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Abstract: The automatic generation of language description is an important task in the intelligent
analysis of aluminum alloy metallographic images, and is crucial for the high-quality development of
the non-ferrous metals manufacturing industry. In this paper, we propose a methodological framework
to generate the language description for aluminum alloy metallographic images. The framework
consists of two parts: feature extraction and classification. In the process of feature extraction, we used
ResNet (residual network) and CNN (convolutional neural network) to extract visual features from
metallographic images. Meanwhile, we used LSTM (long short term memory), FastText, and TextCNN
to extract language text features from questions. Then, we implemented a fusion strategy to integrate
these two features. Finally, we used the fused features as the input of the classification network.
This framework turns the description generation problem into a classification task, which greatly
simplifies the generation process of language description and provides a new idea for the description
of metallographic images. Based on this basic framework, we implemented seven different methods to
generate the language description of aluminum alloy metallographic images, and their performance
comparisons are given. To verify the effectiveness of this framework, we built the aluminum alloy
metallographic image dataset. A large number of experimental results show that this framework can
effectively accomplish the given tasks.

Keywords: aluminum alloy; feature fusion; image description generation; metallographic image

1. Introduction

Aluminum alloy is one of the most widely-used non-ferrous metal materials in industry. Because
of its good performance, it is widely used in aviation, aerospace, navigation, railways, highways,
and other fields [1–6]. The properties of aluminum alloy mainly depend on its microstructures,
and metallographic analysis is the main method to evaluate its microstructures [7–10]. In practice,
material science experts evaluate the properties of aluminum alloys by observing and analyzing the
given metallographic images. The analysis of complex metallographic images generally requires a lot
of time and energy from experts, and suffers from poor repeatability due to the different experience of
participants [11].

In order to solve these problems, more and more scholars have begun to pay attention to research
into intelligent metallographic image processing and analysis methods [12–15]. In recent years, many
automatic metallographic image-processing and analysis methods have been proposed, which can
greatly improve the efficiency of metallographic analysis tasks. According to different functions, these
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methods can be divided into four categories: microstructural classification, segmentation, quantitative
calculation, and grain boundary extraction.

The aim of the microstructural classification method is to classify different microstructures in a
given metallographic image. For example, Decost and Holm proposed a computer vision approach
for automatic analysis and classification of microstructural image data. This approach was able to
classify microstructures into one of seven groups with greater than 80% accuracy [16]. In Gola et al.’s
paper [17], a data-mining process is presented based on a support vector machine (SVM), which was
able to distinguish between different microstructures of the two-phase steels.

Microstructural segmentation methods aim to segment the different microstructures in a given
metallographic image. For example, Jiang et al. applied an improved SLIC (simple linear iterative
clustering) algorithm and region-merging technique to automatically segment grain regions [18].
Albuquerque et al. applied multilayer perceptron and self-organizing map neural network topologies
to segment microstructures from metallographic images [19]. In Bulgarevich et al.’s paper [20], a fast
random forest-based method is proposed for reliable and automatic segmentation of typical steel
microstructures. In Albuquerque et al.’s paper [21], a neuronal network-based method is proposed for
automatic segmentation of nickel alloy secondary phases from SEM (scanning electron microscope)
images. In Papa et al.’s paper [22], the automatic segmentation of graphite particles in metallographic
images is achieved by using Otsu, SVM, Bayesian, and optimum-path forest methods. Deep learning
methods have dramatically improved conventional machine learning techniques due to their strong
ability to learn the hierarchical latent features of high-dimensional data [23,24]. These methods
have been successfully applied in metallographic image segmentation. Azimi et al. [25], proposed a
fully-convolutional neural network (FCNN) accompanied by max-voting scheme to segment some
given microstructures of low carbon steel. In Ma et al.’s paper [26], the DeepLab network was used
for Al–La alloy metallographic images segmentation. These deep-learning-based methods achieved
satisfactory results. However, they always needed a large number of hand-labeled data to achieve
accurate microstructural segmentation. In order to solve this problem, a fast automatic labeling method
is proposed to label metallographic images quickly [27].

Microstructural quantitative calculation aims to obtain the quantitative information from the
given metallographic image, such as the size, shape, and distribution of the different microstructures.
For example, in references [28] and [29], conventional digital image processing methods are used for
automatic quantification of microstructural features.

Grain boundary extraction aims to extract the grain boundaries. For example, in Xu et al.’s
paper [30], an improved mean shift method is presented for automatically extracting grain boundaries,
solving the problem of grain boundary blurring or disconnection. In Journaux et al.’s paper [31],
the directional wavelets and mathematical morphology are used for grain boundary extraction.

Differently from the existing metallographic image processing methods, in this paper, we focus our
attention on the automatic generation of language description from metallographic images. The purpose
is to automatically generate a description of the content of a given metallographic image similar to
one obtained from material science experts. It is an important part of the intelligent metallographic
image analysis system. The automatic generation of a language description of metallographic images
is a very challenging task, because it requires the combination of image processing and natural
language processing. Recently, many methods have been proposed for natural scene images [32–34].
These methods obtain multiple objects and their spatial relationships, and then generate the language
description to fit these constituent parts. These language descriptions are often general.

In contrast to natural scene images, aluminum alloy metallographic images need more specific
language description, which is useful for subsequent analysis. To address this requirement, we propose
a novel method to automatically generate specific language descriptions from aluminum alloy
metallographic images. Inspired by Antol, Wu and Kazemi et al.’s papers [35–37], we considered
the aluminum alloy metallographic image description task as a classification problem. This method
consists of two parts. The first part, feature extraction, extracts and fuses the best visual and language
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features for use in the generation of the language description of aluminum alloy metallographic images.
The second part, classification, predicts classification to generate a natural language description based
on the extracted features.

We summarize the contributions of this paper as follows.

(1) We achieved automatic generation of the language description for given aluminum alloy
metallographic images. In this framework, the aluminum alloy metallographic image description
task can be considered as a classification problem, which greatly simplifies the generation process of
language description and provides a new idea for the description of metallographic images.

(2) We used ResNet [38–40] and convolutional neural network (CNN) to extract visual features
from metallographic images. Meanwhile, we used LSTM [41], FastText [42], and TextCNN [43] to extract
language text features from given questions. Moreover, we present the comparative analysis among
these seven combination strategies applied to generate natural language description of aluminum alloy
metallographic images.

(3) The proposed method can not only obtain the language description, but also obtain the
attention map. This attention map can correctly reflect the high attention area of the given aluminum
alloy metallographic image. This is helpful for the professionals to analyze the aluminum alloy
metallographic images.

This paper is organized as follows: Section 1 introduces prior work and our contributions.
In Section 2, we introduce the proposed method, including the feature extraction scheme and
classification method. Section 3 presents the performance comparisons, attention map analysis,
and convergence analysis. The paper is concluded in Section 4.

2. The Proposed Methods

The automatic generation of the language description is an important part of the automated
analysis system of aluminum alloy metallographic images. The basic framework of our proposed
method is shown in Figure 1. It consists of two parts: feature extraction and classification. Differently
from the typical automatic generation method of language description, the input of our method
includes not only image, but also one text question associated with this image. This question is often
the most important issue, as it must generate a specific language description and be helpful for analysis
of the metallographic image. In the feature extraction scheme, we extract a metallographic image
feature and a text question feature at the same time, and then merge them into one latent feature.
The classification method is used to classify the obtained latent feature and get the specific language
description of the given aluminum alloy metallographic image. The output includes not only the
language description, but also an attention map of the given metal micrograph. This attention map is
learned automatically by the proposed deep neural network. From the attention map, we can find the
key visual features that affect the generation of language description. This will provide more valuable
information for us to analyze the aluminum alloy metallographic images. In the next section, we will
introduce the proposed method in detail.
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2.1. Feature Extraction and Fusion Scheme

The aim of the feature extraction scheme is to transform the given aluminum alloy metallographic
images and corresponding questions from image and text data space to latent feature space. For this
purpose, the deep neural network is used due to its strong ability to learn the hierarchical latent features
of given metallographic images and questions. This scheme consists of three parts: metallographic
image feature extraction, question text feature extraction, and features fusion.

For the metallographic image feature extraction, the latent visual feature zI can be computed by

zI = FI(I,θI), (1)

where I is the given metallographic image and FI represents a certain convolutional neural network
(CNN) method. θI represents the parameter in the given convolutional neural network FI. In this
paper, we used CNN and improved ResNet. The size of input image was 224× 224 pixels and the size
of image features extracted by ResNet was 14 × 14. In order to keep the 14 × 14 size of the feature
map, the convolution neural network including four convolutional layers and four pooling layers was
used to extract image features. In the training process, the parameter θI is adjusted to fit the given
metallographic image training dataset.

Similarly, in the process of question feature extraction, the latent question text feature zQ can be
computed by

zQ = FQ(Q,θQ), (2)

where Q is the given question, FQ represents a certain deep neural network method, and θQ represents
the parameter in the given deep neural network FQ. In this paper, we use improved LSTM, FastText
and TextCNN.

The latent visual feature zI and text feature zQ have different dimensions. Therefore, we needed
to design a fusion method to integrate the two features. Let θ1 be the 1× 1 dimensional convolution
layer of depth 512, we have

z∗I = CONV(zI,θ1), (3)

and
z∗Q = CONV(zQ,θ1), (4)

where CONV is the convolution operator, and z∗I and z∗Q have the same dimension. Therefore, we can
compute

z∗ = z∗I + z∗Q, (5)

Let θ2 be the 1× 1 dimensional convolution layer of depth 2, we have

w = so f tmax(CONV(ReLU(CONV(z∗,θ1)),θ2)), (6)

where so f tmax is the so f tmax function and ReLU is the rectified linear unit activation function.
The so f tmax classifier is the most popular classifier and many experiments have shown that the so f tmax
classifier can get satisfactory results. Therefore, we used the so f tmax function as the classifier in our
framework. Then we could compute

zA = Fw(w, zI), (7)

where Fw is the weighted average operator. The fused feature zU can be obtained by

zU = FC(zA, zQ), (8)

where FC is the concatenate operator. For easy description, we define

zU = FU(zI, zQ,θU), (9)
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where FU represents the fusion operator and θU is the parameter of fusion network.
In the process of feature fusion, our purpose was to fuse the visual feature with the text feature.

However, the image feature dimension was different from the text feature dimension. The dimension of
the image feature was 14× 14× 2048, the dimension of the question feature was 1× 1024. We expanded
the dimension of text so that we could make the image feature and question feature have the same
dimension. Finally, we added them up to get the fusion feature.

To summarize, the fusion strategy in a form of a pseudo-code is shown in Algorithm 1, as follows:

Algorithm 1: The fusion strategy of latent visual and text features

Inputs: Latent visual feature ZI, text feature ZQ and network parameter θU.
Output: Fused feature zU.
Step 1: Compute z∗ by Equations (3)–(5).
Step 2: Compute w by Equation (6).
Step 3: Compute zA by Equation (7).
Step 4: Compute zU by Equation (8).

In the training step, the parameters θI, θQ, and θU will be adjusted to fit the given metallographic
image training dataset.

2.2. Classification Method

The aluminum alloy metallographic image description task aims to generate the specific and
accurate language description of aluminum alloy metallographic images. In fact, in the metallographic
analysis of aluminum alloys, people often want a limited number of questions. We can list these
questions and give the corresponding answers. Therefore, we can consider the aluminum alloy
metallographic image description task as a classification problem, which can reasonably simplify the
generation process of language description. The input of classifier is the fusion feature, and the output
is the language description, as shown in Figure 1.

Let ck represent the k-th description and p(ck|z) be the probability that the feature z generates the
k-th description, which is given by the so f tmax transformation of linear functions of the feature variable,

p(ck|z;θA) =
exp(zTθ

(k)
A )∑

i=1:K exp(zTθ
(i)
A )

, (10)

and θA is the parameters of classifier. The best description can be obtained by

y = argmax
k=1:K

p(ck|z;θA) = argmax
k=1:K

p(ck|I, Q;θ), (11)

where K is the number of descriptions and the description set c = {c1, c2, . . . cK}. The network parameter
θ is defined by θ =

{
θI,θQ,θU,θA

}
, which is very important for generating the accurate language

description.
In order to deal with the problem of parameter estimation, we use the maximum likelihood

estimation (MLE) to compute the network model parameter θ. Suppose that we are given a training
dataset D = {In, Qn, tn; n = 1 : N}. Here, In is the n-th metallographic image, Qn is the n-th question,
and tn is a binary class label vector tn ∈ {0, 1}K, where

∑
k=1:K t(k)n = 1,k = 1, . . . , K. The 1 of K coding

scheme is used in label vector tn if the input {In, Qn} belongs to class ck,t(k)n = 1. For easy description,
we set I = {I1, I2, . . . , IN}, Q = {Q1, Q2, . . . , QN} and T = {t1, t2, . . . , tN}. Assume that the class labels are
independent, then the likelihood function is given by

p(I, Q, T|θ) =
∏N

n=1

∏K

k=1
p(ck|In, Qn;θ)t(k)n , (12)
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Using the maximum likelihood estimation, we can compute the network model parameters θ by
solving the following optimization problem

θ∗ = argmax
θ

{
− ln(p(I, Q, T|θ))

}
= argmin

θ

∑N

n=1

∑K

k=1
t(k)n ln p(ck|In, Qn;θ), (13)

which is known as the cross-entropy loss function for the multiclass classification problem.
The stochastic gradient descent (SGD) algorithm is used to solve this optimization problem.

To summarize, our metallographic image description method in a form of a pseudo-code is as
shown in Algorithm 2, as follows:

Algorithm 2: Generation method of the language description for given aluminum alloy metallographic image

Inputs: Training dataset D = {In, Qn, tn}, new aluminum alloy metallographic image and question {I′, Q′}.
Output: The description c∗.
Step 1: Initialization:

• Learning method: epochs, batch size, initial learning rate, weight decay.
• Network parameter θ

Step 2: Optimize θ by using D:

• while not converge do
• Compute network parameter θ∗ by solving Equation (13) using SGD algorithm.
• Update θ∗ → θ .
• end while

Step 3: Generate description by using {I
′

,Q
′
}

and θ:

• Compute the latent feature zU by using Algorithm 1.
• Compute y by solving Equation (11).
• Generate the language description c∗ = cy

3. Experimental Results

3.1. Experimental Dataset

In order to verify the proposed method, we built the experimental dataset, which contained
180 aluminum alloy metallographic images and 180 natural scene images. The natural scene images
were obtained by randomly sampling from the COCO (common objects in context) public dataset.
The aluminum alloy metallographic images were taken by metallographic microscope, and consisted of
100 5-series metallographic images and 80 6-series metallographic images. These metallographic images
included six different types of phases, such as Mg2Si, FeMnAl6, FeAl3, MnAl6, Si, and FeMnSiAl6.
Two typical aluminum alloy metallographic images are shown in Figure 2.
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In addition, in this dataset, we designed four questions and eleven language descriptions for
each image according to the practical requirements of aluminum alloy metallographic image analysis,
as shown in Table 1. In our experiment, we have eleven classes or descriptions in total, as shown
in the second row, and each class corresponded to one combination of given metallographic image
and question. In order to clarify the description of the relationship, we marked the questions and
descriptions in Table 1. For example, the first question is labeled 1 and the corresponding descriptions
is also labeled 1.

Table 1. Four questions and eleven language descriptions.

Questions (Q)

• Is it a metallographic image? (1)
• What type of metallographic image is this? (2)
• How many types of microstructures in this image? (3)
• What type of microstructure does this image contain? (4)

Descriptions (C)

• It is a natural scene image and does not contain any microstructure. (1)
• It is a metallographic image. (1)
• It is a 5-series metallographic image. (2)
• It is a 6-series metallographic image. (2)
• There are two types of microstructures in this metallographic image. (3)
• There are three types of microstructures in this metallographic image. (3)
• There are four types of microstructures in this metallographic image. (3)
• This metallographic image contains Mg2Si and FeMnAl6. (4)
• This metallographic image contains Mg2Si, FeMnAl6, and FeAl3. (4)
• This metallographic image contains Mg2Si, MnAl6, and Si. (4)
• This metallographic image contains Mg2Si, MnAl6, Si, and FeMnSiAl6. (4)

3.2. Performance Comparison

The aim of this section is to analyze the performance of the proposed description method.
Let Dv = {In, Qn, Cn} represent the test dataset and fθ represent our proposed method. We used the
accuracy (ACC) to evaluate our proposed method fθ, which has been widely used in many literatures.
It can be calculated by the following formula

ACC( fθ; Dv) =
1
N

∑N

n=1

∏
(c∗n = Cn), (14)

where
∏
(c∗n = Cn) is the indicator function defined as

∏
(c∗n = Cn) =

{
1, i f c∗n = Cn

0, else
, (15)

where c∗n is the estimated result and Cn is the ground truth.
In addition, we have implemented seven different methods on the basis of the basic proposed

framework. For easy description, we set fi, i = 1 : 7, denotes the i-th method. The networks used in
these seven methods is shown in Table 2. We set FI denotes the visual feature extraction network and
FQ denotes the text feature extraction network. In our framework, these two networks are critical.
As shown in Table 2, the first method, f1 consists of two networks, ResNet152 and LSTM1024. Similarly,
f2 consists of ResNet152 and LSTM256, f3 consists of ResNet34 and LSTM1024, f4 consists of ResNet34
and LSTM256, f5 consists of CNN and LSTM256, f6 consists of CNN and TextCNN, and f7 consists of
CNN and FastText.
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Table 2. The networks used in the seven methods.

Methods f1 f2 f3 f4 f5 f6 f7

FI

ResNet152 X X
ResNet34 X X
CNN X X X

FQ

LSTM1024 X X
LSTM256 X X X
TextCNN X
FastText X

The detailed network structure and parameter settings are shown below:

• ResNet152: 50 residual blocks (each residual block consists of three convolutional layers),
two convolutional layers, and five pooling layers.

• ResNet34: 16 residual blocks (each residual block consists of two convolutional layers),
two convolutional layers, and five pooling layers.

• CNN: four convolutional layers and four pooling layers.
• LSTM1024: Each LSTM unit consists of three gate control systems and one cell, output dimension

is 1024.
• LSTM256: Similar to LSTM1024, output dimension is 256.
• TextCNN: 100-dimensional word embedding, three convolutional layers and three pooling layers;

they are individuals.
• FastText: 100-dimensional word embedding and two linear layers.

In the process of training, we use a fixed epochs of 500 and initial learning rate of 0.001. In ResNet,
the number of residual blocks was 50 or 16. In CNN, the number of convolution layers was four and
the number of pooling layers was four. In LSTM (long short term memory), the output dimension was
1024 or 256. In TextCNN, the word embedding was 100 dimensions, there were three convolutional
layers and the three pooling layers. In FastText, the word embedding was 100 and the linear layers
was two. Moreover, we used the SGD optimizer with L2 regularization. The weight decay was 0.02.
It could accelerate the training process of the model.

In experiments, we used the cross-validation method to ensure the accuracy of the evaluation
results. We divide dataset D into six mutually exclusive subsets with the same size, D = D1 ∪D2 ∪

D3 ∪D4 ∪D5 ∪D6 and Di ∩D j = φ(i , j). We used five subsets as the training set and the remaining
subset as the test set, and then got six experimental results, as shown in the second to seventh columns
in Table 3.

Table 3. The ACC comparison among the seven different methods.

ACC 1 2 3 4 5 6 Average

f1 0.87461 0.99168 0.99179 0.99140 0.95819 0.96650 0.96236
f2 0.87538 0.99167 0.99179 0.99173 0.95808 0.96647 0.96252
f3 0.87216 0.99123 0.99152 0.99917 0.95824 0.96680 0.96319
f4 0.87527 0.99146 0.99140 0.99157 0.95841 0.96630 0.96241
f5 0.86434 0.99191 0.97439 0.98305 0.95832 0.95028 0.95371
f6 0.87059 0.99180 0.99030 0.98471 0.95825 0.94962 0.95754
f7 0.86858 0.99168 0.98622 0.98766 0.95796 0.95076 0.95714

The last column in the Table 3 shows the average of six experiments. The first row denotes the
experiment number. From these experimental results, we can see that all the seven methods had more
than 90% accuracy, and the third method f3 (ResNet34 and LSTM1024) had the best average accuracy.
Therefore, we can conclude that the proposed method can accurately generate the language description
of the aluminum alloy metallographic image. In addition, the box plots of experiment results obtained
by the seven methods are shown in Figure 3.
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Training 

Time 
1 2 3 4 5 6 Average  

1f  
27 min 

25.9 s 

35 min 

0.6 s 

34 min 

4.4 s 

34 min 

5.6 s 

35 min 

17.3 s 

34 min 

35.7 s 

33 min  

4.8 s 

2f  
24 min 

12.4 s 

33 min 

51.1 s 

26 min 

28.1 s 

32 min 

3.6 s 

32 min 

46.8 s 

33 min 

2.2 s 

30 min  

24.0 s 

3f  
16 min 

12.4 s 

17 min 

14.6 s 

17 min 

49.1 s 

16 min 

47.8 s 

16 min 

52.6 s 

16 min 

12.5 s 

16 min 

51.5 s 

4f  
14 min 

32.5 s 

14 min 

26.8 s 

15 min 

58.6 s 

14 min 

40.2 s 

14 min 

14.6 s 

14 min 

30.6 s 

14 min 

43.9 s 

5f  
48 min 
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49 min 

4.2 s 

49 min 

17.5 s 

44 min 

23.3 s 

48 min 

4.1 s 

47 min 

40.5 s 

47 min 

54.6 s 

6f  
35 min 

17.4 s 

38 min 

44.2 s 

40 min 

2.1 s 

50 min 

12.1 s 

45 min 

37.7 s 

45 min 

4.3 s 

40 min 

57.1 s 

7f  
46 min 

9.6 s 

40 min 

31.5 s 

41 min 

56.0 s 

41 min 

56.9 s 

41 min 

16.4 s 

38 min 

50.9 s 

41 min 

46.9 s 

Figure 3. Box plot of experimental results obtained by the seven methods.

In Figure 3, the red plus sign denotes outlier and red line denotes median. From Figure 3, we can
observe: (1) the outliers are caused by the first experiment, so we compute the median without using
outliers, (2) all median values are concentrated between 0.96635 and 0.97907, and the length of the
interval is less than 0.013, and (3) the experimental results are mainly distributed between 0.94962 and
0.99917, and the length of the interval is less than 0.050. Therefore, we can conclude that the proposed
method has good robustness.

In addition, we randomly divided the dataset into six mutually-exclusive subsets with the same
size for the experiment, this is 6-fold cross validation. In this way, we could improve the stability of the
model. However, the dataset was randomly divided, which may have led to incomplete classes of some
datasets. Therefore, this cross validation method leads to some outliers. For example, from Table 3 and
Figure 3, we can see that dataset 1 does not contain all classes.

The results of training time of the seven different methods are shown in Table 4. We can see that
the training time for the third and fourth methods were both less than 20 minutes.

Table 4. Training time comparison among seven different methods.

Training
Time 1 2 3 4 5 6 Average

f1
27 min
25.9 s

35 min
0.6 s

34 min
4.4 s

34 min
5.6 s

35 min
17.3 s

34 min
35.7 s

33 min
4.8 s

f2
24 min
12.4 s

33 min
51.1 s

26 min
28.1 s

32 min
3.6 s

32 min
46.8 s

33 min
2.2 s

30 min
24.0 s

f3
16 min
12.4 s

17 min
14.6 s

17 min
49.1 s

16 min
47.8 s

16 min
52.6 s

16 min
12.5 s

16 min
51.5 s

f4
14 min
32.5 s

14 min
26.8 s

15 min
58.6 s

14 min
40.2 s

14 min
14.6 s

14 min
30.6 s

14 min
43.9 s

f5
48 min
56.6 s

49 min
4.2 s

49 min
17.5 s

44 min
23.3 s

48 min
4.1 s

47 min
40.5 s

47 min
54.6 s

f6
35 min
17.4 s

38 min
44.2 s

40 min
2.1 s

50 min
12.1 s

45 min
37.7 s

45 min
4.3 s

40 min
57.1 s

f7
46 min

9.6 s
40 min
31.5 s

41 min
56.0 s

41 min
56.9 s

41 min
16.4 s

38 min
50.9 s

41 min
46.9 s
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3.3. Attention Map Analysis

Our method generates not only the language description, but also an attention map of a given
metal micrograph. In this section, we will analyze the importance of attention images. Figure 4 shows
an example of an attention map experimental result.

The attention map is learnt automatically by the proposed deep neural network and can correctly
reflect the high attention area of the given aluminum alloy metallographic image. It is a probability map
which is extracted from a convolutional neural network. In our network, we sent the fusion feature
to a convolutional neural network and we could get the attention map. The process was as follows:
(1) we used a two-layer convolution network to process the fusion feature and get two initial attention
maps, (2) we averaged these two attention maps in pixels to get the final attention map and transform
the pixel value into probability value, and (3) the attention map was processed by pseudo-color.
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Figure 4. An example of an attention map experimental result.

The left figure shows the system input, which included the given aluminum alloy metallographic
image and question of interest. The output includes the attention map and language description, as
shown in the middle figure. In the attention map, the red color denotes the regions with high attention.
For convenient analysis, we overlie the attention map on the original image, as shown in the right one.
From Figure 4, we can observe that the main microstructures are distributed in the regions with high
attention. This verifies the effectiveness of attention maps. Therefore, we can conclude that attention
maps are helpful for the analysis of aluminum alloy metallographic images.

3.4. Convergence Analysis

The aim of this experiment is to analyze the convergence of the proposed framework. The loss
and accuracy curves with times for seven different methods are shown in Figure 5. From Figure 5,
we can observe that these seven methods can converge, and that methods f1, f2, f3, and f4 have better
convergence speed than the other three methods. This verifies the convergence of the proposed methods.
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4. Conclusions

In this paper, we propose a basic framework to generate the language description for aluminum
alloy metallographic image. This framework is considered as a classification problem and includes
feature extraction and classification. Using this basic framework, we implemented seven different
methods to generate the language description of aluminum alloy metallographic images. A large
number of experimental results show that this framework can effectively accomplish the given tasks
and has good convergence. In the future, we plan to investigate the use of semantic segmentation of
metallographic image for further improvement. In addition, we are also interested in the use of high
level semantic priors of microstructures.

Author Contributions: Conceptualization, D.C. and Y.L.; methodology, D.C. and Y.L.; software, Y.L.; validation,
Y.L. and F.L.; formal analysis, D.C.; investigation, D.C.; resources, S.L.; data curation, Y.L. and F.L.; writing—original
draft preparation, D.C.; writing—review and editing, D.C. and Y.L.; visualization, Y.L and Y.C.; supervision,
S.L. and Y.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China under Grant 2017YFB0306400
and the National Natural Science Foundation of China under Grant 61773104.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hirsch, J.; Al-Samman, T. Superior light metals by texture engineering: Optimized aluminum and magnesium
alloys for automotive applications. Acta Mater. 2013, 61, 818–843. [CrossRef]

2. Zhang, J.L.; Song, B.; Wei, Q.S.; Bourell, D.; Shi, Y.S. A review of selective laser melting of aluminum alloys:
Processing, microstructure, property and developing trends. J. Mater. Sci. Technol. 2019, 35, 270–284.
[CrossRef]

3. Kadleckova, M.; Minarik, A.; Smolka, P.; Mracek, A.; Wrzecionko, E.; Novak, L.; Musilova, L.; Gajdosik, R.
Preparation of Textured Surfaces on Aluminum-Alloy Substrates. Materials 2019, 12, 109. [CrossRef]

4. Heinz, A.; Haszler, A.; Keidel, C. Recent development in aluminium alloys for aerospace applications.
Mater. Sci. Eng. A 2000, 280, 102–107. [CrossRef]

5. Du, Y.J.; Damron, M.; Tang, G. Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates.
Progress Org. Coat. 2001, 41, 226–232.

6. Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of
high-strength aluminium alloys. Nature 2017, 549, 365–369. [CrossRef]

7. Girault, E.; Jacques, P.; Harlet, P. Metallographic Methods for Revealing the Multiphase Microstructure of
TRIP-Assisted Steels. Mater. Charact. 1998, 40, 111–118. [CrossRef]

8. Roy, N.; Samuel, A.M.; Samuel, F.H. Porosity formation in AI9 Wt Pct Si3 Wt Pct Cu alloy systems:
Metallographic observations. Metall. Mater. Trans. A 1996, 27, 415–429. [CrossRef]

http://dx.doi.org/10.1016/j.actamat.2012.10.044
http://dx.doi.org/10.1016/j.jmst.2018.09.004
http://dx.doi.org/10.3390/ma12010109
http://dx.doi.org/10.1016/S0921-5093(99)00674-7
http://dx.doi.org/10.1038/nature23894
http://dx.doi.org/10.1016/S1044-5803(97)00154-X
http://dx.doi.org/10.1007/BF02648419


Symmetry 2020, 12, 771 12 of 13

9. Rohatgi, A.; Vecchio, K.S.; Gray, G.T. A metallographic and quantitative analysis of the influence of stacking
fault energy on shock-hardening in Cu and Cu–Al alloys. Acta Mater. 2001, 49, 427–438. [CrossRef]

10. Rajasekhar, K.; Harendranath, C.S.; Raman, R. Microstructural evolution during solidification of austenitic
stainless steel weld metals: A color metallographic and electron microprobe analysis study. Mater. Charact.
1997, 38, 53–65. [CrossRef]

11. Tamadon, A.; Pons, D.J.; Sued, K.; Clucas, D. Development of Metallographic Etchants for the Microstructure
Evolution of A6082-T6 BFSW Welds. Metals 2017, 7, 423. [CrossRef]

12. Moreira, F.D.; Xavier, F.G.; Gomes, S.L.; Santos, J.C.; Freitas, F.N.; Freitas, R.G. New Analysis Method
Application in Metallographic Images through the Construction of Mosaics via Speeded up Robust Features
and Scale Invariant Feature Transform. Materials 2015, 8, 3864–3882.

13. Paulic, M.; Mocnik, D.; Ficko, M. Intelligent system for prediction of mechanical properties of material based
on metallographic images. Teh. Vjesn.—Tech. Gaz. 2015, 22, 1419–1424.

14. Povstyanoi, O.Y.; Sychuk, V.A.; Mcmillan, A. Metallographic Analysis and Microstructural Image Processing
of Sandblasting Nozzles Produced by Powder Metallurgy Methods. Powder Metall. Metal Ceram. 2015, 54,
234–240. [CrossRef]

15. Chowdhury, A.; Kautz, E.; Yener, B.; Lewis, D. Image driven machine learning methods for microstructure
recognition. Comput. Mater. Sci. 2016, 123, 176–187. [CrossRef]

16. DeCost, B.L.; Holm, E.A. A computer vision approach for automated analysis and classification of
microstructural image data. Comput. Mater. Sci. 2015, 110, 126–133. [CrossRef]

17. Gola, J. Advanced microstructure classification by data mining methods. Comput. Mater. Sci. 2018, 148,
324–335. [CrossRef]

18. Jiang, F.; Gu, Q.; Hao, H. A method for automatic grain segmentation of multi-angle cross-polarized
microscopic images of sandstone. Comput. Geosci. 2018, 115, 143–153. [CrossRef]

19. De Albuquerque, V.H.; de Alexandria, A.R.; Cortez, P.C.; Tavares, J.M. Evaluation of multilayer perceptron and
self-organizing map neural network topologies applied on microstructure segmentation from metallographic
images. NDT E Int. 2009, 42, 644–651. [CrossRef]

20. Bulgarevich, S. Pattern recognition with machine learning on optical microscopy images of typical
metallurgical microstructures. Sci. Rep. 2018, 8, 2078. [CrossRef]

21. De Albuquerque, V.H.; Silva, C.C.; Menezes, T.I.; Farias, J.P.; Tavares, J.M. Automatic evaluation of nickel
alloy secondary phases from sem images. Microsc. Res. Tech. 2011, 74, 36–46. [CrossRef] [PubMed]

22. Papa, J.P.; Nakamura, R.Y.; De Albuquerque, V.H.; Falcão, A.X.; Tavares, J.M. Computer techniques towards
the automatic characterization of graphite particles in metallographic images of industrial materials. Expert
Syst. Appl. 2013, 40, 590–597. [CrossRef]

23. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
24. Bengio, Y.; Goodfellow, J.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016.
25. Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Mücklich, F. Advanced steel microstructure classification by

deep learning methods. Sci. Rep. 2018, 8, 2128. [CrossRef] [PubMed]
26. Ma, B.; Ban, X.; Huang, H.; Chen, Y.; Liu, W.; Zhi, Y. Deep learning-based image segmentation for al-la alloy

microscopic images. Symmetry 2018, 10, 107. [CrossRef]
27. Zhang, S.; Chen, D.; Liu, S.; Zhang, P.; Zhao, W.C. Aluminum alloy microstructural segmentation method

based on simple noniterative clustering and adaptive density-based spatial clustering of applications with
noise. J. Electron. Imaging 2019, 28, 33035. [CrossRef]

28. Campbell, A.; Murray, P.; Yakushina, E.; Marshall, S.; Ion, W. New methods for automatic quantification of
microstructural features using digital image processing. Mater. Design 2018, 141, 395–406. [CrossRef]

29. Campbell, A.; Murray, P.; Yakushina, E.; Marshall, S.; Ion, W. Automated microstructural analysis of titanium
alloys using digital image processing. IOP Conf. Ser. Mater. Sci. Eng. 2017, 179, 012011. [CrossRef]

30. Zhenying, X.; Jiandong, Z.; Qi, Z.; Yamba, P. Algorithm Based on Regional Separation for Automatic Grain
Boundary Extraction Using Improved Mean Shift Method. Surf. Topogr. Metrol. Prop. 2018, 6, 25001.
[CrossRef]

31. Journaux, S.; Pierre, G.; Thauvin, G. Evaluating creep in metals by grain boundary extraction using directional
wavelets and mathematical morphology. J. Mater. Process. Technol. 2001, 117, 132–145. [CrossRef]

32. Karpathy, A.; Fei-Fei, L. Deep Visual-Semantic Alignments for Generating Image Descriptions. IEEE Trans.
Pattern Anal. Mach. Intell. 2014, 39, 664–676.

http://dx.doi.org/10.1016/S1359-6454(00)00335-9
http://dx.doi.org/10.1016/S1044-5803(97)80024-1
http://dx.doi.org/10.3390/met7100423
http://dx.doi.org/10.1007/s11106-015-9705-8
http://dx.doi.org/10.1016/j.commatsci.2016.05.034
http://dx.doi.org/10.1016/j.commatsci.2015.08.011
http://dx.doi.org/10.1016/j.commatsci.2018.03.004
http://dx.doi.org/10.1016/j.cageo.2018.03.010
http://dx.doi.org/10.1016/j.ndteint.2009.05.002
http://dx.doi.org/10.1038/s41598-018-20438-6
http://dx.doi.org/10.1002/jemt.20870
http://www.ncbi.nlm.nih.gov/pubmed/21181708
http://dx.doi.org/10.1016/j.eswa.2012.07.062
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1038/s41598-018-20037-5
http://www.ncbi.nlm.nih.gov/pubmed/29391406
http://dx.doi.org/10.3390/sym10040107
http://dx.doi.org/10.1117/1.JEI.28.3.033035
http://dx.doi.org/10.1016/j.matdes.2017.12.049
http://dx.doi.org/10.1088/1757-899X/179/1/012011
http://dx.doi.org/10.1088/2051-672X/aab73b
http://dx.doi.org/10.1016/S0924-0136(01)01057-3


Symmetry 2020, 12, 771 13 of 13

33. Zhao, G.; Ahonen, T.; Matas, J.; Pietikainen, M. Rotation-Invariant Image and Video Description with Local
Binary Pattern Features. IEEE Trans. Image Process. 2011, 21, 1465–1477. [CrossRef]

34. Kulkarni, G.; Premraj, V.; Ordonez, V.; Dhar, S.; Li, S.; Choi, Y.; Berg, A.C.; Berg, T.L. BabyTalk: Understanding
and Generating Simple Image Descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 35, 2891–2903.
[CrossRef]

35. Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zitnick, C.L.; Parikh, D. Vqa: Visual question answering.
Int. J. Comput. Vis. 2015. [CrossRef]

36. Wu, Q.; Teney, D.; Wang, P.; Shen, C.; Dick, A.; van den Hengel, A. Visual Question Answering: A Survey of
Methods and Datasets. Comput. Vis. Image Underst. 2017, 163, 21–40. [CrossRef]

37. Kazemi, V.; Elqursh, A. Show, Ask, Attend, and Answer: A Strong Baseline for Visual Question Answering.
arXiv 2017, arXiv:1704.03162.

38. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR); IEEE Computer Society: Washington DC, USA, 2016.

39. Kwan, C.; Chou, B.; Yang, J.; Rangamani, A.; Tran, T.; Zhang, J.; Etienne-Cummings, R. Deep Learning-Based
Target Tracking and Classification for Low Quality Videos Using Coded Aperture Cameras. Sensors 2019,
19, 3702. [CrossRef]

40. Kwan, C.; Chou, B.; Yang, J.; Tran, T. Deep Learning Based Target Tracking and Classification for Infrared
Videos Using Compressive. J. Signal Inf. Process. 2019, 10, 167. [CrossRef]

41. Gers, F. Long Short-Term Memory in Recurrent Neural Networks. Ph.D. Thesis, Swiss Federal Institute of
Technology, Lausanne, Switzerland, 2001. [CrossRef]

42. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of Tricks for Efficient Text Classification. In European
Association of Computational Linguistics (EACL); Association for Computational Linguistics: Stroudsburg, PA,
USA, 2017. [CrossRef]

43. Kim, Y. Convolutional Neural Networks for Sentence Classification. arXiv 2014, arXiv:1408.5882.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIP.2011.2175739
http://dx.doi.org/10.1109/TPAMI.2012.162
http://dx.doi.org/10.1007/s11263-016-0966-6
http://dx.doi.org/10.1016/j.cviu.2017.05.001
http://dx.doi.org/10.3390/s19173702
http://dx.doi.org/10.4236/jsip.2019.104010
http://dx.doi.org/10.5075/epfl-thesis-2366
http://dx.doi.org/10.18653/v1/E17-2068
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Proposed Methods 
	Feature Extraction and Fusion Scheme 
	Classification Method 

	Experimental Results 
	Experimental Dataset 
	Performance Comparison 
	Attention Map Analysis 
	Convergence Analysis 

	Conclusions 
	References

