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Abstract: Two dimethylα-hydroxy-arylmethylphosphonates (aryl = Ph and 2-MeOPh) were subjected
to optical resolution via diastereomer complex formation applying the acidic calcium salt of
O,O′-dibenzoyl-(2R,3R)-tartaric acid as the resolving agent. The dominating diastereomer complexes,
whose structure was determined by single crystal X-ray measurements, were obtained in 96% and
68% diastereomer excess values, respectively. After decomposing the diastereomer formations
by extraction, and after recrystallizations, the major enantiomer (S and R, respectively) of the
α-hydroxyphosphonates were prepared in enantiomeric excess values of 96% and 68%, respectively.
The stereostructure of the two α-hydroxy-arylmethylphosphonates was again established by X-ray
measurements. Detailed study on the X-ray data allowed valuable conclusions on the nature of the
coordination in the complexes (intermolecular interactions), and on the H-bonding.

Keywords: α-hydroxy arylmethylphosphonates; optical resolution; optical isomers; X-ray
crystallography; stereostructure; intermolecular interactions; H-bonding

1. Introduction

α-Hydroxyphosphonates are important due to their biological activity. Among them there are
enzyme inhibitors [1], herbicides [2], bactericides [3], fungicides [4], antioxidants [5], and cytotoxic
agents [6,7]. The syntheses of biologically active compounds in enantiopure form is of great importance
from the point of view of the pharmaceutical industry, as in most of the cases single enantiomers are
the targets [8,9]. For optically active α-hydroxyphosphonates, the main sources have been various
enantioselective syntheses [10–12]. The most often used approach is the chiral organocatalyst-assisted
addition of dialkyl phosphite to an oxo compound [13–15]. It is also a possibility that metal complexes
incorporating chiral ligands are the catalysts [16–19]. Another method involves enantioselective
Abramov-type condensation of a trialkyl phosphite with a suitable oxo compound [20]. Optically active
α-hydroxyphosphonates may also be obtained by asymmetric reduction of α-ketophosphonates [21–23].
Examples for enantioselective oxidation of benzylphosphonates affording α-hydroxyphosphonates
are also known [24,25]. As for the optical resolution of α-hydroxyphosphonates, kinetic resolution
is the basic method in the literature [26]. This approach usually involves the selective acylation
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of one enantiomer of the α-hydroxyphosphonate in the presence of an enzyme [27,28] or a chiral
organocatalyst [29], leaving the other isomer untouched. Another variant of the optical resolution
involves acylation of hydroxyphosphonates with dibenzoyl-(R,R)-tartaric anhydride, that is followed
by chromatographic separation, and decomposition of the covalent diastereomers [30]. In our previous
article, we reported the synthesis of seven racemic dialkyl 1-hydroxy-arylmethylphosphonates and their
structure determined by single crystal X-ray analysis [31]. It was observed thatα-hydroxyphosphonates
derived from substituted benzaldehydes are inclined to form chain-like associates, while dimers can
be found in the crystal lattice of α-hydroxy-α-methylphosphonates formed from acetophenone
derivatives [31]. Earlier, we were successful in the optical resolution of a series of cyclic phosphine
oxides and phosphinates using the acidic calcium salt of O,O′-dibenzoyl-(2R,3R)-tartaric acid as the
resolving agent [32]. It was successfully used for the resolution of tertiary phosphine oxides [33,34],
α-alkoxyalcohols [35], α-alkoxycarboxylic acids [36], as well as α- and β-hydroxycarboxylic esters [37]
and the biologically active Tenofovir Alafenamide [38].

In this study, we aimed at elaborating the optical resolution of two racemic
1-hydroxy-arylmethylphosphonates via the formation and separation of diastereomeric complexes,
and studying the crystal structure of two enantiopure dimethyl 1-hydroxy-arylmethylphosphonates,
and their calcium hydrogen O,O′-dibenzoyl-(2R,3R)-tartrate complexes.

2. Results and Discussion

2.1. Preparation of Single Crystals from Optically Active α-Hydroxyphosphonates

At first, racemic α-hydroxybenzyl- and 2-methoxybenzylphosphonates (1a and 1b, respectively)
were synthesized according to the method elaborated previously by us (Scheme 1) [39].
The corresponding aromatic aldehyde and dimethyl phosphite were reacted in the presence of
triethylamine catalyst in acetone as the solvent. After adding pentane precipitant to the reaction
mixture, the racemic product (1a or 1b) crystallized upon cooling, that could be isolated by a
simple filtration.
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and calcium oxide according to the procedure reported by us [40]. The optical resolution of racemic 
dimethyl 1-hydroxy-1-phenylmethylphosphonate (1a) was carried out using 0.25 equiv. of 
 Ca(H-DBTA)2 (2) in methyl ethyl ketone (Scheme 2). The crystalline diastereomeric complex with a 
composition of Ca[(S)-1a • H-DBTA]2 was isolated by filtration. The diastereomeric excess of the 
crystals was 47%, which was determined by chiral HPLC. The diastereomer was purified by 
recrystallization from methyl ethyl ketone, which afforded Ca[(S)-1a • H-DBTA]2 with a de of 96% 
and in a yield of 31%. Crystals suitable for single crystal X-ray analysis were prepared from this 
sample by dissolving it in acetone, and allowing the solvent to evaporate slowly. Decomposition of 
the Ca[(S)-1a • H-DBTA]2 complex by extraction led to an enantiomeric mixture of α-

Scheme 1. Synthesis of racemic dimethyl 1-hydroxy-arylmethylphosphonates (1a and 1b).

The acidic calcium salt of O,O′-dibenzoyl-(2R,3R)-tartaric acid (Ca(H-DBTA)2) (2) was used for
the resolution of racemic dimethyl 1-hydroxy-arylmethylphosphonates (1a and 1b). Resolving agent
Ca(H-DBTA)2 (2) was prepared in the reaction of O,O′-dibenzoyl-(2R,3R)-tartaric acid monohydrate and
calcium oxide according to the procedure reported by us [40]. The optical resolution of racemic dimethyl
1-hydroxy-1-phenylmethylphosphonate (1a) was carried out using 0.25 equiv. of Ca(H-DBTA)2 (2)
in methyl ethyl ketone (Scheme 2). The crystalline diastereomeric complex with a composition of
Ca[(S)-1a •H-DBTA]2 was isolated by filtration. The diastereomeric excess of the crystals was 47%,
which was determined by chiral HPLC. The diastereomer was purified by recrystallization from methyl
ethyl ketone, which afforded Ca[(S)-1a •H-DBTA]2 with a de of 96% and in a yield of 31%. Crystals
suitable for single crystal X-ray analysis were prepared from this sample by dissolving it in acetone,
and allowing the solvent to evaporate slowly. Decomposition of the Ca[(S)-1a • H-DBTA]2 complex by
extraction led to an enantiomeric mixture of α-hydroxyphosphonate 1a with an enantiomeric excess of
96% in yield of 28%. Single crystals of (S)-1a were prepared from this enantiomeric mixture (Scheme 2).
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Scheme 2. Procedure for the resolution of α-hydroxyphosphonate 1a with Ca(H-DBTA)2 and the
preparation of Ca[(S)-1a • H-DBTA]2 and (S)-1a single crystals.

The optical resolution of dimethyl 1-hydroxy-1-(2-methoxyphenyl)methylphosphonate (1b)
was also performed with 0.25 equiv. of Ca(H-DBTA)2 (2) in benzyl alcohol, and also in ethyl
acetate (Scheme 3). Using benzyl alcohol as the solvent, the corresponding diastereomeric complex
Ca[(R)-1b • H-DBTA]2 was obtained with a diastereomeric excess of 68%, and in yield of 99%.
Single crystals were obtained from the diastereomeric complex using acetone as the solvent. The optical
resolution of α-hydroxyphosphonate 1b in ethyl acetate afforded Ca[(R)-1b • H-DBTA]2 with a
de = 60% in a yield of 62%. The diastereomeric complex from the latter experiment was purified
by two consecutive recrystallizations from ethyl acetate to give the diastereomer with a de of 68%.
The Ca[(R)-1b •H-DBTA]2 complex was decomposed by extraction to give an enantiomeric mixture
of α-hydroxyphosphonate (R)-1b with an enantiomeric excess of 68%, and in a yield of 34%. Single
crystals of (R)-1b were prepared from this enantiomeric mixture using acetone as the solvent (Scheme 3).
Despite the fact that diastereomeric or enantiomeric mixtures with an optical purity of 68% (in both
cases) were used for the preparation of crystals suitable for X-ray analysis, the corresponding single
crystals were of high diastereomer or enantiomer purity (de/ee > 93%). Single crystal X-ray diffraction
studies established absolute configurations of the sample crystals of both the resolved target compounds
as (S)-1a and (R)-1b, as well as their complexes Ca[(S)-1a • H-DBTA]2 and Ca[(R)-1b • H-DBTA]2.
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2.2. X-Ray Analysis of Optically Active (S)-1a and (R)-1b α-Hydroxyphosphonates and
Ca[(S)-1a • H-DBTA]2 and Ca[(R)-1b • H-DBTA]2 Diastereomeric Complexes

Molecular features of the target guest molecules in the resolution experiments (S)-1a and (R)-1b
have no unusual intramolecular bonding in their solid state forms (Figures 1 and 2). An analysis of
intermolecular relations in the crystalline forms attests the formation of O-H . . . O donor . . . acceptor
types of primary H-bridges. Such chains of H-bridges in (S)-1a and (R)-1b are produced in their chiral
space groups P21 and P212121.Symmetry 2020, 12, x FOR PEER REVIEW 5 of 14 
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2.3. Sub-Units and Intermolecular Effects in Ca[(S)-1a • H-DBTA]2 and Ca[(R)-1b • H-DBTA]2
Diastereomeric Complexes

The much more complicated Ca-salt complexes are crystallizing in the same monoclinic C2
space group with the Ca2+-cation sitting in special position on a crystallographic twofold rotor
axis (Figures 3 and 4). Thus, the crystallographic asymmetric unit is made up from the half of the
chemically sensible neutral (formally ‘molecular’) monomer unit. A further principal note comes from
the analysis of the covalent linked molecules through coordination. Accordingly, these crystals are
catemer (polymeric) structures having an infinite 1D-chain with [0 1 0] base vector, i.e., chains propagated
along the crystallographic b axes. A further peculiarity is of the C2-symmetric double-strand feature of
these chains fused through the metal ions. From the point of view of the resolution from a racemate
pool, we need to extend into the region of supramolecular interactions. As coordination is a basic
vehicle in that too, this was analyzed in the first place.
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Figure 4. Molecular (monomer unit) structure of compound Ca[(R)-1b • H-DBTA]2 in the crystal with
thermal ellipsoids drawn at 50% probability level. [41] Unlabeled atoms are generated by the twofold
crystallographic symmetry.

2.4. Coordination in Ca[(S)-1a • H-DBTA]2 and Ca[(R)-1b • H-DBTA]2 Diasteremeric Complexes

The Ca2+-cation coordination sphere is a square bipyramid polyhedron, as it was found earlier
from similar resolution experiments [36,40]. The coordination sphere is composed such that two target
resolute molecules O=P moieties are ligated in symmetric positions, while the square basal plane is
made of 2-2 O atoms of the two ligating H-DBTA anions, one from the carboxylate, and the other
from the carboxylic group. Figures 5 and 6 show some schematics of the coordinating polyhedron
main features.
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Figure 5. The Hirshfeld dnorm surface [42,43] of a central Ca-ion in a 3-molecule Ca[(S)-1a • H-DBTA]2

concatenated pile. Where Ca2+ links are shorter than the sum of the van der Waals radii the surface
will be proportionally painted in red hue while the longer a contact is, the more blue the color will be
and the contacts around the sum of van der Waals radii being white. H-atoms were omitted for clarity
from this drawing.
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Figure 6. (a) Electrostatic potential colored surface [42,43] of the (S)-1a in the 3 salt complex; (b) inset
from the same view; electrostatic potential (min/max values are −0.295 and 0.201 au.).

An ideally spherical (interaction-free) Hirshfeld-surface [42,43] is distorted into an asymmetric
drop-like shape, while keeping the twofold symmetry. Distortions are due to coordination and also
largely influenced by the asymmetry of the surrounding showing inherent direction dependence
along the twofold axis direction (i.e., it is a polar axis). As directional senses of polar axes are
physically different at the two ends of such an axis, they might exhibit dielectric polarization as
e.g., in pyroelectric or piezoelectric crystals. Table 1 lists basic distances defining the coordination
polyhedron in Ca[(S)-1a • H-DBTA]2 and Ca[(R)-1b • H-DBTA]2. The uniform and nearly unity
quadratic elongation of 1.006 for 3 and 1.004 for 4 indicate formidable similarity and minimal
distortions in the cation coordination [44,45]. These crystal structures apparently follow the four
heuristic principles of Brown [46]. While a detailed comparison of the Ca–O distances between 3 and 4
makes little sense due to the largely differing experimental conditions (data collection temperature,
crystal size, etc.), the tendency appears that Ca–O=P distances seem to be the shortest, while the
tartarate O–Ca distances seem to be a little longer, and more or less alike. These data may in part reflect
that other concurrent effects may operate in these environments.

Table 1. The coordination sphere distances < 2.5 Å around the Ca-cation in 3* [Ca[(S)-1a • H-DBTA]2]
and in 4# [Ca[(R)-1b • H-DBTA]2]. O1 atoms are of the O=P groups, other O atoms come from the
carboxyl–carboxylate moieties.

Atoms 3 3 d(I,J) 4 d(I,J) Atoms 4

O(1) 2.2932(12) 2.284(3) O(1)
O(1)c 2.2932(12) 2.284(3) O(1)d
O(6) 2.3181(15) 2.324(4) O(5)
O(6)c 2.3181(15) 2.324(4) O(5)d
O(10) 2.2961(15) 2.331(4) O(9)a
O(10)c 2.2961(15) 2.331(4) O(9)b

Symmetry operators used on ligating O atoms in the respective crystals. a = [x,−1+y,z]; b = [2−x,−1+y,2−z];
c = [2−x,y,1−z]; d = [2−x,y,2−z]. * Complex salt 3: quadratic elongation 1.006, angle variance 20.6(◦)2. # Complex
salt 4: quadratic elongation 1.004, angle variance 15.3(◦)2.

2.5. Hydrogen Bonding in Diastereomeric Complexes 3 and 4

H-bonding may be one of these concurrent forces and is one of the responsible forces in molecular
recognition events. The H-bonding system in the Ca[(S)-1a • H-DBTA]2 salt complex (Table 2) has
some features linking the H-bridge active neutral OH–phosphonate moieties on one hand. This link is
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realized in the form of the O4 . . . O13 H-bridge of the OH–group to a benzyl–C=O. Here it appears
also contributing to the molecular recognition event by the fixation of the α– OH group of the proper
1a enantiomer in the cleft created by the Ca •H-DBTA environment. It is important to note here that
while the principal binding of 1a and 1b are alike, there are a number of differences in the other weaker
interactions. In the solid matrices of the Ca[(S)-1a •H-DBTA]2 (3) and that of the Ca[(R)-1b • H-DBTA]2

(4) crystals, these interactions are illustrated (c.f. Supplementary Figures S1 and S2) and briefly
enumerated here on the basis of idealized covalent bonds of H-atoms. There is a short contact of
2.35 Å in α-hydroxyphosphonate 1a within diastereomer 3 between the benzoyl C=O moiety and the
H atom at the α C atom. The distance between the O atom of the α OH-group and an ortho-H of the
phenyl group is 2.43 Å. This short intramolecular distance forms a coplanar pseudo 5-membered ring
in 1a. There is one more apparently short inter-stack H . . . H contact (2.1 Å) between the two benzylic
ortho-H atoms. The short distance pattern is different in diastereomeric complexes 4. In contrast with
1a, the Cα H atom of hydroxyphosphonate 1b is involved in an intramolecular close contact (2.26 Å) to
the methoxy-O atom. In this manner, pseudo-5-membered ring is formed that is a coplanar with the
phenyl moiety. As a consequence of this, the corresponding α H atom is no longer easily accessible.
Thus, the molecular recognition is also aided by the benzyl aromatic ring linked to the same Ca-ion,
such that it has a short o-C–H distance (3.09 Å) to the center of the phenyl moiety of 1b. The third
fixing directed interaction is established in this way. Another fixation of the phenyl group of 1b comes
from an interaction (3.17 Å) between a para-C–H and another benzyl ring center. In this way an infinite
. . . o-C–H --- ring–center/p-C–H --- ring–center/o-C–H . . . cascade of interactions is formed.

Table 2. Potential O--H . . . O hydrogen bond dimensions in the Ca[(S)-1a •H-DBTA]2 salt complex
with d(D . . . A) < R(D) + R(A) + 0.50 and d(H . . . A) < R(H) + R(A) − 0.12 Å and D-H . . . A > 100.0◦.

Donor—H Acceptor D-H (Å) H . . . A (Å) D . . . A (Å) D-H . . . A (◦)

O(4)—H(4) O(13) [i] 0.77(3) 2.04(3) 2.795(2) 166(3)

O(7)—H(70) O(11) 1.07(4) 1.39(5) 2.445(2) 169(4)

Translation of ARU to equivalent positions. [i] = 2−x,y,1−z.

On the other hand, the second OH . . . O type H-bridge stems from the H-DBTA mono-anions.
These play a role of utmost importance from the point of views of both the resolution efficiency, and the
construction of the crystalline matrix, as well as the completion of the coordination sphere. There are
a number of possibilities of making the carboxylate–carboxyl H-bridge arrangements, all of which
belong to the strongest O–H . . . O type, albeit with only slightly varying O . . . O distances between
2.44 and 2.54 Å [47]. The carboxylate–carboxyl H-bridges represent a further additional, in their own
rights also catemer, motif shown in the COO- - COOH form [47], too. Thus, the so formed polymeric
double strand is not only fused through the metal ion coordination but is made even more stiff through
this additional promoter–helper interaction.

Though the recognition cleft created by the Ca •H-DBTA environment cannot be visualized in
situ, ample indirect a priori and a posteriori evidence point to its putative being an approximation
somehow of the crystallization/selection stage. A reasonable impression how such a pocket might look
like can be obtained, when we scrutinize the electrostatic-potential colored surface [42,43] of a selected
portion of the 3 crystal structure (Figure 6). A naked 1a molecule is seen oriented as to the optimal
electrostatic conditions, as well as snugly steric fit is realized. The latter indicates that the important
dispersion effects are also optimized in that environment, as alluded to the fitting of apolar components
earlier. That such rigid framework may exist in concentrated solutions in metastable states around the
precipitation conditions in the form of not only the metal-ion bound tartrate anion but also of the strong
hydrogen-bond to the anionic O-atom is made probable also when considering dielectric [48,49] and
other properties of the 2-butanone (MEK) solvent used in the crystallization experiment. Among other
features MEK is known to have moderate relative permittivity aiding in sustaining cationic–anionic
association, as well as strong ionic H-bridges. A high dielectric constant media (such as formamide,
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water, or DMSO) may be more harmful for such a basically ionic assembly by promoting isolation
of the cationic and the anionic components from each other. MEK may coordinate to the cation as
well. Nevertheless, this solvent is a much weaker competitor against 1a as it lacks at least two strong
interactions, and MEK is a not that efficient isolation media either. It seems that the system of these
crystal structures provides at least a partly rational basis for the explanation of the preference and
success of the hemi–acid-Ca salts for the resolution of optically active hydroxyphosphonates.

3. Conclusions

The optical resolution of two dimethyl α-hydroxy-arylmethylphosphonates (aryl = Ph and
2-MeOPh) was elaborated via diastereomer complex formation using the acidic calcium salt of
O,O′-dibenzoyl-(2R,3R)-tartaric acid as the resolving agent. After purification and decomposition
of the corresponding diastereomers, the major enantiomer (S and R, respectively) of the
α-hydroxyphosphonates were obtained with enantiomeric excess values of 96% and 68%, respectively.
Structures of the two diastereomeric complexes and the two α-hydroxy-arylmethylphosphonates were
evaluated by single crystal X-ray measurements. Detailed study on the X-ray structures allowed
conclusions on the intermolecular interactions operating in the complexes, and on the H-bonding.
The high ee values may be derived from the concerted effects of the intricate combinations of the
3D-effects of directed electrostatic forces involving those from ionic, as well as from neutral H-bridges
and less directional polarization effects manifested in steric fit and interactions. All these are resulting
from a multitude of assembled molecules at a rather early stage of crystal growth.

4. Experimental

The ratio of the α-hydroxyphosphonate and the resolving agent was determined by 1H NMR on a
Bruker DRX 500 instrument operating at 500 MHz.

The enantiomeric excess (ee) values were determined by chiral HPLC on a PerkinElmer Series
200 instrument equipped with chiral HPLC using Kromasil® 5 µm Amycoat or Phenomenex Lux®

Amylose-2 5 µm column (250 × 4.6 mm ID, hexane/ethanol 85:15 as an eluent with a flow rate of 0.8
mL/min, T = 20 ◦C, UV detector α = 254 nm). Retention times: 9.9 min for (S)-1a, 12.3 min for (R)-1a
(Kromasil® 5 µm Amycoat column); 14.9 min for (R)-1b and 16.8 min for (S)-1b (Phenomenex Lux®

Amylose-2 5 µm column).
Racemic α-hydroxyphosphonates (1a and 1b) [39] and resolving agent Ca(H-DBTA)2 (2) [40] were

prepared according to procedures reported by us.

4.1. Single Crystal X-Ray Diffraction Studies of Optically Active α-Hydroxyphosphonates (S)-1a and (R)-1b as
Well as of the Diastereomeric Complex Ca[(R)-1b • H-DBTA]2

Single crystals of compound (S)-1a, (R)-1b and Ca[(R)-1b •H-DBTA]2 suitable for X-ray diffraction,
were obtained by slow evaporation of the respective acetone solutions. The crystals were introduced
into perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin glass
fiber. Data collection were performed with an Oxford Xcalibur 3 diffractometer using the CrysAlisPro
software [50]. Absorption correction using the multiscan method [50] was applied. The structures were
solved with SHELXS-97 [51], refined with SHELXL-97 [52] and finally checked using PLATON [53].

4.2. Single Crystal X-Ray Diffraction Studies of Diastereomeric Complex Ca[(S)-1a • H-DBTA]2

Single crystals of compound Ca[(S)-1a • (H-DBTA)]2, suitable for X-ray diffraction, were obtained
and treated as of the other three compounds. Data collection was performed with a Bruker D8 Venture
diffractometer equipped with a Bruker D8 Venture TXS rotating anode X-ray tube using the Bruker
Instrument Service software [54], SAINT software [55] was used for data reduction. Absorption
correction using multiscan method within the SADABS software [56] was applied. The structure was
solved with SHELXS-97 [51], refined with SHELXL-97 [52], and finally checked using PLATON [53].
Details for data collection and structure refinement are summarized in the Supplementary Materials.
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Essential crystallographic data and model coordinates for 1a/4 were deposited with the Cambridge
Crystallographic Data Centre and are accessible under the CCDC Deposition Numbers 1990880–1990883
at https://www.ccdc.cam.ac.uk/structures.

4.3. Procedure for the Preparation of Optically Active Ca[(S)-1a • H-DBTA]2 Complex and Its Single Crystals

A mixture of 3.8 mmol (0.81 g) of dimethyl 1-hydroxy-1-phenylmethylphosphonate (1a) and
0.95 mmol (0.71 g) of Ca(H-DBTA)2 was dissolved in 3.0 mL of methyl ethyl ketone at reflux. After the
solution became clear, it was allowed to cool to 26 ◦C. After stirring for 24 h at 26 ◦C, the crystalline
diastereomeric complex was filtered, and it was washed with 1.5 mL of methyl ethyl ketone to give
0.51 g (yield = 46%) of Ca[(S)-1a • H-DBTA]2 with a diastereomeric excess of 47%. The diastereomeric
complex was purified by crystallization: 3.0 mL of methyl ethyl ketone was added to the diastereomeric
complex and the suspension was heated at reflux until it became clear. The solution was allowed to cool
to 26 ◦C and it was stirred for 24 h at 26 ◦C. Filtration of the crystalline diastereomeric complex afforded
0.35 g (yield = 31%) of Ca[(S)-1a • H-DBTA]2 with a diastereomeric excess of 96%. Then, 4.2 µmol
(5.0 mg) of the diastereomeric complex obtained was dissolved in 40 µL of acetone. The solvent was
allowed to evaporate slowly to give single crystals of Ca[(S)-1a • H-DBTA]2.

4.4. Procedure for the Preparation of Optically Active (S)-1a and Its Single Crystals

To 0.35 g of Ca[(S)-1a • H-DBTA]2 (de = 96%) prepared according to the method shown above,
20.0 mL of 5 m/m% NaHCO3 solution was added. The aqueous phase was extracted with 4 × 20.0 mL
of dichloromethane to afford 0.11 g (yield = 28%) of (S)-1a with an enantiomeric excess of 96%. Then,
0.02 mmol (5.0 mg) of (S)-1a so obtained was dissolved in 40 µL of acetone. The solvent was allowed
to evaporate slowly to give single crystals of (S)-1a.

4.5. Procedure for the Preparation of Optically Active Ca[(R)-1b • H-DBTA]2 Complex and Its Single Crystals

A mixture of 0.50 mmol (0.12 g) of dimethyl 1-hydroxy-1-(2-methoxyphenyl)methylphosphonate
and 0.13 mmol (0.09 g) of Ca(H-DBTA)2 was dissolved in 0.30 mL of benzyl alcohol under reflux.
After the solution became clear, it was allowed to cool to 26 ◦C. After stirring for 24 h at 26 ◦C,
the crystalline diastereomeric complex was filtered, and it was washed with 0.20 mL of benzyl alcohol
to give 0.15 g (yield = 99%) of Ca[(R)-1b • H-DBTA]2 with a diastereomeric excess of 68%. Then,
4.0 µmol (5.0 mg) of the diastereomeric complex obtained was dissolved in 40 µL of acetone. The solvent
was allowed to evaporate slowly to give single crystals of Ca[(R)-1b • H-DBTA]2.

4.6. Procedure for the Preparation of Optically Active (R)-1b and Its Single Crystals

A mixture of 8.7 mmol (2.1 g) of dimethyl 1-hydroxy-1-(2-methoxyphenyl)methylphosphonate
and 2.2 mmol (1.6 g) of Ca(H-DBTA)2 was dissolved in 40.0 mL of ethyl acetate at reflux. After the
solution became clear, it was allowed to cool to 26 ◦C. After standing 3 h at 26 ◦C, the crystallized
diastereomeric complex was filtered out and was washed with 20.0 mL of ethyl acetate to give 1.6 g
(yield = 62%) of Ca[(R)-1b • H-DBTA]2 with a diastereomeric excess of 60%. The diastereomeric
complex was purified by two recrystallization steps from 40.0 and 15.0 mL of ethyl acetate, respectively.
For the recrystallization, the diastereomeric complex was dissolved in ethyl acetate on heating, then the
solution was allowed to cool to 26 ◦C. After 3 h of stirring, the crystalline diastereomeric complex was
filtered to afford eventually 0.99 g (yield = 39%) of Ca[(R)-1b • H-DBTA]2 with a diastereomeric excess
of 68%. Then, 70.0 mL of 5 m/m% NaHCO3 solution was added to the diastereomeric complex and
the aqueous phase was extracted with 4 × 70.0 mL of dichloromethane to afford 0.34 g (yield = 34%)
of (R)-1b with an enantiomeric excess of 68%. Finally, 0.02 mmol (5.0 mg) of (R)-1b obtained was
dissolved in 40 µL of acetone. The solvent was allowed to evaporate slowly to give single crystals of
(R)-1b.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/12/5/758/s1.
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