f denotes the fitness function being optimized; otherwise, the new position

→
x i,t+1 remains the same as

→
x i,t. Next, we apply the feeding operator to every

→
x i ∈ X:

∆wi,t+1 = wi,t +
∆ fi,t+1

max[∆ ft+1]
. (5)

Here, ∆ fi,t+1 = f
(
→
x i,t+1

)
− f

(
→
x i,t

)
. wi,t is the weight value associated with the corresponding

agent
→
x i,t. Consequently, the weights of agents with better location changes increase, and they

attract other agents during the collective-volitive movement step. After feeding, collective-instinctive
movement occurs. The collective-instinctive movement vector is computed, given by

→

I i,t+1 =
Σn

i=1

(
→
x i,t+1 −

→
x i,t

)
∆ fi,t+1

Σn
i=1∆ fi,t+1

. (6)

Then, the collective-instinctive movement operator is applied to every agent:

→
x i,t+1 =

→
x i,t+1 +

→

I i,t+1. (7)

Next, the collective-volitive movement operator is applied, defined by the following equation:

→
x i,t+1 =

→
x i,t+1 ± stepvol,t

→
r
→
x i,t+1 −

→

B t+1∣∣∣∣∣∣∣∣∣∣→x i,t+1 −
→

B t+1

∣∣∣∣∣∣∣∣∣∣ . (8)

Here, the
→

B t+1 vector denotes the barycenter vector, which is computed according to (9), in
exactly the same manner as it happens in the original FSS algorithm. The difference between the
modified and original FSS is in the

→
r vector. In the chaotic version of FSS, this vector contains random

real numbers belonging to the interval [−1, 1], generated by one of the considered chaotic mappings
listed in Table 1.

→

B t+1 =
Σn

i=1
→
x i,t+1wi,t+1

Σn
i=1wi,t+1

(9)

The sign used in equation (8) depends on the new total weight of the population. If the weight
has increased since the last iteration, the ‘−’ sign is used; otherwise, the ‘+’ sign is used. Similar to
stepind,t, the stepvol,t variable decays according to (4) on every iteration and indicates the maximum
collective-volitive displacement allowed in the specific iteration.

On each iteration,
→
x best is chosen such that ∀

→
x i ∈ X : f

(
→
x best

)
≥ f

(
→
x i

)
. When the predefined

maximum iteration count itermax is reached, the algorithm stops. The last obtained
→
x best is assumed

to be the solution. In Section 3.2, we provide comparative benchmarks of the original and modified
algorithms based on chaotic mappings listed in Table 1.

3. Numerical Experiments

3.1. Performance Comparison of Chaotic and Nonchaotic PRNGs

In order to experimentally confirm or disprove whether the chaotic mappings outperform
commonly used PRNGs, such as Mersenne Twister [28], Parallel Congruent Generator (PCG) [40], and
Philox [39], the mappings listed in Table 1 were implemented in the C programming language and then
benchmarked. We included the Mersenne Twister, PCG, and Philox PRNG implementations in the

Symmetry 2020, 12, 784 8 of 18

benchmarks as well; the implementations for these algorithms were borrowed from the numpy library
backend [42] and were written in C as well. We ran the experiments on the Ubuntu 18.04 operating
system, and the characteristics of the machine on which the experiments were conducted are listed in
Table 2.

Table 2. Characteristics of the test machine.

Parameter Value

Processor type Intel® Core™ i7-4770
Processor clock rate 3.40 GHz (4 physical cores)

L2\L3 processor cache sizes 1024 KiB\8192 KiB
Random access memory 16 GB DDR3 (1600 MHz)

In each test run and for each of the considered PRNGs, 108 pseudorandom numbers were
generated. In each test run, we computed the average value of the count of random numbers generated
per second. In order to make the results statistically representative, the experiments were repeated
30 times. Then, we computed such metrics as the arithmetic mean value of the distribution, the best
value, and the standard deviation, all measured in numbers per second. The results are shown in
Table 3.

Table 3. Numbers per second generated by chaotic and nonchaotic PRNGs.

PRNG Mean SD Best

Logistic map 1.693× 108 4.584× 104 1.694× 108

Square map 1.223× 108 8.826× 104 1.225× 108

Cosine map 4.020× 107 6.587× 103 4.021× 107

Tent map 1.685× 108 4.574× 104 1.686× 108

Sine map 3.924× 107 1.002× 103 3.926× 107

Circle map 4.511× 107 2.212× 103 4.516× 107

Mersenne Twister 4.833× 107 9.687× 103 4.835× 107

PCG 8.552× 107 2.534× 104 8.558× 107

Philox 2.052× 107 4.360× 103 2.053× 107

According to Table 3, the logistic and tent mappings outperform most other PRNGs, including
both chaotic and nonchaotic ones. However, the mappings that compute trigonometric functions on
every iteration may be slower than Mersenne Twister or PCG. Notably, the tent map shows excellent
performance and produces a uniform pseudorandom distribution, as the other considered nonchaotic
PRNGs do. In order to compare the distributions produced by Mersenne Twister and the tent map,
we plotted the probability density curves of 104 pseudorandom numbers respectively generated by
Mersenne Twister and the tent map. The plots are shown in Figure 5.

Symmetry 2020, 12, x FOR PEER REVIEW 8 of 18

In each test run and for each of the considered PRNGs, 10 pseudorandom numbers were
generated. In each test run, we computed the average value of the count of random numbers
generated per second. In order to make the results statistically representative, the experiments were
repeated 30 times. Then, we computed such metrics as the arithmetic mean value of the distribution,
the best value, and the standard deviation, all measured in numbers per second. The results are
shown in Table 3.

Table 3. Numbers per second generated by chaotic and nonchaotic PRNGs.

PRNG Mean SD Best
Logistic map 1.693 10 4.584 10 1.694 10
Square map 1.223 10 8.826 10 1.225 10
Cosine map 4.020 10 6.587 10 4.021 10
Tent map 1.685 10 4.574 10 1.686 10
Sine map 3.924 10 1.002 10 3.926 10
Circle map 4.511 10 2.212 10 4.516 10
Mersenne Twister 4.833 10 9.687 10 4.835 10
PCG 8.552 10 2.534 10 8.558 10
Philox 2.052 10 4.360 10 2.053 10

According to Table 3, the logistic and tent mappings outperform most other PRNGs, including
both chaotic and nonchaotic ones. However, the mappings that compute trigonometric functions on
every iteration may be slower than Mersenne Twister or PCG. Notably, the tent map shows excellent
performance and produces a uniform pseudorandom distribution, as the other considered
nonchaotic PRNGs do. In order to compare the distributions produced by Mersenne Twister and the
tent map, we plotted the probability density curves of 10 pseudorandom numbers respectively
generated by Mersenne Twister and the tent map. The plots are shown in Figure 5.

(a) (b)

Figure 5. Histogram comparison of the relative occurrence frequency of the uniformly distributed
pseudorandom numbers generated by (a) Mersenne Twister and (b) the chaotic tent map.

From Figure 5 we observe that the tent map may produce random digits distributed more
uniformly when compared to the Mersenne Twister PRNG used in the Python programming
language by default. According to Table 3 and Figure 5, the tent map can generate high-quality
distributions and achieve great performance. Hence, the chaotic tent map can be used in evolutionary
optimization as a replacement for the default PRNG. The bio-inspired algorithms in general do not
imply any additional limitations on the incorporated PRNG, except for speed and probability density
function shape. Consequently, the tent-map-based PRNG could be incorporated into the FSS
algorithm as well.

Figure 5. Histogram comparison of the relative occurrence frequency of the uniformly distributed
pseudorandom numbers generated by (a) Mersenne Twister and (b) the chaotic tent map.

Symmetry 2020, 12, 784 9 of 18

From Figure 5 we observe that the tent map may produce random digits distributed more
uniformly when compared to the Mersenne Twister PRNG used in the Python programming language
by default. According to Table 3 and Figure 5, the tent map can generate high-quality distributions
and achieve great performance. Hence, the chaotic tent map can be used in evolutionary optimization
as a replacement for the default PRNG. The bio-inspired algorithms in general do not imply any
additional limitations on the incorporated PRNG, except for speed and probability density function
shape. Consequently, the tent-map-based PRNG could be incorporated into the FSS algorithm as well.

3.2. Comparison of Different Chaotic Maps Used as PRNGs in FSS with Exponential Step Decay

Based on the idea of chaotic FSS optimization with exponential step decay described in Section 2.2,
we considered six separate algorithms based on the six chaotic mappings listed in Table 1. The FSS
algorithm with exponential step decay, which relies on the Mersenne Twister PRNG, used in Python
by default, was abbreviated as EFSS. EFSS modifications based on the logistic, square, and cosine
mappings were abbreviated as ELFSS, ESFSS, and ECFSS, respectively. The chaotic algorithms based
on the tent, sine, and circle maps were abbreviated as ETFSS, ESiFSS, and ECiFSS, respectively.

The algorithms described in Section 2.2 were tested on multidimensional test functions for
optimization, including both unimodal and multimodal functions. The multidimensional functions
included the Rastrigin, Griewank, Ackley, Sphere, and Rosenbrock functions [43] listed in Table 4 as
f1, f2, f5, f6, and f7, respectively; the Styblinsky-Tang and Schwefel 1.2 functions [44], listed as f3
and f4; and the Zakharov function [45], f8. In Table 4, the letter M denotes a multimodal function, and
the letter U indicates that a function is unimodal.

Table 4. Test functions used to benchmark the chaotic optimization algorithms. M and U letters denote
multimodal and unimodal optimization problems respectively.

Test Function Formula Dim Region Optimum Type

f1
(
→
x
)
= An + Σn

i=1

(
x2

i −Acos(2πxi)
)
, A = 10. 15 [−5.12, 5.12] 0 M

f2
(
→
x
)
= Σn

i=1

(
x2

i
4000

)
−Πn

i=1 cos
(

xi
i0.5

)
− 1. 15 [−100, 100] 0 M

f3
(
→
x
)
= 0.5Σn

i=1

(
x4

i − 16x2
i + 5xi

)
. 15 [−5, 5] −39.1659n M

f4
(
→
x
)
= Σn

i=1

(
Σi

j=1x j

)2
. 15 [−100, 100] 0 U

f5
(
→
x
)
= −20 exp

(
−0.2

(
1
n Σn

i=1x2
i

)0.5
)

− exp
(

1
n Σn

i=1 cos 2πxi
)
+ e + 20.

15 [−32.7, 32.7] 0 M

f6
(
→
x
)
= Σn

i=1x2
i . 15 [−100, 100] 0 U

f7
(
→
x
)
= Σn−1

i=1

(
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

)
. 15 [−10, 10] 0 U

f8
(
→
x
)
= Σn

i=1x2
i +

(
1
2 Σn

i=1ixi
)2
+

(
1
2 Σn

i=1ixi
)4

. 15 [−10, 10] 0 U

By convention, optimization denotes the minimization problem, and the functions listed in Table 4
are expected to be minimized inside their search regions. However, in the conducted numerical
experiments, the functions were multiplied by −1 in order to solve the dual maximization problem.
Thus, the optimization problem which we intended to solve numerically can be described as

arg max
→
x ∈ S

(
− fi

(
→
x
))
∈

{
→
x

∣∣∣∣ ∀→x k ∈ S : f
(
→
x k

)
≤ f

(
→
x
)}

. (10)

Here, fi denotes the ith function listed in Table 4, fi ∈
{
f1, . . . , f8

}
; S denotes the study region of the

given function fi and
→
x is the optimal solution belonging to S.

In each of the test runs, the initial step sizes stepind and stepvol of the chaotic FSS algorithms
with exponential step decay were set to 14% of the radius of the study region. We created populations
of 100 agents in each of the test runs. In the chaos-based algorithms, the positions of the agents

Symmetry 2020, 12, 784 10 of 18

were generated randomly using the mappings from Table 1, as described in Section 2.2. The random
displacement vectors were generated using the respective chaotic maps, as described in Section 2.2.
For every test function listed in Table 4, we ran 300 iterations of each of the considered algorithms.

The algorithms were implemented using the high-level interpreted Python programming language.
In the EFSS algorithm, we used the default Python PRNG—the Mersenne Twister. In the chaos-based
algorithms, we used the same PRNG to generate the initial y0 values for each of the chaotic maps.
We ran the experiments on the Ubuntu 18.04 operating system, inside the Docker container with Jupiter
IPython kernel installed. The characteristics of the machine on which the benchmarks were conducted
are listed in Table 2.

During the test runs, we used 15-dimensional versions of the n-dimensional functions listed in
Table 4. In order to gather representative results, each of the test runs was repeated 30 times. The mean
values and standard deviations were computed. The maximum function values obtained by each of
the algorithms were considered as the best solutions. The results are shown in Table 5.

Table 5. Accuracy comparison of the considered algorithms based on fish school search (FSS) with
exponential step decay (EFSS). Algorithms based on the logistic, square, cosine, tent, sine, and circle
maps are abbreviated as ELFSS, ESFSS, ECFSS, ETFSS, ESiFSS, and ECiFSS respectively. The best result
in each row is highlighted in bold.

Function Metric EFSS ELFSS ESFSS ECFSS ESiFSS ECiFSS ETFSS

f1
Best −3.00 −3.00 −3.00 −57.73 −3.00 −2.00 −2.99

Mean −5.98 −23.07 −6.78 −92.76 −5.82 −6.75 −6.48
SD 1.99 13.67 2.06 19.81 2.31 3.13 2.37

f2
Best −0.001 −0.003 −0.002 −0.003 −0.002 −0.001 −0.001

Mean −0.06 −1.53 −0.01 −0.01 −0.01 −0.00 −0.03
SD 0.206 1.278 0.006 0.006 0.008 0.005 0.162

f3
Best 559.22 530.94 587.49 418.46 559.22 545.08 573.36

Mean 504.21 428.68 485.08 387.27 500.57 504.757 509.89
SD 27.80 69.77 48.48 13.96 38.19 33.34 35.15

f4
Best −0.03 −0.11 −0.13 −0.17 −0.10 −0.11 −0.04

Mean −0.10 −8× 104 −0.18 −3.36 −0.16 −0.15 −0.10
SD 0.03 7× 104 0.02 6.31 0.03 0.02 0.02

f5
Best −0.03 −0.06 −0.05 −0.07 −0.05 −0.05 −0.04

Mean −0.05 −9.84 −0.07 −6.74 −0.06 −0.06 −0.05
SD 0.006 8.333 0.008 4.597 0.007 0.005 0.006

f6
Best −0.01 −0.01 −0.02 −0.02 −0.02 −0.02 −0.01

Mean −0.019 −5× 103 −0.031 −0.035 −0.026 −0.025 −0.018
SD 0.003 5× 103 0.006 0.005 0.005 0.003 0.003

f7
Best −8.73 −9.00 −8.60 −5.76 −8.63 −8.21 −8.36

Mean −10.15 −5× 105 −13.13 −5.98 −9.82 −9.96 −9.81
SD 1.29 4× 105 15.52 0.12 0.71 0.84 0.80

f8
Best −0.00 −0.00 −0.00 −42.83 −0.00 −0.00 −0.00

Mean −1.64 −74.44 −15.93 −91.28 −6.20 −7.09 −3.70
SD 6.26 60.87 42.04 35.18 17.13 19.29 9.67

From Table 5 we can observe that the Mersenne Twister PRNG and the chaotic tent-map-based
PRNG show similar results in all of the considered optimization problems. Notably, the circle and
square chaotic mappings can outperform other considered PRNGs in some optimization problems.
However, the chaotic tent mapping and Mersenne Twister can produce the most accurate results in
more optimization problems. According to Table 3, the chaotic circle mapping is relatively more
computationally expensive when compared to the tent map, square map, or nonchaotic PRNGs,
including PCG and Mersenne Twister. The logistic map, which outperformed chaos-based PRNGs
in Section 3.1, produces less accurate results when used as a PRNG in the fish school search
evolution-inspired optimization algorithm with exponential step decay. Most likely, this is due
to the different shape of the distribution produced by the logistic-mapping-based PRNG—in ELFSS,
the initial positions of agents do not cover the search space uniformly when the algorithm starts. As a

Symmetry 2020, 12, 784 11 of 18

result, this negatively affects the accuracy of the obtained solution. The ECFSS algorithm also shows
less accurate results in most problems when compared to other algorithms. According to Figure 3c,
the probability density curve of the cosine mapping is not symmetric, and this can cause premature
convergence to a locally optimal solution as well. In order to further illustrate the convergence process
of the considered algorithms, we provide the convergence plots shown in Figure 6.

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 18

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Convergence curves of chaotic algorithms based on FSS with exponential step decay,
optimizing 15-dimensional versions of the respective test functions listed in Table 4: (a) 𝑓 (b) 𝑓 (c) 𝑓 (d) 𝑓 (e) 𝑓 (f) 𝑓 (g) 𝑓 (h) 𝑓 .

Figure 6. Convergence curves of chaotic algorithms based on FSS with exponential step decay,
optimizing 15-dimensional versions of the respective test functions listed in Table 4: (a) f1 (b) f2 (c) f3
(d) f4 (e) f5 (f) f6 (g) f7 (h) f8.

Symmetry 2020, 12, 784 12 of 18

The chaotic tent map showed excellent performance in Section 3.1. According to Table 5, the
tent-map-based PRNG can produce more accurate results than other considered chaotic mappings.
The results produced by the ETFSS algorithm are no worse than the results produced by the EFSS
algorithm, which is based on Mersenne Twister. This means that the tent-map-based FSS algorithm is
faster than FSS based on Mersenne Twister, without any losses in accuracy.

According to Figure 6, the tent-map-based ETFSS algorithm and EFSS algorithm based on
Mersenne Twister show similar results in most optimization problems. In order to verify whether
significant statistical differences exist between the EFSS and ETFSS algorithms, we applied the paired
Wilcoxon signed-rank test to EFSS and ETFSS with level of significance α set to 10−2. According to
the results, no significant differences between EFSS and ETFSS were found.

3.3. Comparison of FSS with Exponential Step Decay with Original FSS, PSO, and GA

To demonstrate the effectiveness of the proposed modification of fish school search, we
implemented such effective optimization algorithms as particle swarm optimization (PSO) and
the genetic algorithm with tournament selection (GA). In each algorithm, 100 agents were spawned,
and 300 iterations were run. For GA, the mutation probability was set to 0.1, and the crossover
probability was set to 0.9. For PSO, the acceleration coefficients were set to 0.8 and 0.5. For the original
FSS algorithm, the initial maximum displacements stepind and stepvol were set to 7% of the radius of
the search region. For the chaotic tent-map-based modified FSS algorithm with exponential step decay,
the initial values for stepind and stepvol were slightly increased and set to 14% of the radius of the search
area. The experiments were evaluated 30 times. We computed such metrics as the mean value, best
value, and standard deviation. The benchmark results are shown in Table 6. The convergence curves
are shown in Figure 7.

Table 6. Accuracy comparison of PSO, GA with tournament selection, FSS, and ETFSS on 15-dimensional
test functions. The best result in each row is highlighted in bold.

Function Metric PSO FSS GA ETFSS

f1
Best −17.956 −1.996 −9.952 −1.998

Mean −32.677 −9.585 −23.963 −5.448
SD 11.266 7.138 8.903 1.901

f2
Best −0.028 −0.011 −0.05 −0.001

Mean −0.098 −0.835 −0.201 −0.008
SD 0.101 0.162 0.093 0.010

f3
Best 545.080 587.459 573.689 587.472

Mean 508.096 516.325 568.118 528.118
SD 18.570 46.613 4.523 48.791

f4
Best −0.007 −0.050 −4.675 −0.045

Mean −11.900 −31.630 −9.056 −5.457
SD 25.600 64.923 2.482 28.862

f5
Best −1.647 −0.038 −1.383 −0.037

Mean −3.074 −1.726 −2.185 −0.052
SD 0.899 1.587 0.449 0.005

f6
Best −0.001 −0.008 −0.697 −0.012

Mean −1.589 −6.345 −1.226 −0.018
SD 2.317 14.178 0.264 0.003

f7
Best −13.074 −10.018 −93.094 −7.886

Mean −127.166 −24.882 −293.899 −9.749
SD 184.037 20.196 191.647 0.766

f8
Best −0.037 −0.001 −74.492 −0.000

Mean −2.278 −13.895 −228.221 −4.238
SD 2.284 26.085 82.664 10.912

Symmetry 2020, 12, 784 13 of 18

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 18

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Convergence curves of PSO, FSS, GA, and ETFSS algorithms optimizing the 15-dimensional
versions of test functions listed in Table 4: (a) 𝑓 (b) 𝑓 (c) 𝑓 (d) 𝑓 (e) 𝑓 (f) 𝑓 (g) 𝑓 (h) 𝑓 .

Figure 7. Convergence curves of PSO, FSS, GA, and ETFSS algorithms optimizing the 15-dimensional
versions of test functions listed in Table 4: (a) f1 (b) f2 (c) f3 (d) f4 (e) f5 (f) f6 (g) f7 (h) f8.

According to the results shown in Table 6, the tent-map-based FSS algorithm with exponential
step decay outperforms FSS, PSO, and GA in most cases. The ETFSS algorithm also shows better
stability when compared to other considered algorithms. Based on the results provided in Table 6, and

Symmetry 2020, 12, 784 14 of 18

the convergence curves shown in Figure 7, we can conclude that the tent-map-based FSS algorithm
with exponential step decay outperforms the other considered optimization algorithms in most of
the optimization problems listed in Table 4. In several optimization problems, GA and PSO can
outperform ETFSS, as shown in Figure 7c,h. However, according to Table 6, the best values obtained by
ETFSS are more accurate when compared to the best values obtained by other considered optimization
algorithms. Notably, according to the No Free Lunch (NFL) theorem, no universal method exists that
can be used for solving all optimization problems [13], although further research could investigate
the hybridization problem of ETFSS and GA, or of ETFSS and PSO. The incorporation of the genetic
operators and momentum into the ETFSS algorithm could potentially improve the performance of the
algorithm as well.

In order to verify these observations, we applied the statistical nonparametric paired Wilcoxon
signed-rank test to the ETFSS algorithm and PSO, GA, and FSS. The null hypothesis indicated that
no significant statistical differences exist between ETFSS and other optimization algorithms, and the
level of significance α was set to 10−2, which means the 99% confidence level. For 15-dimensional
versions of the multidimensional test functions listed in Table 4, the Wilcoxon signed-rank test results
are shown in Table 7.

Table 7. Wilcoxon signed-rank test results applied to ETFSS and other algorithms.

Function PSO FSS GA

f1 + + +
f2 + + +
f3 + + −

f4 + = +
f5 + + +
f6 + = +
f7 + + +
f8 = = +

In Table 7, the ‘+’ sign indicates that ETFSS outperforms the original algorithm, ‘−’ denotes the
opposite, and ‘=’ indicates that no significant statistical differences exist between the two compared
distributions. According to Table 7, the proposed ETFSS shows the best results in most of the considered
optimization problems, but not the Styblinsky-Tang function. Despite the fact that generally GA
outperforms ETFSS, according to Table 6, the best value obtained by ETFSS is more accurate when
compared to that by GA. In order to further demonstrate this, we provide a boxplot of the respective
optimized Styblinsky-Tang function values obtained by PSO, FSS, GA, and ETFSS. The boxplot is
shown in Figure 8.

Symmetry 2020, 12, x FOR PEER REVIEW 14 of 18

According to the results shown in Table 6, the tent-map-based FSS algorithm with exponential
step decay outperforms FSS, PSO, and GA in most cases. The ETFSS algorithm also shows better
stability when compared to other considered algorithms. Based on the results provided in Table 6,
and the convergence curves shown in Figure 7, we can conclude that the tent-map-based FSS
algorithm with exponential step decay outperforms the other considered optimization algorithms in
most of the optimization problems listed in Table 4. In several optimization problems, GA and PSO
can outperform ETFSS, as shown in Figure 7c,h. However, according to Table 6, the best values
obtained by ETFSS are more accurate when compared to the best values obtained by other considered
optimization algorithms. Notably, according to the No Free Lunch (NFL) theorem, no universal
method exists that can be used for solving all optimization problems [13], although further research
could investigate the hybridization problem of ETFSS and GA, or of ETFSS and PSO. The
incorporation of the genetic operators and momentum into the ETFSS algorithm could potentially
improve the performance of the algorithm as well.

In order to verify these observations, we applied the statistical nonparametric paired Wilcoxon
signed-rank test to the ETFSS algorithm and PSO, GA, and FSS. The null hypothesis indicated that
no significant statistical differences exist between ETFSS and other optimization algorithms, and the
level of significance 𝛼 was set to 10 , which means the 99% confidence level. For 15-dimensional
versions of the multidimensional test functions listed in Table 4, the Wilcoxon signed-rank test results
are shown in Table 7.

Table 7. Wilcoxon signed-rank test results applied to ETFSS and other algorithms.

Function PSO FSS GA 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓
In Table 7, the ‘ ’ sign indicates that ETFSS outperforms the original algorithm, ‘ ’ denotes the

opposite, and ‘ ’ indicates that no significant statistical differences exist between the two compared
distributions. According to Table 7, the proposed ETFSS shows the best results in most of the
considered optimization problems, but not the Styblinsky-Tang function. Despite the fact that
generally GA outperforms ETFSS, according to Table 6, the best value obtained by ETFSS is more
accurate when compared to that by GA. In order to further demonstrate this, we provide a boxplot
of the respective optimized Styblinsky-Tang function values obtained by PSO, FSS, GA, and ETFSS.
The boxplot is shown in Figure 8.

Figure 8. Boxplot of the solutions obtained by PSO, FSS, GA, and ETFSS optimizing the 15-
dimensional version of the multidimensional Styblinsky-Tang test function.
Figure 8. Boxplot of the solutions obtained by PSO, FSS, GA, and ETFSS optimizing the 15-dimensional
version of the multidimensional Styblinsky-Tang test function.

Symmetry 2020, 12, 784 15 of 18

4. Discussion

During the research presented in this paper, we considered a number of dynamical equations,
including the logistic map, which has been of great interest among researchers since its first mention in
1976 [30]. We also considered the improved logistic map, proposed in [36], the digital tent map [37], the
cosine mapping, and the sine and circle mappings, based on Caputo standard α-family of maps [38].
According to the Lyapunov exponent metric, specific µ parameter values were selected to make the
iterative equations completely chaotic.

The performance of the PRNG used to generate the initial population of solutions and to perform
other computations is crucial in evolutionary optimization and especially in swarm intelligence.
In Section 3.1, we benchmarked the considered chaotic PRNGs and state-of-the-art PRNGs, such as
Mersenne Twister, PCG, and Philox. The logistic map and the tent map showed the best performance.
Analysis of the pseudorandom number distributions produced by the chaotic PRNGs showed
that only the digital tent map produces uniformly distributed random numbers. We observed
that the tent-map-based PRNG can produce more symmetrically and uniformly distributed real
numbers when compared to the considered nonchaotic PRNGs. As shown in [46], the digital
tent-map-based pseudorandom bit generators (PRBGs) represent a suitable alternative to other
traditional low-complexity PRBGs such as the linear feedback shift registers. All these facts allow us to
conclude that the use of the tent-map-based PRNG is highly appropriate in evolutionary computation,
especially in cases when the performance of an optimization algorithm is of great importance.

We proposed a novel modification of the FSS algorithm, which was originally invented by
Bastos-Filho et al. We incorporated exponential step decay into the original FSS algorithm and used
different chaotic mappings to generate initial locations of agents in the population and to generate
individual and collective-volitive movement vectors. The modified algorithm with exponential step
decay based on the chaotic tent map, abbreviated as ETFSS, showed the most promising results in
most of the considered optimization problems. The considered multidimensional test functions for
optimization, including both unimodal and multimodal functions. We tested the algorithms on the
test functions for numerical optimization, including the Rastrigin, Griewank, Sphere, Ackley, and
Rosenbrock functions [43], the Schwefel 1.2 and Styblinsky-Tang functions [44], and the Zakharov
function [45]. We compared the proposed ETFSS algorithm with the original FSS with linear step decay
and with PSO and GA with tournament selection. In order to verify the superiority of ETFSS, we
applied the Wilcoxon signed-rank statistical test to the original algorithm and to other considered
popular optimization techniques. The obtained results confirmed that ETFSS generally performs
better when compared to the original FSS algorithm, PSO, or GA. The incorporation of the chaotic tent
mapping reduces the time required for the considered biology-inspired heuristic to converge, and the
incorporation of exponential step decay improves the accuracy of the obtained approximately optimal
solution. Notably, as shown in [33,47], the incorporation of chaotic mappings into PSO and GA can
lead to better exploration and exploitation by the algorithms, resulting in improved accuracy of the
obtained solutions.

Further research could cover more chaotic mappings, for example, the Chebyshev map or the
Henon map. The incorporation of genetic operators or momentum into the ETFSS algorithm could
potentially improve the performance of the ETFSS algorithm as well. As shown in [48], a hybrid
algorithm based on PSO and FSS achieved better performance when compared to the original PSO
and FSS algorithms used separately. The proposed ETFSS continuous optimization technique can be
applied to any problem which can be solved by continuous evolutionary computation, for example,
in machine learning or engineering. Finally, the tent-map-based PRNG could be used in order to
improve the performance of other optimization algorithms which heavily rely on the performance
of the incorporated PRNG, including the binary FSS algorithm [49], GA, PSO, ant colony algorithms,
cuckoo search, and others.

Symmetry 2020, 12, 784 16 of 18

Author Contributions: Conceptualization, guidance, supervision, validation L.A.D., software, resources,
visualization, testing A.V.G., original draft preparation L.A.D. and A.V.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cagnina, L.; Esquivel, S.; Coello, C. Solving Engineering Optimization Problems with the Simple Constrained
Particle Swarm Optimizer. Informatica (Slovenia) 2008, 32, 319–326.

2. Ponsich, A.; Jaimes, A.L.; Coello, C.A.C. A Survey on Multiobjective Evolutionary Algorithms for the Solution
of the Portfolio Optimization Problem and Other Finance and Economics Applications. IEEE Trans. Evol.
Comput. 2013, 17, 321–344. [CrossRef]

3. Bennett, K.; Parrado-Hernandez, E. The Interplay of Optimization and Machine Learning Research. J. Mach.
Learn. Res. 2006, 7, 1265–1281.

4. Sigov, A.; Andrianova, E.; Zhukov, D.; Zykov, S.; Tarasov, I. Quantum informatics: Overview of the main
achievements. Russ. Technol. J. 2019, 7, 5–37. (In Russian) [CrossRef]

5. Goodman, E. Introduction to genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), London, UK, 7–11 July 2007; pp. 3205–3224.

6. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

7. Dorigo, M.; Birattari, M.; Stützle, T. Ant Colony Optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39.
[CrossRef]

8. Yang, X.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature &
Biologically Inspired Computing, Coimbatore, India, 9–11 December 2009; pp. 210–214.

9. Reza, A.; Mohammadi, S.; Ziarati, K. A novel bee swarm optimization algorithm for numerical function
optimization. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3142–3155.

10. Neri, F.; Cotta, C. Memetic algorithms and memetic computing optimization: A literature review. Swarm Evol.
Comput. 2012, 2, 1–14. [CrossRef]

11. Price, K.; Storn, R.M. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over
Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359.

12. Bastos Filho, C.; Lima Neto, F.; Lins, A.; Nascimento, A.; Lima, M. A novel search algorithm based on fish
school behavior. In Proceedings of the 2008 IEEE International Conference on Systems, Man and Cybernetics,
Singapore, 12–15 October 2008; pp. 2646–2651.

13. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. Trans. Evol. Comput. 1997, 1,
67–82. [CrossRef]

14. Demidova, L.; Nikulchev, E.; Sokolova, Y. Big Data Classification Using the SVM Classifiers with the Modified
Particle Swarm Optimization and the SVM Ensembles. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 294–312.
[CrossRef]

15. Shah, S.; Pradhan, M. R-GA: An Efficient Method for Predictive Modelling of Medical Data Using a Combined
Approach of Random Forests and Genetic Algorithm. ICTACT J. Soft Comput. 2016, 6, 1153–1156.

16. Ganjefar, S.; Tofighi, M. Training qubit neural network with hybrid genetic algorithm and gradient descent
for indirect adaptive controller design. Eng. Appl. Artif. Intell. 2017, 65, 346–360. [CrossRef]

17. Demidova, L.A.; Gorchakov, A.V. Research and Study of the Hybrid Algorithms Based on the Collective
Behavior of Fish Schools and Classical Optimization Methods. Algorithms 2020, 13, 85. [CrossRef]

18. Requena-Perez, M.E.; Albero-Ortiz, A.; Monzo-Cabrera, J.; Diaz-Morcillo, A. Combined use of genetic
algorithms and gradient descent methods for accurate inverse permittivity measurement. IEEE Trans. Microw.
Theory Tech. 2006, 54, 615–624. [CrossRef]

19. Akhmedova, S.; Semenkin, E. Co-Operation of Biology Related Algorithms. In Proceedings of the 2013 IEEE
Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 2207–2214.

http://dx.doi.org/10.1109/TEVC.2012.2196800
http://dx.doi.org/10.32362/2500-316X-2019-7-1-5-37
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1016/j.swevo.2011.11.003
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.14569/IJACSA.2016.070541
http://dx.doi.org/10.1016/j.engappai.2017.08.007
http://dx.doi.org/10.3390/a13040085
http://dx.doi.org/10.1109/TMTT.2005.862671

Symmetry 2020, 12, 784 17 of 18

20. Dos Santos, W.; Barbosa, V.; Souza, R.; Ribeiro, R.; Feitosa, A.; Silva, V.; Ribeiro, D.; Covello de Freitas, R.;
Lima, M.; Soares, N.; et al. Image Reconstruction of Electrical Impedance Tomography Using Fish School
Search and Differential Evolution. In Critical Developments and Applications of Swarm Intelligence; IGI Global:
Hershey, PA, USA, 2018.

21. Bastos Filho, C.; Nascimento, D.O. An Enhanced Fish School Search Algorithm. In Proceedings of the 1st
BRICS Countries Congress on Computational Intelligence (BRICS-CCI), Recife, Brazil, 8–11 September 2013;
pp. 152–157.

22. Ananthi, J.; Ranganathan, V.; Sowmya, B. Structure Optimization Using Bee and Fish School Algorithm for
Mobility Prediction. Middle-East J. Sci. Res. 2016, 24, 229–235.

23. Bova, V.; Kuliev, E.; Rodzin, S. Prediction in Intellectual Assistant Systems Based on Fish School Search
Algorithm. Izv. Sfedu Eng. Sci. 2019, 2, 34–47.

24. Carneiro de Albuquerque, I.M.; Monteiro Filho, J.; Lima Neto, F.; Silva, A. Solving Assembly Line Balancing
Problems with Fish School Search algorithm. In Proceedings of the 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8.

25. Bastos Filho, C.; Guimarães, A. Multi-Objective Fish School Search. Int. J. Swarm Intell. Res. 2017, 6, 23–40.
[CrossRef]

26. Filho, J.B.M.; de Albuquerque, I.M.C.; de Lima Neto, F.B.; Ferreira, F.V.S. Optimizing multi-plateau functions
with FSS-SAR (Stagnation Avoidance Routine). In Proceedings of the 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–7.

27. Wichmann, B.; Hill, D. Algorithm AS 183: An Efficient and Portable Pseudo-Random Number Generator.
J. R. Stat. Soc. Ser. C (Appl. Stat.) 1982, 31, 188–190. [CrossRef]

28. Matsumoto, M.; Nishimura, T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30. [CrossRef]

29. Alawida, M.; Samsudin, A.; Teh, J.S.; Alshoura, W.H. Digital Cosine Chaotic Map for Cryptographic
Applications. IEEE Access 2019, 7, 150609–150622. [CrossRef]

30. May, R. Simple Mathematical Models With Very Complicated Dynamics. Nature 1976, 261, 459–467. [CrossRef]
[PubMed]

31. Guyeux, C.; Wang, Q.; Bahi, J.M. A Pseudo Random Numbers Generator Based on Chaotic Iterations:
Application to Watermarking. WISM 2010 Lect. Notes Comput. Sci. 2010, 6318, 202–211.

32. Hobincu, R.; Octaviana, D. A Novel Chaos Based PRNG Targeting Secret Communication. In Proceedings
of the 2018 International Conference on Communications (COMM), Bucharest, Romania, 14–16 June 2018;
pp. 459–462.

33. Ma, Z.; Yuan, X.; Han, S.; Sun, D.; Ma, Y. Improved Chaotic Particle Swarm Optimization Algorithm with
More Symmetric Distribution for Numerical Function Optimization. Symmetry 2019, 11, 876. [CrossRef]

34. Ma, H.; Wang, Y. An Artificial Fish Swarm Algorithm Based on Chaos Search. In Proceedings of the 2009
Fifth International Conference on Natural Computation, Tianjin, China, 14–16 August 2009; Volume 4,
pp. 118–121.

35. El-Shorbagy, M.; Mousa, A.; Nast, S. A chaos-based evolutionary algorithm for general nonlinear
programming problems. Chaos Solitons Fractals 2016, 85, 8–21. [CrossRef]

36. Wu, Y.; Zhao, Q.; Feng, W. Fault Diagnosis Method of Generator Based on Mutative Scale Chaos Combined
Clustering and Feature Fusion. In Proceedings of the 2013 International Conference on Electrical and Information
Technologies for Rail Transportation (EITRT2013), Changchun, China, 25–27 October 2013; Lecture Notes in
Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume 287, pp. 119–128.

37. Borcherds, P.H.; McCauley, G.P. The digital tent map and the trapezoidal map. Chaos Solitons Fractals 1993, 3,
451–466. [CrossRef]

38. Edelman, M. Caputo standard α-family of maps: Fractional difference vs. fractional. Chaos Interdiscip.
J. Nonlinear Sci. 2014, 24, 23–137.

39. Salmon, J.K.; Moraes, M.A.; Dror, R.O.; Shaw, D.E. Parallel Random Numbers: As Easy as 1, 2, 3.
In Proceedings of the 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, Seatle, WA, USA, 12–18 November 2011; pp. 1–12.

40. O’Neill, M.E. PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random
Number Generation. 2014. Available online: https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf (accessed on
4 April 2020).

http://dx.doi.org/10.4018/ijsir.2015010102
http://dx.doi.org/10.2307/2347988
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1109/ACCESS.2019.2947561
http://dx.doi.org/10.1038/261459a0
http://www.ncbi.nlm.nih.gov/pubmed/934280
http://dx.doi.org/10.3390/sym11070876
http://dx.doi.org/10.1016/j.chaos.2016.01.007
http://dx.doi.org/10.1016/0960-0779(93)90030-5
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf

Symmetry 2020, 12, 784 18 of 18

41. Parks, P.A.M. Lyapunov’s stability theory—100 years on. IMA J. Math. Control Inf. 1992, 9, 275–303.
[CrossRef]

42. Van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical
Computation. Comput. Sci. Eng. 2011, 13, 22–30. [CrossRef]

43. Hussain, K.; Salleh, M.; Cheng, S.; Naseem, R. Common Benchmark Functions for Metaheuristic Evaluation:
A Review. Int. J. Inform. Vis. 2017, 1, 218–223. [CrossRef]

44. Jamil, M.; Yang, X.S. A Literature Survey of Benchmark Functions for Global Optimization Problems. Int. J.
Math. Model. Numer. Optim. 2013, 4, 150–194.

45. Dongping, T. Particle Swarm Optimization with Chaotic Maps and Gaussian Mutation for Function
Optimization. Int. J. Grid Distrib. Comput. 2015, 8, 123–134.

46. Addabbo, T.; Alioto, M.; Fort, A.; Rocchi, S.; Vignoli, V. The Digital Tent Map: Performance Analysis and
Optimized Design as a Low-Complexity Source of Pseudorandom Bits. IEEE Trans. Instrum. Meas. 2006, 55,
1451–1458. [CrossRef]

47. Snaselova, P.; Zboril, F. Genetic Algorithm Using Theory of Chaos. Procedia Comput. Sci. 2015, 51, 316–325.
[CrossRef]

48. Cavalcanti-Júnior, G.M.; Bastos-Filho, C.J.A.; Lima-Neto, F.B.; Castro, R.M.C.S. A Hybrid Algorithm Based
on Fish School Search and Particle Swarm Optimization for Dynamic Problems. In Advances in Swarm
Intelligence, ICSI 2011; Tan, Y., Shi, Y., Chai, Y., Wang, G., Eds.; Lecture Notes in Computer Science, 6729;
Springer: Berlin/Heidelberg, Germany, 2011.

49. Sargo, J.A.G.; Vieira, S.M.; Sousa, J.M.C.; Filho, C.J.A.B. Binary Fish School Search applied to feature selection:
Application to ICU readmissions. In Proceedings of the IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), Beijing, China, 6–11 July 2014; pp. 1366–1373.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/imamci/9.4.275
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.30630/joiv.1.4-2.65
http://dx.doi.org/10.1109/TIM.2006.880960
http://dx.doi.org/10.1016/j.procs.2015.05.248
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Chaotic Mappings, Bifurcations, and Lyapunov’s Exponent
	The Chaotic Fish School Search Algorithm with Exponetial Step Decay

	Numerical Experiments
	Performance Comparison of Chaotic and Nonchaotic PRNGs
	Comparison of Different Chaotic Maps Used as PRNGs in FSS with Exponential Step Decay
	Comparison of FSS with Exponential Step Decay with Original FSS, PSO, and GA

	Discussion
	References

