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Abstract: Nanofluids are a novel class of heat transfer fluid that plays a vital role in industries.
In mathematical investigations, these fluids are modeled in terms of traditional integer-order partial
differential equations (PDEs). It is recognized that traditional PDEs cannot decode the complex
behavior of physical flow parameters and memory effects. Therefore, this article intends to study the
mixed convection heat transfer in nanofluid over an inclined vertical plate via fractional derivatives
approach. The problem in hand is modeled in connection with Atangana–Baleanu fractional
derivatives without singular and local kernel with a strong memory. Human blood is considered as
base fluid and carbon nanotube (CNTs) (single-wall carbon nanotubes (SWCNTs) and multi-wall
carbon nanotubes (MWCNTs)) are dispersed into it to form blood-CNTs nanofluid. The nanofluid
is considered to flow in a saturated porous medium under the influence of an applied magnetic
field. The exact analytical expressions for velocity and temperature profiles are acquired using the
Laplace transform technique and plotted in various graphs. The empirical results indicate that the
memory effect decreases with increasing fractional parameters in the case of both temperature and
velocity profiles. Moreover, the temperature profile is higher for blood SWCNTs because of higher
thermal conductivity whereas this trend is found opposite in the case of velocity profile due to
densities difference.

Keywords: enhance heat transfer; nanofluids; CNTs; fractional derivatives; Laplace transform

1. Introduction

In mixed convection regimes, enhanced heat transfer is significant for energy-saving operations
in industries. The primary constraint of traditional heat transfer fluid is poor thermal conductivity
which influences the mixed convection process [1]. Overcoming the flaws of traditional heat transfer
fluids, nanofluid is a novel category of fluids that play its role in altering thermal features of traditional
fluids as illustration water, oils, alcohol, and ethylene glycol [2,3]. Surveys have indicated that the
usage of nanofluids results in the progress of the execution of heat coolant of electronics and heat
exchangers [4–6]. The procedure of heat transfer alteration can be taken into account by use of a
porous medium, employment of magnetic field, and amending the thermophysical properties through
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nanomaterials (for instance, oxide, silica, carbid, metals, non-metals, graphene, and carbon nano tubes
(CNTs) nanometer-sized particles) [7]. The contemporary use of nanofluids and forces, for example,
magnetic fields and porous media to strengthen the thermal properties of heat exchangers, have been
debated in the literature.

Alzahrani et al. [8] studied single-wall carbon nanotubes (SWCNTs) and multi-wall carbon
nanotubes (MWCNT) in water as a base fluid within parallel horizontal rotating plates. The inertia
characteristics, microstructure, heat absorption/consumption, and thermal radiation are assumed.
The problem is modeled in the form of partial differential equations (PDEs), then is transformed into
ordinary differential equations (ODEs) and handled with the Homotopy Analysis Method (HAM).
It was indicated that the velocity profile decreases with increasing volume concentration whereas
the temperature profiles behave in a reverse way. Gul et al. [9] examined the flow of water-based
SWCNT and MWCNT nanofluids with variable temperature over a needle. The principal equations
of the problem were modeled in the form of Caputo fractional derivatives and solved for numerical
solutions. They pointed out that the impact of numerous physical flow parameters is restricted in the
case of traditional derivatives. However, in the case of Caputo fractional derivatives, the influence of
these parameters is diverse at contrary intervals. Hassanan et al. [10] investigated the flow of oil-CNT
(SWCNT and MWCNT) nanofluid over a stretching sheeting along with magnetohydrodynamic
(MHD) and radiations effects. It was noticed that energy enhancement in oil-SWCNTs was higher than
oil-MWCNTs due to high thermal conductivity, but the trend was opposite for velocity profiles due to
the differences in densities. Jabbari et al. [11] analyzed the viscosity of water-based SWCNTs by means
of equilibrium molecular dynamics simulation. The viscosity variation was made for 0.125%–0.734%
SWCNTs nanofluids at temperature 25–65 ◦C. They reported that the viscosity of nanofluid increases
with a high-volume fraction of SWCNTs at low temperatures. Kumam et al. [12] carried out entropy
generation and the second law of thermodynamics application for kerosene oil-SWCNTs and kerosene
oil-MWCNTs flow in a rotating microchannel. They considered source/sink, radiation, and magnetic
field effect. Their results shown that the velocity function reduced with Reynolds number and entropy
generation increases with Reynolds and Brinkman numbers. The interesting applications of CNTs
nanofluid can be found in review papers [13–15] and the reference therein.

CNTs feature considerable mechanical and electrical thermal conduction forming a hexagonal
cylinder network of carbon atoms 100 nm in length and 1 nm in the bore. The major application of CNTs
is listed as additives in polymers, nanolithography, hydrogen storage, supercapacitors, lithium battery
anodes, and drug delivery [16]. Murshed [17] mentioned in the review paper that CNT nanofluids
have six times higher thermal conductivity compared to other materials at ambient temperature.
CNT nanofluids are sufficiently investigated in the literature (see, for example, Xie et al. [18],
Sarafraz et al. [19], Selimefendigil, and Öztop [20], Ghazali et al. [21] and Abdeen et al. [22]) but
without memory and heredity effects. This is since, in mathematical studies, the traditional models
with integer-order PDEs are used. These models can be improved by using the applications of
fractional derivatives. It is approved in the previous literature that fractional derivative models
can explain efficiently the real-world problems comprising electrical networks, diffusive transport,
probability, electromagnetic theory, rheology, viscoelastic materials, and fluid flow [23–29]. In the
literature, several approaches for fractional derivatives are presented, but the most common are the
Riemann–Liouville [30], the Caputo [31,32], the Caputo–Fabrizio [33] and Atangana–Baleanu [34]
fractional derivatives approaches. Among them, the most recent is Atangana–Baleanu fractional
derivative without local and singular kernel with strong heredity and memory effect.

For the problem in hand, the Atangana–Baleanu fractional derivative approach is chosen due
to non-locality, non-singularity, and strong heredity and memory effect. A fractional Casson fluid
model is developed for human blood CNT nanofluid associated with physical initial and boundary
conditions. The model is solved for exact solutions via the Laplace transform technique. The analytical
results are displayed in graphs with physical arguments.
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2. Description of the Proposed Model

Consider the unsteady mixed convection flow of blood-based CNT nanofluid over an inclined
vertical plate with isothermal temperature T∞(room temperature/ambient temperature). The half-space
of the plate is packed with human blood with SWCNTs and MWCNTs nanofluids saturated in a porous
medium. The nanofluid is assumed to be electrically conducting. Hence, a magnetic field σn f B0

2 sin(γ)
of strength B0 and direction γ is applied to the flow direction. The induced magnetic field due to
polarization is ignored because of a very small Reynolds number. At the beginning at t ≤ 0, the system
is in the rest position. However, after the short interval of time t = 0+, the inclined plate oscillates
with U0H(t)cos(ωt) and the ambient temperature of the plate T∞ rises to TW . By virtue of a rise in
temperature and oscillation of the plate, the mixed convection uncoils and the nanofluid starts motion
in the upper direction, as exhibited in Figure 1.
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Figure 1. Configuration and coordinates system.

In the proposed problem, the Casson fluid model is subjected to blood and CNT nanoparticles
are dispersed into it for enhanced heat transfer. The rheological relation and Cauchy stress tensor of
Casson fluid is given as [35,36]

T =

 2
(
µB +

pr
√

2 π

)
ei j, π > πc

2
(
µB +

pr
√

2 πc

)
ei j, π < πc

, (1)

where µB is the plastic dynamic viscosity, pr is the yield stress and πc is the critical values of the
product of µb, and pr. By virtue of Equation (1) along with the momentum equation, the Maxwell set of
equations [37], Darcy’s law [38], Fourier law of heat conduction [39], and Boussinesq approximation [40]
the governing equations of the proposed problem are given by [36]

ρn f
∂u(y,t)
∂t = µn f

(
1 + 1

β0

)∂2u(y,t)
∂y2 −

{
σn f B0

2 sinγ+
(
1 + 1

β0

)µn fϕ

k

}
u(y, t)

+g(ρβT)n f (T(y, t) − T∞) cos δ,
(2)

(
ρCp

)
n f

∂T(y, t)
∂t

= kn f
∂2T(y, t)
∂y2 , (3)
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subject to the following initial and boundary conditions

u(y, 0) = 0, T(y, 0) = T∞ ,∀ y ≥ 0, (4)

u(0, t) = U0H(t) cosωt, T(0, t) = TW , for t > 0
u(y, t)→ 0, T(y, t)→ T∞; y→∞, for t > 0

}
, (5)

where ρn f is the density, u(y, t) is the velocity, µn f is the dynamic viscosity, β0 is the Casson fluid
parameter, σn f is the electrical conductivity, ϕ(0 < ϕ < 1) is the porosity, k is the permeability, g is

the gravitational acceleration, βT is the thermal expansion, T(y, t) is the temperature,
(
Cp

)
n f

is the

heat capacitance and kn f is the thermal conductivity. The subscript n f is used for nanofluid where
the subscripts f and s are used for base fluid and solid nanoparticles respectively. The mathematical
models for the thermophysical properties of nanofluid are given in Table 1 whereas its numerical
values are given in Table 2.

Table 1. Model for thermophysical properties of nanofluid [41].

Physical Quantity Mathematical Model

Density ρn f = (1−φ)ρ f + φρs

Dynamic viscosity µn f =
µ f

(1−φ)2.5

Electrical conductivity σn f =

1 +
3
(
σs
σ f
−1

)
φ(

σs
σ f

+2
)
−

(
σs
σ f
−1

)
φ

σ f

Thermal expansion (ρβT)n f = (1−φ)(ρβT) f + φ(ρβT)s

Heat capacitance
(
ρCp

)
n f

= (1−φ)
(
ρCp

)
f
+ φ

(
ρCp

)
s

Thermal conductivity kn f =

 (1−φ)+2φ ks
ks−k f

ln
ks−k f

2k f

(1−φ)+2φ ks
ks−k f

ln
ks+k f

2k f

k f

Table 2. Values of thermophysical properties of base fluid and nanoparticles [36].

Material
Base Fluid Nanoparticles

Human Blood SWCNTs MWCMTs

ρ
(
kg/m3

)
1053 2600 1600

Cp(J/kg K) 3594 425 796
k(W/m K) 0.492 6600 3000
βT × 10−5(K−1) 0.8 10−6

−10−7 1.9 × 10−4

σ 0.18 21 44

3. Methodology

In this study, the Laplace transform is used to acquire exact solutions of the considered problem.
Primarily, the proposed model is transformed into a dimensionless form with an eye to reducing
the number of variables and eradicating unity for clarity. Then, the dimensionless governing
equations are artificially transformed into time-fractional Atangana–Baleanu fractional derivatives.
The Atangana–Baleanu fractional Casson nanofluid model deals with the Laplace transform technique
to generate exact solutions for velocity and temperature profiles. The obtained results are displayed in
numerous graphs and discussed physically as presented in Figure 2.
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Now, incorporate the following dimensionless variables

u∗ =
u
u0

, y∗ =
u0

υ f
, t∗ =

u0
2

υ f
t, θ =

T − T∞
TW − T∞

into Equations (2)−(5), which yield to

φ0
∂u(y, t)
∂t

=
φ1

β

∂2u(y, t)
∂y2 −

(
φ2M sinγ+

φ3

K

)
u(y, t) + φ4Grθ(y, t) cos δ, (6)



Symmetry 2020, 12, 768 6 of 22

φ5Pr
∂θ(y, t)
∂t

= φ6
∂2θ(y, t)
∂y2 , (7)

t ≤ 0 : u(y, 0) = 0, θ(y, 0) = 0 ,∀y ≥ 0, (8)

u(0, t) = H(t) cosωt, θ(0, t) = 1, for t > 0
u(y, t)→ 0, θ(y, t)→ 0; t→∞, for t > 0

}
, (9)

where

β =
β0

1 + β0
, M =

ν fσ f B0
2

ρ f U02 , K =
ku2

0

υ fϕ
Gr =

g(υβT) f (TW − T∞)

u03 , Pr =
(
µCp

k

)
f

φ0 =
(
1−φn f

)
+
φρs

ρ f
, φ1 =

1
1−φ

, φ2 =
σhn f

σ f
, φ3 = (1−φ) +

φ(ρβT)s

(ρβT) f
,

φ4 = (1−φ) +
φ
(
ρCp

)
s(

ρCp
)

f

, φ5 =
kn f

k f

is the dimensionless Casson fluid parameter, magnetic number, permeability parameter, thermal
Grashof number, and Prandtl number, respectively, and φ0, φ1, φ2, φ3, φ4, and φ5 are constant terms
produced during calculi. The time-fractional form of Equations (6) and (7) is given by [42,43]

φ0
AB
D
α
t u(y, t) =

φ1

β

∂2u(y, t)
∂y2 −

(
φ2M sinγ+

φ1

K

)
u(y, t) + φ3Grθ(y, t) cos δ; 0 < α ≤ 1, (10)

φ4Pr AB
D
α
t θ(y, t) = φ5

∂2θ(y, t)
∂y2 ; 0 < α ≤ 1, (11)

where AB
D
α
t (., .) is the Atangana–Baleanu time-fractional operator defined by [34]

AB
Dτ

α f (η, τ) =
N(α)

1− α

τ∫
0

Eα

{
−α(τ− t)α

1− α

}
f ′(η, τ)dt; 0 < α ≤ 1, (12)

where

Eα(−tα) =
∞∑

K=0

(−t)αK

Γ(αK + 1)
(13)

is the non-local and non-singular Mittag–Leffler function used as the kernel in the construction of
Equation (12). The Laplace transform of Equation (12) is given by [44]

L
{
f (η, τ); q

}
=

qαL
{
f (η, τ)

}
− f (η, 0)

(1− α)qα + α
; 0 < α ≤ 1 (14)

where L
{
f (η, τ)

}
= f (η, q) is the Laplace transform of f (η, τ) in the Laplace transform domain and

f (η, 0) is the initial values of f (η, τ). It worth mentioning here that for α = 1, the model presented in
Equations (10) and (11) can be reduced back to the classical form exhibited in Equations (2) and (3)
which validated the time-fractional model proposed for CNT blood nanofluid.

4. Solutions of the Problem

The Laplace transform technique is adopted to find the exact solutions for the proposed problem.
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4.1. Solution of Energy Equation

Applying the Laplace transform to Equation (11) in the light of Equations (12) and (14) and using
the corresponding initial condition from Equations (8) yield to:

∂2θ(y, q)
∂y2 −

φ4Pr
φ5

qαθ(y, q)
(1− α)qα + α

= 0; 0 < α ≤ 1. (15)

The analytical solution of the homogeneous Equation (15) is given by:

θ(y, q) =
1
q

exp

−y

√
φ4Pr
φ5

qα

(1− α)qα + α

; 0 < α ≤ 1. (16)

Equations (16) is written in a more convenient form as:

θ(y, q) = χ(q)ψ(ξ, q; a2, a3) ; 0 < α ≤ 1, (17)

where

ψ(y, q; a2, a3) =
1
qα

exp

−y

√
a2qα

qα + a3

, (18)

χ(q) =
1

q1−α
., (19)

and

a0 =
φ4Pr
φ5

, a1 =
1

1− α
, a2 = a0a1, a3 = a1α

The solution of the energy equation in the Laplace transform domain is given in Equation (17).
Applying the inverse Laplace transform to Equation (17) yield to:

θ(y, t) =

t∫
0

χ(t− τ)ψ(y, τ; a2, a3)dτ; 0 < α ≤ 1, (20)

Equation (20) represents the final solutions of the energy equation in terms of convolution product
where:

ψ(y, t; a2, a3) = L
−1

{
ψ(y, q; a2, a3)

}
=

1
π

∞∫
0

∞∫
0
(urα sinαπ)ψ1(y, t; a2, a3) exp(−τr− urα cosαπ)drdu,

(21)

ψ1(y, t; a2, a3) = L
−1

{
1
q

exp
(
−y

√
a2q

q + a3

)}
= 1−

2a2

π

∞∫
0

sin(ys)
s(a2 + s2)

exp
(
−

a3ts2

a2 + s2

)
ds, (22)

and
χ(t) =

1
tαΓ(1− α)

, (23)

It is notable here that Equation (20) satisfies all the imposed physical conditions which validate
the present solutions.

4.2. Solutions of Momentum Equation

In this section, the same procedure of solutions as in the energy equation is acquired. The Laplace
transform technique is applied to Equation (10) and the corresponding initial conditions are used
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from Equation (8) which yield to the following non-homogeneous differential equation in the Laplace
transform domain

d2u(y, q)
dy2 −

(
b2qα + b3

qα + a3

)
u(y, q) = −

b1
q

exp

−y

√
a2qα

qα + a3

; 0 < α ≤ 1, (24)

where

b1 =
βφ3Gr cos(δ)

φ1
=
β0φ0a1

φ1
, b2 = Ke f f + b0, Ke f f =

βφ2M sinγ
φ1

+
β

K
, b0 =

β0φ0a1

φ1
, b3 = Ke f f a2.

The exact analytical solutions of Equation (24) is given by

u(y, q) = q
q2+ω2 exp

(
−y

√
b2qα+b3
qα+a3

)
+

{
b1

(
qα+a3

b4qα−b3

)}
{

1
q exp

(
−y

√
b2qα+b3
qα+a3

)
−

1
q exp

(
−y

√
a2qα

qα+a3

)}
; 0 < α ≤ 1

(25)

where
b4 = a2 − b2.

Equation (25) is written in an additional simplified and convenient form as

u(ξ, q) = q
q2+ω2 × qχ(q)Φ(y, q, b2, b3, a3) + b1

(
qα

b4qα−b3
+ b1

b4qα−b3

)
×

{
χ(q)Φ (y, q, b2, b3, a3) − θ(y, q)

}
; 0 < α ≤ 1

(26)

where

Φ(y, q, b2, b3, a3) =
1
q

exp

−y

√
b2q + b3

q + a3

. (27)

Upon taking the inverse Laplace to transform, Equation (26) takes the following form

u(y, t) = cos(ωt) ∗Φ(y, t, b2, b3, a3) +
b1
b4

{
Rα,α

( b3
b4

, t
)
+ b1Fα

( b3
b4

, t
)}

∗
{
χ(t)Φ(y, t, b2, b3, a3) − θ(y, t)

}
; 0 < α ≤ 1

(28)

where θ(y, t) is presented in Equations (20)–(23) and Rα,υ(., .) is the Lorenzo and Hartley’s function
and Fα(., .) Robotnov and Hartley’s functions are defined by which are given by [37]

Rα,υ(−m, t) =
(

qυ

qα + m

)
=
∞∑

n=0

(−m)nt(n+1)α−1−υ

Γ
{
(n + 1)α− υ

} , (29)

Fα(−m, t) =
(

1
qα + m

)
=
∞∑

n=0

(−m)nt(n+1)α−1

Γ
{
(n + 1)α

} . (30)

and the newly established function Φ(y, t, b2, b3, a3) is given by:

Φ(y, t, b2, b3, a3) = L
−1

{
Φ(y, q, b2, b3, a3)

}
=

1
π

∞∫
0

∞∫
0
(urα sin(απ))Φ1(y, t, b2, b3, a3) exp(−tr− urα cos(απ))drdu,

(31)

where:
Φ1(y, t, b2, b3, a3) = L

−1
{

1
q exp

(
−y

√
b2q+b3
q+a3

)}
= exp

(
−y
√

b2
)

−

∞∫
0

τ∫
0

y
√

b3−b2a3

2(πs)
1
2

exp(a3s) × 1
u exp

(
−

y2

4u − b2u
)
I1

{
2(u(b3 − b2a3)s)

1
2

}
duds,

(32)
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and I1(.) is the Bessel function of the first kind. Equations (20) and (31) complete the solutions of the
assumed problem. These solutions are additional reliable, flexible, and generalized which will be
discussed in the forthcoming section in detail with a physical explanation.

5. Discussion of Results

In this section, the effects of various flow parameters (for instance, fractional parameter α,
the volume concentration of CNTs φ, Casson fluid parameter β, magnetic parameter M, angle of
inclination of the magnetic field γ, the permeability of porous medium K and thermal Grashof
number Gr) are characterized in multiple figures (Figures 3–12) regarding temperature and velocity
profiles. For human blood, the Prandtl number is chosen t 21 and the impacts of all the above-stated
parameters are displayed for human blood SWCNTs and human blood MWCNTs.

Figures 3 and 4 display the implications of α on temperature and velocity profiles. These figures
show that the temperature and velocity profiles are declining for increasing values of α in both the
cases (blood SWCNTs and human blood MWCNTs.). The physical point is the higher values of α
relating to the thickness of thermal and momentum boundary layers. Higher values of α reducing
the thickness of the thermal boundary layer and therefore the temperature and velocity profiles show
a decreasing trend. The trend can be defended by the published work of Ali et al. [40,45]. Besides
this, the region of temperature and velocity profiles for 0 < α ≤ 1 is the memory of Atangana–Baleanu
fractional derivative, which leads to generality and flexibility of the results. By fixing the values of α,
the desired results can be achieved.

The repercussions of φ on temperature and velocity profiles are reported in Figures 5 and 6 for
SWCNTs and MWCNTs. The conduct of velocity and temperature profiles are reversed. This is due
to differences in thermal conductivities and densities as depicted in Tables 1 and 2. The temperature
profile involves only thermal conductivities; however, the velocity profile includes both densities
and thermal conductivities because the energy equation (Equation (3)) is partially coupled with
momentum equations (Equation (2)). φ = 0.01, 0.02, 0.03, 0.04 causes increment to the thermal
conductivity of nanofluids (SWCNT and MWCNT nanofluids); consequently, the temperature profile
increases. In the case of the velocity profile, the density dominates the thermal conductivities and for
φ = 0.01, 0.02, 0.03, 0.04 the nanofluids became denser and more viscous, and accordingly, the velocity
profile decelerates, as presented in [16,46]. In addition, Figure 7 is plotted to equate SWCNTs and
MWCNTs nanofluids in temperature and velocity profiles. This figure clearly justifies the behavior
presented in Figures 5 and 6.

Figure 8 displays the impact of β on the velocity profile. Increasing β reduces the motion of CNT
nanofluid because of the reduction in the thickness of momentum boundary layer. Figure 9 discloses
the impact of M on the velocity profile for both SWCNTs and MWCNTs. M is a dimensionless number
which is accorded with Lorentz force that counters nanofluid velocity. The higher the M higher the
Lorentz force, which resists motion. This is why velocity retarded in both the cases of CNTs with
increasing M [42]. Likewise, the inclination of a magnetic field γ weakens the impact of M which
carries off the Lorentz force. For γ = π/2 (normal magnetic field) the influence of the Lorentz force is
the strongest, as depicted in Figure 9 [43].

Figure 11 presents the effect of K on the velocity profile for both cases of CNTs. It is witnessed that
greater values of K magnifying the velocity field. This is on account of a reduction of resistance of the
porous medium and causes improvement in the thickness of momentum boundary layer. Physically,
in this view, the velocity field has enhanced [38]. Finally, Figure 12 depicts the consequences of Gr on
the velocity profile. This is the ratio of buoyancy and viscous forces. Higher Gr leads to enhancement
in buoyancy forces, which causes the induced flows to grow [35].
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Figure 6. Of φ on u(y, t) when t = 0.5, β = 0.5, M = 0.5, γ = π/2, K = 0.5 Gr = 7.0, Pr = 21 and α = 0.5.
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Figure 8. Of β on u(y, t) when t = 0.5, φ = 0.04, M = 0.5, γ = π/2, K = 0.5 Gr = 7.0, Pr = 21 and α = 0.5.



Symmetry 2020, 12, 768 16 of 22Symmetry 2019, 11, x FOR PEER REVIEW 18 of 25 

 

  

 

Figure 9. of M  on ( ),u y t  when 0.5t = , 0.5β = , 0.04φ = , / 2γ π= , 0.5K =  

7.0Gr =  , Pr 21= and 0.5α = . 

 

0 4 8
0

0.51

1.01
M=0.5
M=1.0
M=1.5
M=2.0

y-axis

V
el

oc
ity

 fi
el

d 
"u

(y
,t)

"

a( ) SWCNTs

0 4 8
0

0.51

1.01
M=0.5
M=1.0
M=1.5
M=2.0

y-axis 

V
el

oc
ity

 fi
el

d 
"u

(y
,t)

"

b( ) MWCNTs

Figure 9. Of M on u(y, t) when t = 0.5, β = 0.5, φ = 0.04, γ = π/2, K = 0.5 Gr = 7.0, Pr = 21 and α = 0.5.
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Figure 11. Of K on u(y, t) when t = 0.5, φ = 0.04 β = 0.5, M = 0.5, γ = π/2, Gr = 7.0, Pr = 21 and α = 0.5.
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6. Concluding Remarks

In the study, a fractional initial and boundary values problem is modeled for the flow of human
blood CNT nanofluid over an inclined plate. The effects of an inclined magnetic field and saturated
porous medium are considered. The exact analytical solutions for temperature and velocity fields are
drafted via the Laplace transform technique. Exact solutions are displayed in various graphs and
discussed with physical arguments. The main findings extracted from this study are as follow:
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• The fractional solutions for temperature and velocity fields are more general, reliable, and flexible,
with memory and heredity properties that can be numerically reduced for any values of 0 < α ≤ 1.

• The temperature profile increase with an increasing volume fraction of CNTs and decreases with
increasing fractional parameters (for both cases of CNTs) because of variation in the thermal
boundary layer.

• The velocity profile increases with increased permeability of the porous medium and thermal
Grashof number, due to the improvement in the velocity boundary layer.

• Nanofluid motion (SWCNTs and MWCTs) retarded with increment in volume concentration
of CNTs and magnetic parameters. The normal magnetic field has the strongest resistance to
the motion.

• The trends and features of all the physical flow parameters are in excellent agreement with the
published work.
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