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Abstract: Bi-level programming problem (BLPP) is an optimization problem consists of two
interconnected hierarchical optimization problems. Solving BLPP is one of the hardest tasks facing the
optimization community. This paper proposes a modified genetic algorithm and a chaotic search to
solve BLPP. Firstly, the proposed algorithm solves the upper-level problem using a modified genetic
algorithm. The genetic algorithm has modified with a new selection technique. The new selection
technique helps the upper-level decision-maker to take an appropriate decision in anticipation of a
lower level’s reaction. It distinguishes the proposed algorithm with a very small number of solving
the lower-level problem, enhances the algorithm performance and fasts convergence to the solution.
Secondly, a local search based on chaos theory has applied around the modified genetic algorithm
solution. Chaotic local search enables the algorithm to escape from local solutions and increase
convergence to the global solution. The proposed algorithm has evaluated on forty different test
problems to show the proposed algorithm effectiveness. The results have analyzed to illustrate the new
selection technique effect and the chaotic search effect on the algorithm performance. A comparison
between the proposed algorithm results and other state-of-the-art algorithms results has introduced
to show the proposed algorithm superiority.
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1. Introduction

Optimization problems have classified into single-level optimization problems and multi-level
optimization problems. In single-level optimization problems, there is just one decision-maker tries to
find an optimal solution to an optimization problem [1,2]. In multi-level optimization problems, there
are hierarchically nested optimization problems. Every optimization problem of these hierarchical
nested systems has its decision-maker that tries to find his/her optimal solution [3,4]. Many applications
appeared in the real-world in engineering design, traffic problems, problems, economic policy and
so on are multi-level optimization problems [5–9]. Multi-level optimization problems consist of “N”
optimization problems. The first problem is the upper-level problem. The leader is the upper-level
decision-maker. The next problems are lower-level problems. The followers are the lower levels
decision-makers. A leader knows the followers’ objective function and constraints while the followers
may know or not leader’s objective functions and constraints. Leaders and followers are independent
and often have conflicting objectives although their decisions affect each other. The hierarchical
decision process starts when the leader takes his/her decisions. Then, the first follower takes his/her
own decisions upon the leader’s decisions and so on for the remainder followers; every follower
determines his/her own decisions upon his/her upper’s level decisions. The followers’ decisions affect
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the leader’s solution. Bi-level programming problems is a multi-level programming problem with two
levels: upper-level programming problem and lower-level programming problem.

Researchers have given great attention to solving single-level optimization problems [10–15].
Bi-level programming problems haven’t gained the same attention. Small relatively studies shave
proposed to handle bi-level programming problem (BLPP). The cause of the lack of studies is difficulties
in solving such problems. Solving BLMPP needs to solve the lower-level programming problem to know
the feasible space of the upper-level problem. Needing to solve the lower-level programming problem
increases BLPP solution requirements. It produces difficulties in solving such as disconnectedness
and non-convexity even to the simple problems. Such difficulties make BLPP is considered one of the
strongly NP-hard problems [9]. BLPP solving techniques are divided into classical techniques and
evolutionary techniques. Classical techniques are as descent direction method, Kth best algorithm,
exact penalty function etc. [10,11]. Classical techniques are limited to specified BLPP. It can treat only
with convex differentiable problems. In [12] Liu et al. proposed a survey on multilevel optimization
problems and its solution techniques. Lu et al. compare between different solution techniques
and indicated that using classical techniques to solve BLPP isn’t available to various multilevel
programming problems especially for large-scale problems and it can be used only to specified types of
BLPP problems. Wang et al. introduced an evolutionary algorithm based on the classical technique for
solving a special type of BLPP [13]. They present a genetic algorithm based on the simplex method for
solving the linear-quadratic bilevel programming problem. Firstly, they apply Kuhn–Tucker conditions
on the lower level programming to transform the problem a single level problem. Following this, they
apply the genetic algorithm based on the simplex method on the single level problem. Their technique
treats only with specified BLPP, linear-quadratic bi-level programming problem.

Evolutionary techniques are inspired by the natural behavior of molecular, biological,
neurobiological systems and a swarm of insects, etc. Evolutionary techniques are as follows: simulated
annealing, genetic algorithms, ant colony optimization, neural-network-based techniques and particle
swarm optimization [14–22]. The evolutionary techniques have an advantage than classical methods
that it can treat with a non-differentiable non-convex optimization problem. Sinha et al. in [23]
illustrated that recently there has been an increasing interest in evolutionary algorithms in tackling
BLPP. In [24], Zhang et al. solved a BLPP with bi-objective using an artificial neural network based on
the scalarization method. Wang et al. used a fruit fly optimization algorithm to solve the hard type
of BLPP, nonlinear bilevel programming problem [25]. Although evolutionary techniques can treat
BLPP, the researchers still try to devise new methodologies that can handle the problem efficiently.
Sinha et al. solved BLPP by an evolutionary algorithm with the approximated mapping of the lower
level optimal solution in [26]. After that Sinha improved his work by using two mappings; lower level
rational reaction mapping and the lower level optimal value function mapping with an evolutionary
optimization technique tried to reduce the computational expense [27]. Recently, in [28] Sinha et al.
have applied a local search based on meta-modeling of the upper-level and lower- level functions
and constraints along with the two maps proposed in [27]. Hybridizing different search methods
has been widely used to solve such hard optimization problems. Carrasqueira et al. presented a
combination between genetic algorithm and a particle swarm optimization algorithm to solve the
BLPP [29]. Lan et al. produced a hybrid algorithm between a neural network and tabu search for
solving BLPP [30].

Chaos theory is a common nonlinear phenomenon in nature. It studies the behavior of systems that
follow deterministic laws but appear random and unpredictable. Chaos theory was initially described
by Hénon and was summarized by Lorenz [31]. It is represented as one of the new theories that
have attracted much attention applied to many aspects of the optimization [32–36]. Chaos searching
technique has an advantage of easier jumping of the local optimal solution and generating non repeated
possible solutions in a certain range. In recent years, the mathematics of chaos theory has been applied
to BLPP. Yousria et al. presented a hybrid algorithm by combining enhanced genetic algorithm and
chaos searching technique for solving bilevel programming problems [37]. They state that using a chaos
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theory with a genetic algorithm helps to solve BLPP. In [38] Zhongping et al. hybridize particle swarm
optimization with chaos searching technique for solving nonlinear bilevel programming problems.
Zhao et al. establishes a chaotic search method to solve the bilevel programming problems directly
in [39]. They stated that the ergodicity and the regularity of chaotic behavior lead the search to be
asymptotical convergence search.

This paper proposes a new approach based on a genetic algorithm and a chaos theory to solve BLPP.
The cause of choosing the genetic algorithm is that BLPP solution requirements produce difficulties
in solving such as disconnectedness and non-convexity even to the simple problems. The genetic
algorithm is presented as an efficient global method for optimization problems, especially for difficult
optimization problems. In addition, we choose to use one of the recent theories, chaos theory, that has
been applied for solving optimization problems. Using these two optimization techniques offers the
advantages of both techniques, the genetic algorithm as a global search technique suitable for hard
optimization problems and chaos searching techniques as an effective local search technique that can
easily jump of locally optimal solutions. The difficulty in solving BLPP is the need to solve the lower
level problem to know the feasible space of the upper-level problem. To reduce the number of solving
a lower problem, a genetic algorithm has modified with a new selection technique named bi-level
selection technique (BST). BST helps the upper-level decision-maker to take an appropriate decision
in anticipation of the lower level’s decision. The proposed algorithm operates in two phases. In the
first phase, the upper-level problem has solved using a modified genetic algorithm. In the second
phase, a local search based on chaos theory is applied around the upper-level solution. BST doesn’t
replace solving the lower-level problem to solve the BLPP. It only helps the algorithm to predict the
lower-level decision on the upper-level decision. Therefore, the lower level problem is then solved
using a genetic algorithm for two phase solutions. The two phase’s solutions are compared and the
best solution for the bilevel problem is the algorithm solution. The proposed algorithm has been
evaluated on three sets of test problems; a TP set [40], and a SMD set [27,41] and some chosen test
problems from the literature. TP set is a relatively smaller number of variables constrained problems
and SMD set are high-dimensional unconstrained problems. SMD problems are BLPP that contain
problems with controllable complexities. The third set is nonlinear standard test problems collected
from the literature [42]. The results of the proposed algorithm have been discussed and compared with
other state-of-the-art algorithms results to show the proposed algorithm effectiveness and efficiency to
solve BLLP.

The rest of the paper is as follows. Bilevel problem formulation is proposed in Section 2. Section 3
introduces the proposed algorithm to solve BLPP. In Section 4, numerical experiments are discussed.
Finally, Section 5 concludes the paper and proposes some notes for future work.

2. Bi-Level Programming Problems

BLPP composed of two interacted optimization problems with two decision-makers; leader and
follower. The leader knows the followers’ objective function and constrains while the follower may
know or not the leader’s objective function and constraints. The leader needs to make a decision
that leads the follower to take his/her decision that benefits the leader’s problem. Contrarily, the
follower doesn’t care about the leader’s decision and takes his/her optimal decision upon the leader’s
decision [5,43]. In BLPP, the lower-level problem appeared as a constraint to upper-level problem
BLPP are formulated as follows:

Upper level
BLPP: Min

x,y
F(x, y)

s.t. G(x, y) ≤ 0,

where, for each given x obtained by the upper level, solves y
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Lower level
Min

y
f (x, y)

s.t. g(x, y) ≤ 0,

where F(x, y), f (x, y) : Rn1
×Rn2

→ R are upper and lower level object functions.
G(x, y) : Rn1

×Rn2
→ Rp, g(x, y) : Rn1

×Rn2
→ Rq are the constraint functions. x ∈ Rn1, y ∈ Rn2 are

upper and lower level decision variables. n1 is the dimensional decision vectors for the upper problem
and n2 is the dimensional decision vectors for the lower problem. If vector v• = (x•, y•) satisfies both
levels constrains and y• is an optimal point of the lower level problem solved for the upper level
solution x• then v• = (x•, y•) is a feasible solution for the BLPP [44].

3. Proposed Algorithm (CGA-BS)

Our proposed algorithm for BLPP is based on genetic algorithm and chaos theory. In this section,
we introduce basic concepts of genetic algorithm and chaos theory then we introduce our proposed
algorithm CGA-BS in detail.

3.1. Basic Concepts of Genetic Algorithm

Genetic Algorithm (GA) is one of the powerful evolutionary algorithms proposed in the early
1970s [45]. GA mimics the theory of survival of the fittest. It is inspired by chromosomes and
genes in nature. GA has been widely applied for solving different types of the optimization
problem. It has an advantage over classical techniques that it can treat with a non-differentiable and
non-convex optimization problem. GA algorithm represents optimization problems as a set of variables.
Each solution for an optimization problem corresponds to a chromosome and each gene corresponds
to a variable of the problem. The chromosomes improved by applying a genetic operator’s selection,
crossover, and mutation. The selection operator works on determining better chromosomes to be the
parents. There are several selection techniques as roulette wheel selection, rank selection, steady-state
selection, stochastic universal sampling [46,47]. Parents then crossover to produce new chromosomes
(children chromosomes). Children’s chromosomes are expected to be better than parents’ chromosomes.
There are several crossover techniques as one-point crossover, two-point crossover, cut and splice,
uniform crossover and half uniform crossover. Figure 1 illustrates the one-point crossover. As shown
in the figure, two chromosomes are split and then combined one part of one with the other pair to
produce new chromosomes.
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Sometimes, the genetic algorithm produces very similar chromosomes. This problem is considered
the symmetric problem in the genetic algorithm. Symmetric chromosomes weak the genetic algorithm
and worse its performance. The symmetric problem occurs when highly fit parent chromosomes in the
population breed in early evolution time. To overcome the symmetric problem, the mutation operator
applied on a small part of parent chromosomes. Figure 2 illustrates the real value interchanging
mutation. As shown in Figure 2, some of the genes in the chromosomes are randomly replaced.
The new generation then is evaluated. New generations are still produced until the termination
criterion is met, and the best-obtained chromosome is the solution [46,47]. Figure 3 proposes GA cycle
to obtain the optimal solution.
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3.2. Chaos Theory for Optimization Problems

Chaos in common usage means “A condition or place of great disorder or confusion”. Chaos theory
studies the behavior of systems that follow deterministic laws but appear random and unpredictable or
we can say a dynamical system that has a sensitive dependence on its initial conditions; small changes
in those conditions can lead to quite different outcomes [10]. This dependency of a dynamical system
on its initial condition is popularly referred to as the butterfly effect. Henon initially described chaos
theory in 1976 and Lorenz summarized it in 1993 [48,49]. Chaos theory could be introduced into the
optimization strategy to accelerate the optimum seeking operation and find the global optimal solution.
Chaos theory has an advantage more than other optimization techniques that it can efficiently search
the space and escape from local optimal solutions. Chaotic maps are used to build up chaotic sequences.
Different chaotic maps are proposed to describe distinct chaotic behaviors. Chaotic maps are divided
to discrete-time parameterized and continuous- time parameterized. In this section, we offer some
well-known chaotic maps found in the literature. Figure 4 proposes chaotic behavior produced using
some chaotic maps.

The Chebyshev map is defined as follows:

xt+1 = cos
(
t cos−1(xt)

)
(1)

The circle map is represented as follows:

xt+1 = xt + b− (a− 2π) sin(2πxt) mod(1) (2)

where a = 0.5 and b = 0.2.
The iterative chaotic map with infinite collapses is defined as follows:

xt+1 = sin
(aπ

xt

)
(3)
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where a ∈ (0, 1).
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The logistic map demonstrates how complex behavior arises from a simple deterministic system
without the need of any random sequence. It is based on a simple polynomial equation which describes
the dynamics of biological population.

xt+1 = cxt(1− xt) (4)

where x0 ∈ (0, 1), x0 < {0.0, 0.25, 0.50, 0.75, 1.0} and c = 4.
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The Singer map is formulated as:

xt+1 = µ
(
7.86xt − 23.31x2

t + 28.75x3
t − 13.302875x4

t

)
(5)

where µ ∈ (0.9, 1.08).
The Sinusoidal map is generated by the following equation:

xt+1 = ax2
t sin(πxt) (6)

where a = 2.3.
The basic idea of applying chaos search for optimization problems is transforming problems

variable to chaos space using one of the chaotic maps [47]. Followingly, chaotic variables are evaluated
by the fitness function. The chaotic variables that achieve the best fitness function are the solution.
Chaotic search is continued for a specified number of iterations or until obtaining a satisfied solution.
Some researches compare different chaotic maps for optimization problems.

3.3. Modified Genetic Algorithm and Chaotic Search for BLPP (CGA-BS)

The proposed algorithm to solve the BLPP is a modified genetic algorithm by a new selection
technique (BST) and chaos searching technique. The role of BST is that the selection of individuals for
the next generation is according to individuals’ fitness to both upper and lower objective functions.
BST distinguishes our proposed algorithm with a very small number of solving the lower level problem.
We have solved lower level problem two times only and dispensing solving the lower level problem at
every generation during solving the upper-level problem. This is not meaning that using BST replaces
solving the lower level problem to have a solution of the BLPP. We solve lower level problem two times;
one for the upper-level genetic algorithm based on BST solution and other for upper level chaotic local
search solution. The steps of the proposed algorithm are listed as follows:

3.3.1. Genetic Algorithm Based on BST

In this Step, the upper- level problem is solved using a modified genetic algorithm. The modified
genetic algorithm steps are:

1. Constrains handling: before starting the algorithm, constraints of the lower level problem is
added to the constraints of the upper-level problem. The feasible solutions for the upper-level
problem must be feasible and optimal solutions for the lower level problem. Therefore, constrains
of both levels are considered as upper level constrains to guarantee the feasibility of solutions.

2. Initial population: variables are randomly initialized within the search space bounds of upper-level
bounds and lower-level bounds [50].

3. Reference point: the repairing process needs one feasible point considered as a reference point to
be entered and the algorithm procedure is completed.

4. Repairing process: for constrained problems, some generated solutions don’t satisfy constraints
and need to be repaired. The repairing process transforms the infeasible solutions to be feasible
solutions [51].

5. Evaluation: both upper-level objective function and lower-level objective function are used for
evaluation of individuals and for determining the fitness of each solution to both upper-level
problem and lower-level problem.

6. Producing a new population: new selection technique, crossover operator and mutation operator
have applied to produce the new population.

Bilevel selection technique: The main role of BST is that the selected individuals for the next
generation are more appropriate for both levels. BST starts by evaluating individuals using upper-level
objective function and then are selected according to their fitness to upper-level objective function using
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a suitable selection technique. After that, these selected individuals are evaluated using lower-level
problem objective function and are selected according to their fitness to lower-level objective function
using a suitable selection technique. Bilevel selection technique can also select individuals according
to upper-level objective function only or to lower-level objective function only choosing objective that
increases the solution quality.

Crossover: crossover operation recombines pairs of individuals and returns the new individuals
after mating two individuals. In the proposed algorithm, a one-point crossover as shown in Figure 1
which has applied [52].

Mutation: In the proposed algorithm, the real valued mutation has applied. Real valued mutation
produces randomly created values and then these random values are added to the variables [53,54].

1. Migration: the parent population and child population are migrated to produce the new generation
and the best individual is chosen as the solution [53–55].

2. GA termination: GA is terminated at the maximum number of generations or when population
convergence occurs. If the termination condition doesn’t satisfy, return to 6.

3.3.2. Chaotic Local Search

In this step, a chaotic local search is proceeds around upper-level variables obtained in Section 3.3.1.
The following is a description of a chaotic local search in details:

1. Define a range of the upper-level variables for chaotic local search.
2. Produce chaotic numbers using the logistic map: El-Shorbagy et al. in [46] presented a comparison

between different chaotic maps for general nonlinear optimization problems and result that
logistic map gives better performance than other chaotic maps and increase the solution quality
rather than other chaotic maps. Therefore, in the proposed algorithm, we choose to apply the
logistic map

3. Generate the chaotic variables into the determined range.
4. Find the best value: The produced chaotic variables are evaluated according to upper-level

objective-function. The chaotic variables obtained best objective-function values are the best value.
5. Update the local search boundary value for the best-obtained value.
6. Stopping chaos search: chaotic local search is stopped at the specified iterations and put out the

best solution as a local search solution.

3.3.3. Algorithm Termination

To terminate the algorithm and obtain the algorithm result, the lower level problem is solved
for upper-level decision variables obtained in Section 3.3.1 and Section Section 3.3.2. The lower-level
problem is solved using a genetic algorithm with the same steps as Section 3.3.2 except that selection is
according to the lower level objective function only. The two phases’ results are compared, and the
better result is the algorithm solution. Algorithm 1 illustrates pseudo code of the proposed algorithm.
The flow chart of the proposed algorithm is shown in Figure 5.
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Algorithm 1 Modified Genetic algorithm with chaotic search for BLPP (CGA-BS)

1: Modified Genetic algorithm for upper level problem
2: Begin

k← 1
3: Generate an initial population pk with size Nu;
4: Check feasibility and repair out unfeasible individuals of the population pk;
5: While k < Max_genu

Evaluate pk according to upper level objective function;
Select pksu from pk using selection operator;

Evaluate pksu according to lower level objective function;
Select pksl from pksu using selection operator;

Apply crossover operator with CP and mutation operators with MP on pksl and produce
children population pk

′;
Evaluate the fitness of the children pk

′;
Evaluate the fitness of the children pk

′;
Select pksl from pksu using selection operator;
Apply crossover operator with CP and mutation operators with MP on pksl and produce
children population pk

′;
Evaluate the fitness of the children pk

′;
Keep the best from pk ∪ pk

′ to form pk+1
Archive pMax_Generation_U. = pk+1;
k = k + 1

6: End while
7: Return to the individual (x∗, y∗) from pMax_Generation_U. with best fitness values and archive x∗1 = x∗

8: Chaotic local search around modified genetic algorithm solution (x∗, y∗)
9: Begin

i← 1
10: While: i < Max_genc

Define range of chaotic local search x∗i − ε < ai, x∗i + ε > bi
Generate zk using different logistic ma
zk+1 = µzk(1− zk), z0 < {0.0, 0.25, 0.50, 0.75, 1.0}, k = 1, 2, . . .Nc

xk
i = x∗i − ε+ 2εzk

∀i = 1, . . . , n
If f (xk, y∗) < f (x∗, y∗) then x∗ = xk and archive x∗2 = x∗

Else if f (xk, y∗) ≥ f (x∗, y∗) continue,
End if
If termination criteria satisfied,

Break
End if

i← i + 1
11: End while
12: Solve lower level problem using genetic algorithm for x = x∗1
13: Begin

j← 1
14: Generate an initial population p j with size Nl;
15: Check feasibility and repair out unfeasible individuals of the population p j;
16: While j < Max_genl

Evaluate p j according to lower level objective function;
Select p js from p j using selection operator;
Apply crossover operator with CP and mutation operators with MP on p js and produce children

population
Evaluate the fitness of the children p j

′;
Keep the best from p j ∪ p j

′ to form p j+1;
Archive pMax_Generation_l. = p j+1;
j = j + 1

17: End while
18: Return to the individual (x∗1, y∗) from pMax_Generation_l. with best fitness values;
19: Evaluate the fitness of (x∗1, y∗)
20: Repeat from step 13 to step 18 for x = x∗2
21: Evaluate the fitness of (x∗2, y∗)
22: Return best evaluation in step 20 and 22 as algorithm solution
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4. Numerical Experiments

The proposed algorithm has been evaluated on three sets of well-known test problems including
linear and nonlinear problems, constrained and unconstrained problems, low-dimensional and
high-dimensional problems. The first set of problems is 10 constrained problems with a relatively
smaller number of variables named TP problems [27]. TP problems have been extensively used
test-suite for comparing different algorithms that have been solved BLPP. The second set is the SMD
test set constructed in [41]. The used set of SMD problems are un-constrained high-dimensional
problems that are recently proposed, which contains problems with controllable complexities. SMD
test problems cover a wide range of difficulties associated with BLPP as non-linearity, multi-modality,
and conflict in upper and lower level objectives. The third set is 24 nonlinear standard test problems
collected from the literature [42].

For our study, the algorithm has been run 30 times for each test function. The results are median
results from the runs. We use Matlab 7.8 to code the proposed algorithm CGA-BS. The simulations have
been operated on an Intel Core (TM) i7-4510u CPU @2.00GHZ 2.60 GHz processor. The performance
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of our proposed algorithm has several parameters that affect it. The GA parameters applied on both
upper and lower level problem are

GA generation: 200–1000
Generation gap: 0.9
Selection operator: Stochastic universal sampling
Crossover operator: Single point
Mutation operator: Real-value
Crossover rate: 0.9
Mutation rate: 0.07
Number of Chaotic iterations: 10,000
Chaotic rang: 10−3

4.1. Test Problems

For our study, the algorithm has been run 30 times for each test function. The results are median
results CGA-BS is tested by 40 test problems. In addition, 10 constrained test problems (TP1-TP10),
6 unconstrained high dimension test problems (SMD1-SMD6) and 24 nonlinear standard test problems
collected from the literature (P1-P24). The dimension of TP problems and 24 nonlinear standard test
problems is relatively small. The formulation for both TP problems and SMD problems can found
at [27,41]. The formulation of standard test problems from P1 to P24 have introduced in Table A1 in
Appendix A.

4.2. Results Analyses

In this section, we first compare CGA-BS results and other algorithms in the literature which
solved the same chosen test set to show the effectiveness and efficiency of our algorithm. Following
this, results for the TP test set have been compared with applying BST and without applying it to
show how BST increases the algorithm’s performance quality. The results for the SMD test set before
chaos search and after chaos search have been compared to show how chaos search increases the
algorithm’s performance quality and accelerate reaching the optimal solution. In addition, proposed
algorithm results and other compared algorithms results for the SMD test set have compared in terms of
computational complexity to show the proposed algorithm computational time in reaching a solution.

4.2.1. TP Test Set Results Analyses

To demonstrate the effectiveness of CGA-BS, we compare CGA-BS results with results in
references [27,36,42,56]. In [27] Sinha et al. presented an improved evolutionary algorithm based
on quadratic approximations of lower level named it as BLEAQ. In [42], Wang et al. presented a
new evolutionary algorithm based on a new constraint-handling scheme named it NEA. Wang et al.
presented in [56] an evolutionary algorithm named it as NEA1. Their algorithm uses an effective
crossover operator and they also propose a new mutation operator. They executed NEA1 for
50 independent runs on each of the test problems and recorded the best-obtained solutions and the
worst obtained solution. To demonstrate the effectiveness of our proposed algorithm, we compare
our results with the best-obtained solutions in [56]. In [36], Zhongpin et al. presented a combination
between particle swarm optimization and chaos search technique PSO-CST. [36] named one of the
compared results as the corresponding reference. Tables 1 and 2 propose the values of the leader’s and
the follower’s objective functions for CGA-BS and other algorithms. CGA-BS results are introduced in
the second column. Third, fourth, fifth, sixth and seventh columns are the results of BLEAQ, NEA,
NEA1, PSO-CST, and corresponding reference.
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Table 1. Upper level objective functions for CGA-ES, BLEAQ, NEA, NEA1, PSO-CST and BLEAQ and
corresponding reference [36] in algorithms for TP1-TP10.

Problem
Upper Level Objective Function

CGA-BS BLEAQ
[27]

NEA
[41]

NEA1
[56]

PSO-CST
[36]

Cor. Ref.
[36]

TP1 225.00 225.00 225.00 225.00 - 225.00
TP2 0.00 1.27 × 10−2 0.00 0.00 - 5.00
TP3 −18.94 −18.68 −12.68 −12.68 −14.78 −12.68
TP4 −29.35 −29.16 −29.20 −29.20 −29.21 −29.20
TP5 −3.90 −3.59 −3.92 −3.92 - −3.15
TP6 −1.25 −1.21 −1.21 −1.21 −1.17 3.57
TP7 −1.96 −1.87 −1.98 −1.98 −1.98 −1.98
TP8 8.75 × 10−5 1.8 × 10−3 0.00 0.00 - 5.00
TP9 8.68 × 10−6 1.20 × 10−5 - - - -
TP10 1.24 × 10−4 1.03 × 10−4 - - - -

Table 2. Lower level objective functions by CGA-ES, BLEAQ, NEA, NEA1, PSO-CST and BLEAQ and
corresponding reference [36] algorithms for TP1-TP10.

Problem
Lower Level Objective Function

CGA-BS BLEAQ
[27]

NEA
[41]

NEA1
[56]

PSO-CST
[36]

Cor. Ref.
[36]

TP1 99.99 100.00 100.00 100.00 - 100.00
TP2 200.00 99.99 100.000 100.00 - 0.00
TP3 −1.16 −1.02 −1.02 −1.06 −0.23 −1.06
TP4 3.01 3.19 3.20 3.20 −0.23 3.20
TP5 −2.03 −1.96 −2.00 −2.00 - −16.29
TP6 8.07 7.61 7.62 7.62 7.44 2.40
TP7 1.87 1.87 1.98 1.98 1.98 1.95
TP8 199.99 99.99 100.00 100.00 - 0.00
TP9 2.72 1.00 - - - -
TP10 2.72 1.00 - - - -

Solving BLPP is executed by solving the lower level problem as a constraint to the upper-level
problem. The main aim is to solve the upper-level problem. Therefore, in a comparison between
CGA-BS and other algorithms, we are concerned about upper-level results. As Table 1 indicates,
our proposed algorithm has the best results for the upper-level problem than other algorithms for
six problems TP1, TP2, TP3, TP4, TP6, and TP9. The remainder of problems have also a small
difference with the best solutions of compared algorithms. Figure 6 shows the difference between the
upper-level objective-function result and the best upper-level objective-function result of the compared
algorithms results for TP test problems. This difference is denoted by upper-level accuracy. From
Figure 6, the proposed algorithm has the smallest upper-level accuracy which means that the proposed
algorithm more converges to the optimal solution. We rank the different algorithms according to the
best upper-level solution for all algorithms in Table A2 (see Appendix B). Figure 7 illustrates the ranks
obtained with CGA-BS and other algorithms. From the tables and figures, the CGA-BS algorithm
obtained the first rank for six problems and reach to the second rank for four problems. From results,
we can consider CGA-BS performs well and finds good solutions to TP test problems.
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4.2.2. SMD Test Set Results Analyses

The results of SMD test problems are presented in Table 3. The second column presents the
optimal solution for the upper level and lower-level problems. CGA-BS results for upper level and
lower level problems are in the third columns. As indicated in Table 3, our proposed algorithm
reaches optimal solutions for two problems SMD1, SMD3 and reaches near to optimal solutions for the
remaining problems. To evaluate the CGA-BS algorithm for SMD problems, we compare CGA-BS
results with the other four algorithms listed in [57] and three algorithms listed in [58]. Table 4 illustrates
a comparison between CGA-BS and other algorithms. We have been compared algorithms with
CGA-BS according to upper-level accuracy. Accuracy is the difference between the algorithm result and
an optimal solution. Figure 8 illustrates the upper-level accuracy for compared results. From Figure 8,
that proposed algorithm more converges to the optimal solution than other compared algorithms for
SMD test problems. In addition, we rank the different algorithms and CGA-ES algorithm in Table A3
(see Appendix B). Figure 9 illustrates the ranks obtained with CGA-BS and other algorithms. From the
tables and figures, the CGA-BS algorithm obtained the first rank for four problems from six problems.
CGA-BS performs well for SMD test and more convergence to the optimal solution concerning to
compared algorithms. It can be concluded that CGA-BS can manage the difficulties resulting from
the increasing problem dimension. In addition, results show that algorithm FOA also performs well
and more convergence to the optimal solution. FOA treat BLPP by combining two improved fruit fly
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optimization algorithms. Fruit fly algorithm is one of the powerful evolutionary algorithms. It has a
huge advantage in that it has a very small control parameter. The results illustrated that CGA-BS and
FOA algorithms is an effective technique to solve a large dimension BLPP.

Table 3. CGA-BS results and optimal solutions for SMD1–SMD6.

Problem
Optimal Solutions CGA-BS Results

F(x*,y*) f(x*,y*) F(x•,y•) f(x•,y•)

SMD1 0 0 0 0
SMD2 0 0 4.7659 × 10−6 2.2190 × 10−6

SMD3 0 0 0 0
SMD4 0 0 5.5692 × 10−12 3.4094 × 10−11

SMD5 0 0 1.1324 × 10−9 1.1324 × 10−9

SMD6 0 0 9.3428 × 10−11 9.3428 × 10−11

Table 4. CGA-BS, BLMA, NBLEA, BLEAQ, BIDE, FOA, PSO, LGMS-FOA upper level accuracy
for SMD1–SMD6.

Problem
Upper Level Accuracy

CGA-BS BLMA
[57]

NBLEA
[57]

BLEAQ
[57]

BIDE
[57]

FOA
[58]

PSO
[58]

LGMS-FOA
[58]

SMD1 0 1 × 10−6 5.03 × 10−6 1.00 × 10−6 3.41 × 10−6 5.55 × 10−10 1.79 3.14 × 10−4

SMD2 2.22 × 10−6 1 × 10−6 3.17 × 10−6 5.44 × 10−6 1.29 × 10−6 8.60 × 10−12 3.53 1.20 × 101

SMD3 0 1 × 10−6 1.37 × 10−6 7.55 × 10−6 4.10 × 10−6 5.98 × 10−10 3.05 8.58 × 10−4

SMD4 3.41 × 10−11 1 × 10−6 9.29 × 10−6 1.00 × 10−6 2.30 × 10−6 1.3 × 10−13 8.09 2.13 × 10−2

SMD5 1.13 × 10−9 1 × 10−6 1.00 × 10−6 1.00 × 10−6 1.58 × 10−6 9.4 × 10−8 1.08 × 102 1.49
SMD6MD6 9.34 × 10−11 1 × 10−6 1.00 × 10−6 1.00 × 10−6 3.47 × 10−6 - - -
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4.2.3. P1–P24 Test Set Results Analyses

Table 5 presents CGA-BS results for P1–P24 problems and the best-obtained solution of the upper
level and lower level objective functions in references [36,56]. In Table 6, CGA-BS find solutions better
than best-obtained solutions in [36] for all problems solved in it except P17. It can be considered that
CGA-BS has superiority over the algorithm PSO-CST algorithm. Figure 10 illustrates the upper-level
accuracy for CGA-BS, NEA1 and PSO-CST algorithms. It can be observed from Figure 10 that CGA-BS
more converges to the optimal solution. Ranks CGA-ES, NEA1 algorithm in Table A4 (see Appendix B).
Figure 11 illustrates the ranks obtained with CGA-BS and other algorithms. CGA-BS find solutions
better than a best-obtained solution in [56] for eleven problems and reach to same upper-level solutions
in [56] three problems from twenty-one problems has solved in [56]. CGA-ES obtained the first rank
for fourteen problems from the twenty-one problem. It can be considered that CGA-BS performs well
than the algorithm in [36,56] for P1–P24.

Table 5. CGA-BS results and best obtained solutions in [35] for P1–P24.

Problem
CGA-BS NEA1 [56] PSO-CST [36]

F(x•,y•) f(x•,y•) F(x◦,y◦) F(x◦,y◦) F(x·,y·) f(x·,y·)

P1 −18.5999 −1.3902 −12.6800 1.0160 −14.7772 −0.2316
P2 −29.3529 3.0083 −29.2000 3.2000 −29.2064 2.3641
P3 −8.9301 −4.3844 −8.9200 −6.1400 - -
P4 −7.0717 −0.5088 −7.5800 .05740 - -
P5 −12.2095 −410.0104 −11.9990 163.4200 - -
P6 −3.5990 −1.9998 −3.6000 −2.0000 - -
P7 −3.9014 −2.0302 −3.9200 −2.0000 - -

P8(Max) 1000.2 1.0518 1000 1 640.7139 0.9946
P9 100.0038 872.7460 100.0001 3.500 × 10−11 100.0393 1.3500 × 10−16

P10 −1.2520 8.0708 −1.2098 3.5700 −1.1660 7.4441
P11(Max) 2.0112 −2.0112 1.9802 −1.9802 1.9816 −1.9816

P12 −29.9602 0.5672 −29.2000 0.3148 - -
P13 0 200.0000 0 100.0000 - -
P14 0 200.0000 0 100.0000 5.27 × 10−2 1.0000 × 10−8

P15 0 200.0000 0 100.0000 4.0000 × 10−4 1.0000 × 10−8

P16 1.2676 × 10−5 38.6877 8.9900 × 10−13 0.3148 7.5000 × 10−3 125.08540
P17 1.9891 × 10−11 1.3981 × 10−10 6.2149 × 10−4 1.0000 0.0000 84.2367
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Table 5. Cont.

Problem
CGA-BS NEA1 [56] PSO-CST [36]

F(x•,y•) f(x•,y•) F(x◦,y◦) F(x◦,y◦) F(x·,y·) f(x·,y·)

P18 6.2780 × 10−7 23.9314 8.5086 × 10−9 1.0000 1.0000 × 10−4 25.6292
P19 3.3559 × 10−8 6.9743 2.0325 × 10−5 1.0000 8.2000 × 10−3 2.5621
P20 1.6211 × 10−9 13.8708 6.1725 × 10−8 1.0000 3.7400 × 10−2 2.6969
P21 3.4837 × 10−9 7.5534 7.2265 × 10−3 1.0000 3.3700 × 10−2 2.7442
P22 1.8887 × 10−7 0.3182 - - - -
P23 2.6713 × 10−6 0.2997 - - - -
P24 1.6865 × 10−6 0.6745 - - - -

Table 6. The proposed algorithm results with and without bi-level selection technique.

Problem
Upper Level F(x,y) Lower Level f(x,y)

CGA CGA-BS CGA CGA-BS

TP1 229.3517 225.0001 178.9341 99.9999
TP2 0 0 200.0000 200.0000
TP3 −18.9365 −18.9365 −1.1563 −1.1563
TP4 −29.3529 −29.3529 3.0080 3.0080
TP5 −1.0407 −3.9014 −1.0083 × 10−5 −2.0300
TP6 −0.9609 −1.2520 8.2634 8.0708
TP7 −1.9600 −1.9600 1.9660 1.9660
TP8 8.7468 × 10−5 8.7468 × 10−5 199.9989 199.9989
TP9 8.6845 × 10−6 8.6845 × 10−6 2.7183 2.7183
TP10 1.2379 × 10−4 1.2379 × 10−4 2.7183 2.7183
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The proposed algorithm has evaluated 40 test problems. A total of 37 test problems weere solved
with other algorithms. Our proposed algorithm obtained the best solutions compared to the mentioned
references for nineteen problems and reach to same best solutions for five problems. The difference
between our results and the best solutions for remaining problems ranges from 1E-1 to 1E-12 except
for P4 and P8. Figure 12 indicates the difference between CGA-BS and best-compared solutions in the
mentioned references for the upper-level results. The negative difference indicates to CGA-BS has
better solutions than best-compared solutions. Figure 13 presents the statistics of the ranks of CGA-BS.
Statistics of ranking in Table A5 (see Appendix B). Figure 14 presents the rank’s percentage for the
proposed algorithm. As indicated in Figure 14, our proposed algorithm obtained first rank for about
65% of solved problems and obtained second rank for about 32.5% of solved problems.
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The simulations results of various numerical studies have been demonstrated that CGA-BS
effectively solves BLPP and it can manage the difficulties resulting from increasing dimension of
the problem. In addition, results have been demonstrated the superiority of CGA-BS on compared
algorithms solved the same test problems.

4.2.4. Algorithm Performance Analyses with Bilevel Selection Technique

The basic idea of the bi-level selection technique is selecting more appropriate solutions that can
increase the solution quality. The individuals are selected for producing the new generation during
solving upper-level problem according to both the upper and lower level. Table 6 illustrates the
algorithm results for TP test problems with applying the bilevel selection technique (CGA-BS) and
without applying it (CGA). Figure 15 illustrates the upper-level accuracy for TP set with and without
the bilevel selection technique. The results illustrate that using an effective selection technique improve
the solution quality for TP1, TP5, and TP6. We note from results BST does not improve results for all
problems. That is due to the conflict between upper and lower level objectives. As a result, applying an
effective selection technique enables the algorithm to increase its performance quality and accelerate
reaching the optimal solution especially for not conflicted upper and lower objective functions.Symmetry 2020, 12, x FOR PEER REVIEW 20 of 31 
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4.2.5. Algorithm Performance Analyses with Chaos Search

To analyze our proposed algorithm performance, a comparison between algorithm results before
chaos search (GA-BS) and after applying (CGA-BS). Table 7 illustrates algorithm results for SMD test
set before applying chaos search and after applying it for both upper level and lower level problem.
As illustrated in Table 7, the results after applying chaos search more converges to optimal solutions.
Figure 16 illustrate the upper level accuracy for SMD set before applying chaos search and after
applying it. The results reveal that applying chaos search helps to more converges to optimal solutions
and the integrating between genetic algorithm and a chaos search accelerates the optimum seeking
operation and helps to more converges to optimal solutions.

Table 7. GA-BS and CGA-BS results for SMD1–SMD6.

Problem
Upper Level F(x,y) Lower Level f(x,y)

GA-BS CGA-BS GA-BS CGA-BS

SMD1 1.0455 × 10−5 0 3.3729 × 10−6 0
SMD2 2.6470 × 10−5 4.7659 × 10−6 3.3886 × 10−6 2.2190 × 10−6

SMD3 3.5227 × 10−5 0 1.2578 × 10−5 0
SMD4 1.0295 × 10−11 5.5692 × 10−12 3.2578 × 10−11 3.4094 × 10−11

SMD5 5.5398 × 10−6 1.1322 × 10−9 5.5397 × 10−6 1.1322 × 10−9

SMD6 5.2723 × 10−6 9.3428 × 10−11 1.7905 × 10−8 9.3428 × 10−11
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4.2.6. Computational Expense

In BLPP, the feasible space is very large. BLPP consists of two nested optimization problem.
The upper-level problem feasible space is the optimal solution of lower-level problem. With another
meaning, finding one feasible solution of the upper-level problem requires solving lower-level
problem. This huge feasible space makes the computational complexity for BLPP is NP. To evaluate
the computational complexity of BLPP, number of function evaluations is used as a measure of the
computational time. CGA-BS functions evaluations and other algorithms function evaluations for
SMD test set are compared to show proposed algorithm speed convergence to reach to the optimal
solution. The upper-level function evaluations of proposed algorithm and BLMA, NBLE, BLEAQ,
BIDE algorithms in [57] set are presented in Table 8. The lower-level function evaluations of proposed
algorithm and BLMA, NBLE, BLEAQ, BIDE algorithms in [57] are presented in Table 9. The total
function evaluations for both upper-level and lower-level of proposed algorithm and other compared
algorithms are presented in Table 10. Figure 17 proposed the total function evaluations of proposed
algorithm and compared algorithm. As illustrated, proposed algorithm needs a smaller number of
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total function evaluation than compared algorithms for three problems. In addition, the compared
algorithms and CGA-ES algorithm are ranked according to total function evaluations in Table A6 (see
Appendix B). Figure 18 illustrates the ranks percentage obtained with CGA-BS. CGA-BS reaches to first
rank for fifty percent of SMD test problems with compared algorithms. From results, the proposed
algorithm reaches to the best results in a much shorter time. It can be considered as an effective and
comparable algorithm for BLPP.

Table 8. Median upper level function evaluations for CGA-BS and four known algorithms for SMD
test problem.

Problem
Median Upper Level Function Evaluations

CGA-BS BLMA [57] NBLE [57] BLEAQ [57] BIDE [57]

SMD1 1.0101 × 104 4.1200 × 102 1.5200 × 103 1.1900 × 103 6.0000 × 103

SMD2 5.0003 × 104 4.2400 × 102 1.5600 × 103 1.2000 × 103 6.0000 × 103

SMD3 1.0002 × 104 4.1200 × 102 1.5600 × 103 1.2900 × 103 6.0000 × 103

SMD4 1.25003 × 105 5.5200 × 102 1.5300 × 103 1.3100 × 103 6.0000 × 103

SMD5 1.00003 × 105 5.5200 × 102 3.4000 × 103 2.0600 × 103 6.0000 × 103

SMD6MD6 1.37503 × 105 4.8800 × 102 4.0600 × 103 4.0800 × 103 6.0000 × 103

Table 9. Median Lower level function evaluations for CGA-BS and four known algorithms for SMD
test problem.

Problem
Median Lower Level Function Evaluations

CGA-BS
[57]

BLMA
[57]

NBLE
[57]

BLEAQ
[57]

BIDE
[57]

SMD1 1.50010 × 104 3.05000 × 105 9.52000 × 105 2.37000 × 105 1.80000 × 107

SMD2 1.50398 × 105 3.01000 × 105 9.63000 × 105 4.08000 × 105 1.80000 × 107

SMD3 2.0000 × 104 3.09000 × 105 1.04000 × 106 3.02000 × 105 1.80000 × 107

SMD4 2.57998 × 105 3.29000 × 105 8.33000 × 105 3.07000 × 105 1.80000 × 107

SMD5 2.5798E × 105 3.28000 × 105 2.22000 × 106 8.42000 × 105 1.80000 × 107

SMD6MD6 3.38598 × 105 3.26000 × 105 1.11000 × 105 1.98000 × 104 1.80000 × 107

Table 10. Median total function evaluations for CGA-BS and four known algorithms for SMD
test problem.

Problem
Median Total Function Evaluations

CGA-BS BLMA
[57]

NBLEA
[57]

BLEAQ
[57]

BIDE
[57]

SMD1 2.50010 × 104 3.05412 × 105 9.53520 × 105 2.38190 × 105 1.80060 × 107

SMD2 2.00401 × 105 3.01424 × 105 9.64560 × 105 4.09200 × 105 1.80060 × 107

SMD3 3.00020 × 104 3.09412 × 105 1.05560 × 106 3.03290 × 105 1.80060 × 107

SMD4 3.83001 × 105 3.29552 × 105 8.34530 × 105 3.08310 × 105 1.80060 × 107

SMD5 3.25801 × 105 3.28552 × 105 2.22540 × 106 8.44060 × 105 1.80060 × 107

SMD6MD6 4.76101 × 105 3.26488 × 105 1.115060 × 105 2.38000 × 104 1.80060 × 107
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5. Conclusions

This paper proposed a genetic algorithm supported by new selection technique and chaos theory
to solve bilevel programming problems. The combination between genetic algorithm and chaos search
offer the advantages of both genetic algorithm as a powerful global searching technique and chaos
search as an efficient and fast searching technique. The new effective selection technique increases
algorithm performance quality and accelerate reaching to the optimal solution. Extensive numerical
experiments for multimodal test functions including ten constrained problems with relatively smaller
number of variables, six unconstrained high-dimensional problems and twenty-four nonlinear standard
test problems are performed to verify the performance of CGA-BS. The CGA-BS results have analyzed
and compared with other state-of-the-art algorithms to show demonstration and efficiency of our
proposed algorithm. A careful observation of proposed algorithm results and other state-of-the-art
results will reveal to the following benefits:

CGA-BS can be considered as a global powerful efficient technique to solve BLPP and can treat
with the difficulties associated with BLPP as non-linearity, multi-modality and confliction between the
upper and lower level objectives.

CGA-BS deals with several sets of problems including linear and nonlinear problems, constrained
and unconstrained problems, low-dimensional and high-dimensional problems.
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CGA-BS has better ability and precision than other proposed methods in literature and was
demonstrated to be extremely efficient at locating optimal solutions.

The new selection technique helps the upper level decision maker to choose a solution appropriated
to lower level problem and more convergence to the optimal solution by dispensing solving lower
level problem for every generation during solving upper level problem.

The new effective selection technique enables the algorithm to increase its performance quality
and accelerate reaching to the optimal solution.

The search using chaos theory enhances the search characteristics, helps in faster convergence of
the algorithm.

CGA-BS not only reaches to good solution for BLPP. It can reach to it with acceptable running time.
In our future works, the following will be researched:

(a) Adapting CGA-BS to solve multi-level programming problems
(b) Updating CGA-BS to solve the multi-objective multi-level programming problems.
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Abbreviation

Nu: Upper level Population size, Nl: Lower level Population size,Max_genu: Number of upper level generations,
Max_genl: Number of Lower level generations, CP: Crossover probability, MP: mutation probability, selection
operator, crossover and mutation operators, Nc: Chaotic size, Max_genc Number of Chaotic iterations,
ε: Chaotic range.

Appendix A

Table A1 proposes a formulation of standard test problem from P1 to P24. Problem dimensions is denoted
by (n, m). Dimensions (n) denotes to the upper level dimensions. Dimensions (m) denotes to the lower
level dimensions.

Table A1. BLPP formulation for problems P1–P24.

Problem Formulation (n, m) Problem Formulation (n, m)

P1 (n=2,m=2)
Minimize F(x, y) = −x1

2
− 3x2

2
− 4y1 + y2

2

s.t

y ∈ argmin
(y)


Minimize f (x, y) = 2x1

2 + y1
2
− 5y2

s.t
x1

2
− 2x1 + x2

2
− 2y1 + y2 ≥ −3

x2 + 3y1 − 4y2 ≥ 4
0 ≤ yi i = 1, 2


x1

2 + 2x2 ≤ 4,
0 ≤ xi i = 1, 2

P2 (n=2,m=3)
Minimize F(x, y) = −8x1 − 4x2 + 4y1 − 40y2 − 4y3

s.t

y ∈ argmin
(y)



Minimize f (x, y) = x1 + 2x2 + y1 + y2 + 2y3
s.t
y2 + y3 − y1 ≤ 1
2x1 − y1 + 2y2 − 0.5y3 ≤ 1
2x2 + 2y1 − y2 − 0.5y3 ≤ 1
0 ≤ yi i = 1, 2


0 ≤ xi i = 1, 2

P3 (n=2,m=2)
Minimize F(x, y) = rt(x)x− 3y1 + 4y2 + 0.5t(y)y

s.t

y ∈ argmin
(y)


Minimize f (x, y) = 0.5t(y)hy− t(b(x))y
s.t
−0.333y1 + y2 − 2 ≤ 0, y1 − 0.333y2 − 2 ≤ 0
0 ≤ yi i = 1, 2


where, h =

(
1 −2
−2 5

)
, b(x) = x, r = 0.1

t(.) denotes transpose o f a vector

P4 (n=2,m=2)
Minimize F(x, y) = rt(x)x− 3y1 + 4y2 + 0.5t(y)y

s.t

y ∈ argmin
(y)


Minimize f (x, y) = 0.5t(y)hy− t(b(x))y
s.t
−0.333y1 + y2 − 2 ≤ 0, y1 − 0.333y2 − 2 ≤ 0
0 ≤ yi i = 1, 2


where, h =

(
1 −2
−2 5

)
, b(x) = x, r = 1

t(.) denotes transpose o f a vector
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P5 (n=2,m=2)
Minimize F(x, y) = rt(x)x− 3y1 + 4y2 + 0.5t(y)y

s.t

y ∈ argmin
(y)


Minimize f (x, y) = 0.5t(y)hy− t(b(x))y
s.t
−0.333y1 + y2 − 2 ≤ 0, y1 − 0.333y2 − 2 ≤ 0
0 ≤ yi i = 1, 2


where, h =

(
1 3
3 10

)
, b(x) = x, r = 0

t(.) denotes transpose o f a vector

P6 (n=2,m=2)
Minimize F(x, y) = rt(x)x− 3y1 + 4y2 + 0.5t(y)y

s.t

y ∈ argmin
(y)


Minimize f (x, y) = 0.5t(y)hy− t(b(x))y
s.t
−0.333y1 + y2 − 2 ≤ 0, y1 − 0.333y2 − 2 ≤ 0
0 ≤ yi i = 1, 2


where, h =

(
1 3
3 10

)
, b(x) = x, r = 0.1

t(.) denotes transpose o f a vector

P7 (n=2,m=2)
Minimize F(x, y) = rt(x)x− 3y1 + 4y2 + 0.5t(y)y
s.t

y ∈ argmin
(y)


Minimize f (x, y) = 0.5t(y)hy− t(b(x))y
s.t
−0.333y1 + y2 − 2 ≤ 0
y1 − 0.333y2 − 2 ≤ 0
0 ≤ yi i = 1, 2


where, h =

(
1 3
3 10

)
, b(x) =

(
−1 2
3 −3

)
x, r = 0.1

t(.) denotes transpose o f a vector

P8 (n=1,m=2)
Maximize F(x, y) = 100x + 1000y1
s.t

y ∈ argmin
(y)


Maximize f (x, y) = y1 + y2
s.t
x + y1 − y2 ≤ 1, y1 + y2 ≤ 1


0 ≤ x ≤ 1

P9 (n=1,m=1)
Minimize F(x, y) = x2 + (y− 10)2

s.t

y ∈ argmin
(y)


Minimize f (x, y) = (x + 2y− 30)2

s.t
x + y ≤ 20, 0 ≤ y ≤ 20


−x + y ≤ 0, 0 ≤ x ≤ 15

P10 (n=1,m=2)
Minimize F(x, y) = (x− 1)2 + 2y1 − 2x
s.t

y ∈ argmin
(y)



Minimize f (x, y) = (2y1 − 4)2 + (2y2 − 1)2

+xy1
s.t
4x + 5y1 + 4y2 ≤ 12, 4y2 − 4x− 5y1 ≤ −4
4x− 4y1 + 5y2 ≤ 4, 4y1 − 4x + 5y2 ≤ 4
0 ≤ yi i = 1, 2


x ≥ 0

P11 (n=2,m=2)

Maximize F(x, y) = (x1+y1)(x2+y2)
1+x1 y1+x2 y2

s.t

y ∈ argmin
(y)


Maximize f (x, y) = − (x1+y1)(x2+y2)

1+x1 y1+x2 y2

s.t
0 ≤ yi ≤ xi i = 1, 2


x1

2 + x2
2
≤ 100, x1 − x2 ≤ 0

0 ≤ xi, i = 1, 2

P12 (n=2,m=6)
Minimize F(x, y) = −8x1 − 4x2 + 4y1 − 40y2 − 4y3
s.t

y ∈ argmin
(y)



Minimize f (x, y) = 1+x1+x2+2y1−y2+y3
6+2x1+y1+y2−3y3

s.t
−y1 + y2 + y3 + y4 = 1
2x1 − y1 + 2y2 − 0.5y3 + y5 = 1
2x2 + 2y1 − y2 − 0.5y3 + y6 = 1
yi ≥ 0 i = 1, 2, . . . , 6


xi ≥ 0, i = 1, 2

P13 (n=2,m=2)
Minimize F(x, y) =

∣∣∣2x1 + 2x2 − 3y1 − 3y2 − 60
∣∣∣

s.t

y ∈ argmin
(y)


Minimize f (x, y) = (y1 − x1 + 20)20

+(y2 − x2 + 20)20

s.t
x1 + x2 + y1 − 2y2 ≤ 40,
−10 ≤ yi ≤ 20 i = 1, 2


2y1 − x1 + 10 ≤ 0, 2y2 − x2 + 10 ≤ 0
0 ≤ xi ≤ 50 i = 1, 2

P14 (n=2,m=2)
Minimize F(x, y) =

∣∣∣sin(2x1 + 2x2 − 3y1 − 3y2 − 60)
∣∣∣

s.t

y ∈ argmin
(y)


Minimize f (x, y) = (y1 − x1 + 20)2

+(y2 − x2 + 20)2

s.t
2y1 − x1 + 10 ≤ 0, 2y2 − x2 + 10 ≤ 0
−10 ≤ yi ≤ 20 i = 1, 2


x1 + x2 + y1 − 2y2 ≤ 40
0 ≤ xi ≤ 50, i = 1, 2

P15 (n=2,m=2)
Minimize F(x, y) =

∣∣∣tan(2x1 + 2x2 − 3y1 − 3y2 − 60)
∣∣∣

s.t

y ∈ argmin
(y)


Minimize f (x, y) = (y1 − x1 + 20)2

+(y2 − x2 + 20)2

s.t
2y1 − x1 + 10 ≤ 0, 2y2 − x2 + 10 ≤ 0
−10 ≤ yi ≤ 20 i = 1, 2


x1 + x2 + y1 − 2y2 ≤ 40
0 ≤ xi ≤ 50, i = 1, 2

P16 (n=2,m=2)

Minimize F(x, y) =

∣∣∣∣∣∣ (x1 − 30)2 + (x2 − 20)2
− 20y1

+20y2 − 225

∣∣∣∣∣∣
s.t

y ∈ argmin
(y)


Minimize f (x, y) = (y1 − x1)

2 + (y2 − x2)
2

s.t
0 ≤ yi ≤ 10 i = 1, 2


30− x1 − 2x2 ≤ 0, x1 + x2 − 25 ≤ 0
x2 ≤ 15
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Problem Formulation (n, m) Problem Formulation (n, m)

P17 (n=2,m=2)

Minimize F(x, y) =

∣∣∣∣∣∣ sin((x1 − 30)2 + (x2 − 20)2
− 20y1

+20y2 − 225)

∣∣∣∣∣∣
s.t

y ∈ argmin
(y)


Minimize f (x, y) = (y1 − x1)

2 + (y2 − x2)
2

s.t
0 ≤ yi ≤ 10 i = 1, 2


30− x1 − 2x2 ≤ 0, x1 + x2 − 25 ≤ 0
x2 ≤ 15

P18 (n=2,m=2)

Minimize F(x, y) =

∣∣∣∣∣∣ tan((x1 − 30)2 + (x2 − 20)2
− 20y1

+20y2 − 225)

∣∣∣∣∣∣
s.t

y ∈ argmin
(y)


Minimize f (x, y) = (y1 − x1)

2 + (y2 − x2)
2

s.t
0 ≤ yi ≤ 10i = 1, 2


30− x1 − 2x2 ≤ 0, x1 + x2 − 25 ≤ 0
x2 ≤ 15

P19 (n=1,m=2)
Minimize F(x, y) =

∣∣∣(x− 1)2 + 2y1 − 2x + 1.2097
∣∣∣

s.t

y ∈ argmin
(y)



Minimize f (x, y) = (2y1 − 4)2 + (2y2 − 1)2

+xy1
s.t
4x + 5y1 + 4y2 ≤ 12, 4y2 − 4x− 5y1 ≤ −4
4x− 4y1 + 5y2 ≤ 4, 4y1 − 4x + 5y2 ≤ 4
0 ≤ yi i = 1, 2


0 ≤ x

P20 (n=1,m=2)
Minimize F(x, y) =

∣∣∣sin((x− 1)2 + 2y1 − 2x + 1.2097)
∣∣∣

s.t

y ∈ argmin
(y)



Minimize f (x, y) = (2y1 − 4)2 + (2y2 − 1)2

+xy1
s.t
4x + 5y1 + 4y2 ≤ 12, 4y2 − 4x− 5y1 ≤ −4
4x− 4y1 + 5y2 ≤ 4, 4y1 − 4x + 5y2 ≤ 4
0 ≤ yi i = 1, 2


0 ≤ x

P21 (n=1,m=2)
Minimize F(x, y) =

∣∣∣tan((x− 1)2 + 2y1 − 2x + 1.2097)
∣∣∣

s.t

y ∈ argmin
(y)



Minimize f (x, y) = (2y1 − 4)2 + (2y2 − 1)2

+xy1
s.t
4x + 5y1 + 4y2 ≤ 12, 4y2 − 4x− 5y1 ≤ −4
4x− 4y1 + 5y2 ≤ 4, 4y1 − 4x + 5y2 ≤ 4
0 ≤ yi i = 1, 2


0 ≤ x

P22 (n=2,m=6)
Minimize F(x, y) =

∣∣∣−8x1 − 4x2 + 4y1 − 40y2 − 4y3 + 29.2
∣∣∣

s.t

y ∈ argmin
(y)



Minimize f (x, y) = 1+x1+x2+2y1−y2+y3
6+2x1+y1+y2−3y3

s.t
−y1 + y2 + y3 + y4 = 1
2x1 − y1 + 2y2 − 0.5y3 + y5 = 1
2x2 + 2y1 − y2 − 0.5y3 + y6 = 1
yi ≥ 0 i = 1, 2, . . . , 6


xi ≥ 0, i = 1, 2

P23 (n=2,m=6)

Minimize F(x, y) =
∣∣∣∣∣ sin(−8x1 − 4x2 + 4y1 − 40y2 − 4y3
+29.2)

∣∣∣∣∣
s.t

y ∈ argmin
(y)



Minimize f (x, y) = 1+x1+x2+2y1−y2+y3
6+2x1+y1+y2−3y3

s.t
−y1 + y2 + y3 + y4 = 1
2x1 − y1 + 2y2 − 0.5y3 + y5 = 1
2x2 + 2y1 − y2 − 0.5y3 + y6 = 1
yi ≥ 0 i = 1, 2, . . . , 6


xi ≥ 0, i = 1, 2

P24 (n=2,m=6)

Minimize F(x, y) =
∣∣∣∣∣ tan(−8x1 − 4x2 + 4y1 − 40y2 − 4y3
+29.2)

∣∣∣∣∣
s.t

y ∈ argmin
(y)



Minimize f (x, y) = 1+x1+x2+2y1−y2+y3
6+2x1+y1+y2−3y3

s.t
−y1 + y2 + y3 + y4 = 1
2x1 − y1 + 2y2 − 0.5y3 + y5 = 1
2x2 + 2y1 − y2 − 0.5y3 + y6 = 1
yi ≥ 0 i = 1, 2, . . . , 6


xi ≥ 0, i = 1, 2

Appendix B

Table A2. Ranks for CGA-BS, BLEAQ, NEA, NEA1, PSO-CST and BLEAQ and the corresponding
reference in [36] according to upper level objective functions for TP1–TP10.

Problem
Rank According to Upper Level

CGA-BS BLEAQ [27] NEA [41] NEA1 [56] PSO-CST [36] Cor. Ref. [36]

TP1 Rank1 Rank1 Rank1 Rank1 - Rank1
TP2 Rank1 Rank2 Rank1 Rank1 - Rank3
TP3 Rank1 Rank2 Rank4 Rank4 Rank3 Rank4
TP4 Rank1 Rank4 Rank3 Rank3 Rank2 Rank3
TP5 Rank2 Rank3 Rank1 Rank1 - Rank4
TP6 Rank1 Rank2 Rank2 Rank2 Rank3 Rank4
TP7 Rank2 Rank3 Rank1 Rank1 Rank1 Rank1
TP8 Rank2 Rank3 Rank1 Rank1 - Rank3
TP9 Rank1 Rank2 - - - -
TP10 Rank2 Rank1 - - - -
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Table A3. Ranks for CGA-BS, BLMA, NBLEA, BLEAQ, BIDE, FOA, PSO, LGMS-FOA algorithms
according to upper level accuracy for SMD1–SMD6.

Problem
Rank According to Upper Level

CGA-BS BLMA
[57]

NBLEA
[57]

BLEAQ
[57]

BIDE
[57]

FOA
[58]

PSO
[58]

LGMS-FOA
[58]

SMD1 Rank 1 Rank 3 Rank 5 Rank 3 Rank 4 Rank 2 Rank7 Rank 6
SMD2 Rank 4 Rank2 Rank 5 Rank 6 Rank 3 Rank 1 Rank 8 Rank7
SMD3 Rank 1 Rank 3 Rank 4 Rank 6 Rank 5 Rank 2 Rank 8 Rank 7
SMD4 Rank 2 Rank 3 Rank 5 Rank 3 Rank 4 Rank 1 Rank 7 Rank 6
SMD5 Rank 1 Rank 3 Rank 3 Rank 3 Rank 4 Rank 2 Rank 6 Rank 5
SMD6 Rank 1 Rank 2 Rank 2 Rank 2 Rank 3 - - -

Table A4. Ranks for CGA-BS, NEA1, PSO-CST algorithms according to upper level accuracy
for SMD1–SMD6.

Problem
Rank According to Upper Level

CGA-BS NEA1 [56] PSO-CST [36]

P1 Rank1 Rank2 Rank3
P2 Rank1 Rank2 Rank3
P3 Rank1 Rank2 -
P4 Rank2 Rank1 -
P5 Rank1 Rank2 -
P6 Rank2 Rank1 -
P7 Rank2 Rank1 -
P8 Rank1 Rank2 Rank3
P9 Rank2 Rank1 Rank3

P10 Rank1 Rank2 Rank3
P11 Rank1 Rank3 Rank2
P12 Rank1 Rank2 -
P13 Rank1 Rank1 -
P14 Rank1 Rank1 Rank2
P15 Rank1 Rank1 Rank2
P16 Rank2 Rank1 Rank3
P17 Rank2 Rank3 Rank1
P18 Rank2 Rank1 Rank3
P19 Rank1 Rank2 Rank3
P20 Rank1 Rank2 Rank3
P21 Rank1 Rank2 Rank3

Table A5. Statistics of ranks of CGA-BS for TP1–TP10, SMD1–SMD6, and P1–P21.

Problem
Statistics of Ranks

Rank1 Rank2 Rank3 Rank4

TP1 1 0 0 0
TP2 1 0 0 0
TP3 1 0 0 0
TP4 1 0 0 0
TP5 0 1 0 0
TP6 1 0 0 0
TP7 0 1 0 0
TP8 0 1 0 0
TP9 1 0 0 0

TP10 0 1 0 0
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Table A5. Cont.

Problem
Statistics of Ranks

Rank1 Rank2 Rank3 Rank4

SMD1 1 0 0 0
SMD2 0 0 0 1
SMD3 1 0 0 0
SMD4 0 1 0 0
SMD5 1 0 0 0
SMD6 1 0 0 0

P1 1 0 0 0
P2 1 0 0 0
P3 1 0 0 0
P4 0 1 0 0
P5 1 0 0 0
P6 0 1 0 0
P7 0 1 0 0
P8 1 0 0 0
P9 0 1 0 0

P10 1 0 0 0
P11 1 0 0 0
P12 1 0 0 0
P13 1 0 0 0
P14 1 0 0 0
P15 1 0 0 0
P16 0 1 0 0
P17 0 1 0 0
P18 0 1 0 0
P19 1 0 0 0
P20 1 0 0 0
P21 1 0 0 0

Table A6. Ranks for CGA-BS, BLMA, NBLEA, BLEAQ, BIDE algorithms according to total function
evaluations for SMD1–SMD6.

Problem
Rank According to Total of Function Evaluations

CGA-BS BLMA
[57]

NBLEA
[57]

BLEAQ
[57]

BIDE
[57]

SMD1 Rank 1 Rank 3 Rank 4 Rank 2 Rank 5
SMD2 Rank 1 Rank2 Rank 4 Rank 3 Rank 5
SMD3 Rank 1 Rank 3 Rank 4 Rank 2 Rank 5
SMD4 Rank 3 Rank 2 Rank 4 Rank 1 Rank 5
SMD5 Rank 1 Rank 2 Rank 4 Rank 3 Rank 5
SMD6 Rank 4 Rank 3 Rank 2 Rank 1 Rank 5
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