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Abstract: Low-cost Laser Detection and Ranging (LiDAR) is crucial to three-dimensional (3D) imaging
in applications such as remote sensing, target detection, and machine vision. In conventional
nonscanning time-of-flight (TOF) LiDAR, the intensity map is obtained by a detector array and the
depth map is measured in the time domain which requires costly sensors and short laser pulses.
To overcome such limitations, this paper presents a nonscanning 3D laser imaging method that
combines compressive sensing (CS) techniques and electro-optic modulation. In this novel scheme,
electro-optic modulation is applied to map the range information into the intensity of echo pulses
symmetrically and the measurements of pattern projection with symmetrical structure are received
by the low bandwidth detector. The 3D imaging can be extracted from two gain modulated images
that are recovered by solving underdetermined inverse problems. An integrated regularization
model is proposed for the recovery problems and the minimization functional model is solved by
a proposed algorithm applying the alternating direction method of multiplier (ADMM) technique.
The simulation results on various subrates for 3D imaging indicate that our proposed method
is feasible and achieves performance improvement over conventional methods in systems with
hardware limitations. This novel method will be highly valuable for practical applications with
advantages of low cost and flexible structure at wavelengths beyond visible spectrum.

Keywords: compressive sensing; image reconstruction; infrared imaging; laser radar; reconstruction
algorithm

1. Introduction

Laser Detection and Ranging (LiDAR) is a remote sensing technology that obtains intensity
and range of objects by transmitting laser pulses and receiving return pulses [1]. As it displays
advantages of high-reliability, longitudinal resolution, and anti-electric magnetic interference ability,
LiDAR is widely used in multiple areas such as target detection and recognition, remote sensing,
and three-dimensional (3D) scene imaging [2,3], wherein nonscanning LiDAR system is undergoing
major development in recent years because of features such as low requirement of light source, ability
to detect moving objects, and image obscuring objects [4–6].

At present, an important experimental-research branch of 3D LiDAR system is achieving
single-pixel nonscanning imaging and most of this research are based on the new sensing modality
called compressive sensing (CS) [7–9]. This new mathematical theory was proposed by Donoho
and Candès [10,11] initially and has expanded greatly since then. The CS framework for the signal
acquisition was a major breakthrough in signal processing community after the famous Shannon
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sampling theorem. It tried to sense enough information of a sparse signal by projecting the data
in a space incoherent with the data’s structure, so that the original signal can be reconstructed
perfectly [12,13]. Thanks to the effort of Duarte and Davenport [14] who presented a single-pixel CS
camera architecture, CS theory has expanded greatly from methodology to practice in both active and
passive imaging technologies. Duarte and Davenport’s work paved the way for various succeeding 3D
LiDAR applications such as Howland experimentally demonstrating a photon-counting single-pixel
time-of-flight (CS-TOF) laser radar camera [15] and Sun showing a modified TOF 3D imaging system
(M-CS-TOF) with an accuracy of ∼3 mm [16].

TOF imaging is performed by correlating the detection time of the back-scattered light with
the time of illumination pulses [17]. As a direct ranging method, TOF imaging system depends
on narrow bandwidth of illumination laser pulses and the short rise time of detectors to achieve a
high range resolution. To overcome such limitations, indirect methods including time slicing (TS),
intensity correlation and gain modulation in range-gated imaging systems have become increasingly
popular [18–20]. The TS technique obtains a full depth map by recording multiple frames whose
number is proportional to the required depth resolution [21]. Therefore, tons of 2D images are required
to construct one 3D image with high resolution. As to intensity correlation, the range information can
be restored by analyzing the intensity variation in the overlapping areas of two range-gates with a
small number of distinct images [19]. However, rectangular-shaped or triangular-shaped pulses with
high quality are required [22]. Furthermore, the gate widths should be carefully designed in order to
adapt to the laser pulse widths [23]. On the contrary, gain modulation method is a pulse-shape-free
method. It only needs two gain-modulated images to construct time-resolved imaging, making it
possible to achieve accurate imaging reconstruction with less data and low-cost system [24].

In this paper, a CS-based electro-optic modulation scheme in nonscanning LiDAR and a 3D
reconstruction method are proposed. This scheme combines the CS technology with gain modulation
to achieve the 3D imaging of the target. Laser pulses are emitted toward the target and then the
scattered light from the target returns to the system. Peak values are recorded out of total echo
pulses which is the sum of echo pulses after spatial modulation and gain modulation are applied
in a symmetrical procedure. Next, two modulated images can be recovered by the peak values in
the CS framework corresponding to different gain modulation functions respectively. Furthermore,
an intensity map and a depth map of the target scene are able to be extracted from the two recovered
images which are obtained by solving underdetermined inverse problems. We propose an integrated
regularization model for the recovery problems and this minimization functional model is solved by a
proposed algorithm applying the alternating direction method of multiplier (ADMM) technique. As an
extension of our previous related work [25], the novel resolution to the 3D imaging problem lies in the
proposed method that can overcome hardware limitations, by modulating the range information into
the reflective light intensity before compressive sampling. Numerical simulations for 3D imaging with
various subrates are presented to demonstrate the improved performance of the proposed method.

This paper is organized as follows. Section 2 presents a prototype of the CS-based RGI system
applied the electro-optic modulation method for 3D imaging and its mathematical model. Section 3
presents the 3D measurement and reconstruction using CS-based electro-optic modulation method
after we review the CS theory. Section 4 shows simulation experiments based on typical discrete and
continuous targets to validate the proposed method. Finally, Section 5 presents the conclusion.

2. System Description

In this section, we propose a 3D LiDAR system to implement the CS-based electro-optic
modulation method. In addition, the working mechanism of the system is presented by introducing
the proposed system setup and its laser pulse model.
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2.1. Proposed System Setup

As is shown in Figure 1, the proposed CS range-gated imaging (RGI) system mainly consists of a
transmitter, a receiver, a narrowband filter (NBF), an electro-optic modulator (EOM), two polarizers,
a digital micromirror device (DMD), and a one-pixel avalanche photodiode (APD) detector. There is a
red light path with white arrows and blue data path in dotted line in Figure 1.

Figure 1. Schematic diagram of the proposed compressive sensing RGI system.

First, a pulsed laser is emitted toward the target scene. Second, reflected light returns to the RGI
system. With closing the receiver’s gate while the pulsed laser is traveling, the system’s Signal-to-Noise
Ratio (SNR) can be improved. Third, an EOM is used to conduct gain modulation and a DMD is
applied to conduct spatial modulation with the gate open [26–28]. Forth, a NBF is used to remove
background radiation from sunlight and other sources. Finally, the reflected light arrives at a one-pixel
APD detector.

Figure 2 contains a sequence chart for the RGI system and gain modulation function. In Figure 2a,
Vin (t) and Vde (t) are the applied voltages of the EOM to generate different gain modulations. The index
“in” is short for increasing and the index “de” is short for decreasing. The intensities of the passing
light are modulated with gin (t) and gde (t), respectively. Here, we define R0 is the range according
to the optical gate open beginning time; D with subscript is the range between the object and R0 in
Figure 2b,c. R is the range between the RGI system and the object; and L is the gate opening range.
The laser pulse is emitted at the time of T0. The gate opens at the time of T1 and the opening time of
RGI system is determined by the duration time of gate opening, TG. According to the round-trip travel
range, L is given by

L =
1
2

cTG, (1)

where c is the speed of light. Then, we can get

R = R0 + D. (2)



Symmetry 2020, 12, 748 4 of 20

Figure 2. The time sequence of gain modulation for the RGI system: (a) time sequence of receiver
gate, applied voltage of the EOM, gain function, laser pulse, and received pulse of APD; (b) received
pulse and its subpulses with gain function gin(t); (c) received pulse and its subpulses with gain
function gde(t).

The pulse received by the APD is a sum of overlapped pulses with particular modulation from
different distances. Figure 2b,c explain how the components of the pulse of APD are modulated and
work together. The pulses in black dash line are echo pulses from objects at different distances and they
overlap with each other that results in the pulse of APD, pt (t), in black full lines. The red dash lines
are gain modulation functions gin (t) and gde (t) when the gate opens, respectively. Then, the range D
and R are able to be resolved from two intensity-modulated CS-based recovered images which will be
introduced in detail later. Ultimately, time-resolved imaging can be achieved.

2.2. Proposed System Model

To be more specific, the system model is presented as follows. The time propagation of the laser
pulse from the transmitter pt is of the form:

pt(t) =

{
(t/τ)2e(−

t
τ ) t ≥ 0

0 t < 0
(3)

where τ = T1/2 /3.5 and T1/2 is the full width at half maximum (FWHM) of the pulse [3]. Assuming
that the target is a Lambert diffuse point-like reflector, the energy of the echo signal Er can be
represented as the following formula:

Er =
ρD2

r T2
a η

4R4

∫
TG

pt (t− 2R/c) dt, (4)

where ρ is the reflectance of the target, Dr is the diameter of the receiver, Ta is the single-pass
atmospheric transmittance, η is the efficiencies of the optical transmitting and receiving systems
and R is the range between the target and the receiver [29]. Since the APD can only obtain the intensity
of the pulses rather than their flying time, gain modulation by an EOM based on the electro-optic effect
of crystals is applied to realize time-resolved imaging.

Figure 3 presents a typical structure of longitudinal electro-optic modulation using Pockels
effect. It mainly consists of the electro-optic crystals and the polarizers, P1 and P2, in a universal
coordinate system with x-axis, y-axis and z-axis. The polarizers are fixed and perpendicular to each
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other. The polarized light whose vibration is parallel to x axis enters the EOM and it is resolved into
two components parallel to x′ axis and y′ axis respectively. When a voltage is applied to the EOM in
the direction of propagation (z axis), phase retardation of the light will take place between the two
components and the intensity of the light is modulated. The phase shift θ proportional to the applied
voltage V (t) can be given by

θ =
2π

λ
n3

0γ63V (t) , (5)

where λ is the wavelength of light, n0 is the ordinary refractive indices of crystal and γ63 is the crystal
electro-optic coefficient [24]. The applied voltages are given in the monotonously increasing and
decreasing form of:

Vin(t) =
Vπ
TG

t, (0 ≤ t ≤ TG)

Vde(t) = Vπ − Vπ
TG

t, (0 ≤ t ≤ TG)
, (6)

where the half-wave voltage Vπ (θ = π) is given by

Vπ =
λ

2n3
0γ63

. (7)

Then we can have the phase shift θ as a function of time t:

θ = π · t
TG

, (0 ≤ t ≤ TG) . (8)

Applying Equation (1) to Equation (8), the function of the phase shift θ and the depth D are
obtained as:

θ = π · D
L

, (0 ≤ D ≤ L) . (9)

During the gated opening time, the applied voltages are Vin (t) and Vde (t). The intensities of the
light, Ein and Ede, are modulated with gain functions gin (t) and gde (t) respectively:

Ein = Er sin2(θ/2)
Ede = Er cos2(θ/2)

. (10)

Figure 3. Schematic diagram of electro-optic modulation.
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3. CS-Based Electro-Optic Modulation Method for 3D Imaging

3.1. Compressive Sensing Theory

Compressive sensing is different from the traditional approach to digital data acquisition that
samples an analog signal uniformly at or above the Nyquist rate. CS is a measurement technique to
employ optimization to detect a sparse n-dimensional signal with m < n samples [30].

The detection and reconstruction process can be modeled by vectors and matrices as follows.
For convenience sake, we use n-dimensional vector x represents the gray value of an original image.
In addition, we then take advantage of transform coding to represent the image in terms of the
coefficients {αi} of an orthonormal basis expansion:

x = ∑n
i=1 αiψi, (11)

where {ψi}n
i=1 are the n× 1 basis vectors. We can concisely write the original image as

x = Ψα, (12)

by forming the coefficient vector α and the n× n transforming matrix Ψ which is the stack of vectors
{ψi}n

i=1 as columns. For natural images, x is mostly compactly represented by considering only
significant elements in the sparse basis, such as discrete cosine transform (DCT) and wavelet transform
(DWT) [31,32].

In addition, we then construct a m� n dimensional measurement vector y by multiplying x by
an m× n matrix Φ describing the measurement matrix:

y = Φx + ε = Aα + ε, (13)

where vector ε is the additional noise. As m � n, the dimension of the signal has been reduced.
Matrix A is called sensing matrix and determined by A = ΦΨ. The subsampling rate is defined by
subrate = m/n and conventional recover methods are incapable since subrate < 1.

Previous research has shown that the sensing matrix obeys the so-called restricted isometry
property (RIP) when Φ is drawn randomly from a suitable distribution [33]. In this way, the inverse
problem of constructing the signal x from the measurements y can be achieved by solving a 1-norm
(p = 1) or 2-norm (p = 2) minimization problem with relaxed constraints:

min
α∈Rn
||α||p, s.t. ||Aα− y||2 ≤ ε, (14)

where ε bounds the amount of noise in the sampling [34]. Equation (14) is a convex problem and can
be solved efficiently by various construction algorithms such as the Total Variation (TV) minimization
based on augmented Lagrangian and alternating direction algorithm (TVAL3) which are able to handle
different boundary conditions for α and widely used in CS systems [35].

3.2. Peak Value Obtained for 3D Reconstruction

Assuming the power of the echo signal is Pr, the range-discretized form of the total power of echo
pulses by sparse sampling in the view of field can be described as a sum of the pulses from each pixel
with different amplitudes and delay times:

pr,j (t) =
n

∑
i=1

Φ(j,i)g (t) Pr (Ri) p (t− ti) , (15)

where Φ is a m× n measurement matrix, ti = 2Ri/c and g (t) is the gain modulation function applied
by the EOM.
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For 3D compressive imaging, a 2D extended mathematical model of measuring process is
presented as follows according to Equations (13) and (15) in a discretized matrix form:

Y = ΦXFgain + εM, (16)

where Y is a m × l matrix as total echo waveform, X is a n × l matrix as echo waveform from n
pixels of the target scene, Fgain is a l × l diagonal matrix as the gain modulation function and εM
is the additive noise matrix. Only peak values of the total echo waveform are recorded as the
compressive measurements rather than recording the whole waveform. In this instance, we define
vector y = (y1, y2, · · · ym)

T as the CS measurements in the form of:

y = Φxg + ε = ΦGx + ε, (17)

where xg =
(

xg,1, xg,2, · · · , xg,n
)T is the n × 1 vector used to present the modulated intensity map

and ε is the additive noise vector. xg can be presented as the product of the gain value matrix
G = diag (g1, g2, · · · , gn) where diag(·) represents a diagonal matrix and the n× 1 vector x which
presents the original echo energy from the target. Applying different voltages, Vin (t) and Vde (t) ,
to the EOM, the original intensity map are modulated to xin and xde. Then two sets of measurements
yin and yde are achieved in the CS framework shown in Equation (17), respectively.

3.3. 3D Image Reconstruction

In this section, we proposed a recovery method to achieve the goal of 3D imaging according to
the CS measurements yin and yde. A set of inverse problem formulations within the CS framework
are presented and the alternating direction method of multipliers (ADMM) combined with convex
optimization algorithms is employed. In this way, the modulated intensity images are obtained
to determine a range value and a gray value for each pixel in the target scene, namely x̂ =

(x̂1, x̂2, · · · , x̂n)
T and r̂ = (r̂1, r̂2, · · · , r̂n)T , respectively.

For clarity, we present the electro-optical modulated CS measurement vectors in the form
of Equation (17):

yin = Φxin + εin = ΦGinx + εin (18)

yde = Φxde + εde = ΦGdex + εin. (19)

There is a useful property of the gain functions for one particular target according to the proposed
system model in Section 2.2, especially Equation (10). The property shows that the sum of the two gain
value matrices is not only certain but also known:

Gin + Gde = I, (20)

where I is the unit matrix.
We enforce the sparsity of the signal to be constructed in some transform domain as a prior and

construct the inverse problem generally. However, reconstructions based on primary regularizations
may lead to the serious distortion for the modulated images with complex texture which contain
the intensity and depth information at the same time. Therefore the shearlet transform and a
generalization of TV (TGV) are adopted as the regularization [36]. Furthermore, the optimal solutions
of the modulated image and the intensity map are supposed to be achieved simultaneously in the
consideration of the requirement of subsequent computation. In addition to the regularization of the
modulated image xin or xde, the intensity map x is regularized by TV norm as a natural signal. Thus,
we formulate the proposed 3D reconstruction problem with the regularization terms of both xin and x
as follows:
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min
xin ,x

λSH

N

∑
j=1
||SHj(xin)||+ TGV2

α (xin) + ∑
i
||Dix||2 (21)

where SHj(·) is the jth subband of the shearlet transform, N is the total number of subbands which is
related to the number of scales, λSH > 0 is a balancing factor relying on the gradients and the sparsity
of the images under the shearlet transform [36] and Dix ∈ R2 is the discrete gradient of x at pixel i,
namely the TV norm.

It should be pointed out that the optimization problem in Equation (21) is constrained by
Equations (18) and (19). Incorporating Equation (20) into them leads to the constrained term with
respect to xin and x and the integrated optimization problem with observation constraint is as follows:

min
xin ,x

λSH

N

∑
j=1
||SHj(xin)||+ TGV2

α (xin) + ∑
i
||Dix||2 s.t. 2yin + yde = Φxin + Φx. (22)

There is no off-the-shelf algorithm to solve this problem, hence we use the alternating direction
method of multipliers (ADMM) to split the problem into multiple subproblems that can be solved
easily [37].

It is straightforward to convert the equality constrained minimization problem into an
unconstrained regulated Lagrangian optimization problem using the augmented Lagrangian method.
For Equation (22), its augmented Lagrange function is

LA(xin, x, λ) =λSH

N

∑
j=1
||SHj(xin)||+ TGV2

α (xin) + ∑
i
||Dix||2

+ λT(Φxin + Φx− 2yin + yde) +
ρ

2
||Φxin + Φx− 2yin + yde||22, (23)

where λ is the Lagrangian multiplier and ρ is the positive regularization parameter associated with
the penalty term. By doing this, the solution of Equation (21) is obtained by seeking a saddle point of
LA(xin, x).

To solve the problem of minimizing the augmented Lagrangian function efficiently, the ADMM
technique is embedded here to decompose it into two subproblems as follows. The xin-subproblem is
separable with respect to xin. Given xk, the optimization problem associated with xin reduces to

min
xin
LA(xin, xk) =λSH

N

∑
j=1
||SHj(xin)||+ TGV2

α (xin) + ∑
i
||Dixk||2

+ λT(Φxin + Φxk − 2yin + yde) +
ρ

2
||Φxin + Φxk − 2yin + yde||22, (24)

where k is the iteration number. The xin-subproblem can be reformulated as a model of several
nondifferentiable l1 terms by deriving another form of TGV2

α in terms of l1 minimization.
By introducing auxiliary variables and quadratic penalty terms, the subproblem is able to be solved
using the detail-preserving regularization scheme-based algorithm in [36].

With xin fixed, the x-subproblem can be written as

min
x
LA(xk

in, x) =λSH

N

∑
j=1
||SHj(xk

in)||+ TGV2
α (xk

in) + ∑
i
||Dix||2

+ λT(Φxk
in + Φx− 2yin + yde) +

ρ

2
||Φxk

in + Φx− 2yin + yde||22, (25)

which is equivalent to a quadratic function. It is difficult to solve this function directly because of
the non-differentiability and non-linearity of the regularization terms. The alternating minimization
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scheme and multipliers updating derived algorithm may be used to tackle the subproblem efficiently
and accurately which is called TVAL3 presented in [38]. In special, it has been proven to accelerate
the TVAL3 scheme that the structured measurement matrices derived from Hadamard transform are
adopted in the CS framework.

According to the ADMM scheme, the multiplier should be updated at each iteration with the
update formula of λ as follows:

λk+1 = λk + ρ(Φxk+1
in + Φxk+1 − 2yin − yde). (26)

All derivations above complete the discussion of the optimization to minimize the augmented
Lagrangian function (23) and the reconstruction of the modulated intensity map corresponding to xin,
x̂in and the intensity map x̂ is achieved from the CS measurements. The other modulated intensity map,
denoted as x̂de, can be achieved in the same method. The computational process can be accelerated
due to the knowledge of x̂ which has been obtained in the previous stage.

We can estimate the distance value of each pixel r̂i in the target scene from the two modulated
maps according to Equations (9), (10) and (17):

r̂i = R0 +
2L
π

arctan

√
x̂in (i)
x̂de (i)

. (27)

In total, the constructed 3D image of the target scene can be achieved as a combination of the
intensity map x̂ and the depth map r̂. A summary of the procedures of the presented 3D reconstruction
method is provided as follows in Algorithm 1.

Algorithm 1: The proposed 3D reconstruction algorithm
Input: measurement vector yin, measurement vector yde, measurement matrix Φ.

Initialization: Set k, λ0, ρ0, and set starting points x0
in, x0;

while a stopping criteria unsatisfied do
Set xk+1

in = xk
in, and xk+1 = xk;

Get xk+1
in = min

xin
LA(xin, xk) in Equation (24) by the detail-preserving regularization

scheme-based algorithm;
Get xk+1 = min

x
LA(xk

in, x) in Equation (25) by TVAL3;
Update λk+1 using Equation (26);

end
Set x̂in = xk+1

in and x̂ = xk+1, initialize λ0, ρ0 and the starting points x0
de;

Get x̂de = min
xde
LA(xde, x̂) which is similar to Equation (24) by the detail-preserving

regularization scheme-based algorithm;
Compute r̂ using Equation (27);

Output: reconstructed intensity map x̂, reconstructed depth map r̂.

4. Simulation Results and Discussion

To validate the proposed method for 3D LiDAR imaging, a simulation system is established and
the simulation results are presented in this section. The numerical simulations are done with CPU of
Intel Core i3-3220 and 4.00 GB RAM by matlab 2016a (64 bits). The pulsed laser works as an illuminator
at low repetition rate, high pulse energy and short pulse duration. A series of 2D Hadamard derived
patterns are used to modulate the echo pulse for CS measurements [39]. Meanwhile, the EOM is used
to modulate the intensity of echo pulses with gain functions gin (t) and gde (t), respectively. The main
parameters of the 3D imaging LiDAR system are give in Table 1. Generally, the range resolution of
TOF compressive LiDAR with similar parameters is about c/2 times FWHM in seconds which mainly
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depends on FWHM of the laser pulse. The proposed method can provide range super-resolution
ability if we select it as the standard.

Table 1. Parameters of the simulation experiments.

Expression Value

Wavelength 905 nm
Sampling Rate of APD 1 GHz

Peak Power of Transmitter Pulse 70 W
FWHM 10 ns

Efficiency of Optical Transmitting System 0.9
Efficiency of Optical Receiving System 0.9

Single-pass Atmospheric Transmittance 0.98

4.1. Reconstruction Performance of the Discrete Target

As shown in Figure 4a, a 3D scene is designed as the space discrete target which consists of two
square cardboards cut-outs of the letters “U” and “R”. This is a typical target scene in CS-based 3D
imaging [4,15,17,40]. The boards are distinguished and located parallelly at different positions in the
scene. The distance between the RGI system and the cardboards ranges from 20.3 m to 20.9 m and
therefore the gate opening range of 1 m is designated. The 3D scene is modeled by a combination of
two matrices which are showed as the original intensity map, Figure 4b and the original depth map,
Figure 4c. The original intensity map shows the reflectivity distribution of the target and the depth
map shows the distance between each pixel of the target and the imaging system. In Figure 4c, colors
correspond to the distance and the bar on the right side is added as an annotation.

Figure 4. 3D scene ranged from 20.3 m to 20.9 m: (a) the conceptual graph of the “U & R” target; (b) the
original intensity map; (c) the original depth map.

The visual comparison of the imaging results of the “U & R” target scene by various methods is
given in Figure 5. The measurements are in the presence of white Gaussian noise with SNR = 30 dB
and all of the subrates equal to 10%. Colors correspond to the distance from 20.0 m to 21.0 m and the
bar on the right side is added as an annotation. Figure 5a,c,e is the reconstructed intensity maps of
the target applying CS-TOF, M-CS-TOF and the proposed method, respectively. These figures show
that due to the full use of the CS framework, high-quality intensity maps are obtained which not
only describe the shape feature of the scene but also have the edge detail of the target. Figure 5b is
the reconstructed depth map from the measurements applying CS-TOF. The letters, “U” and “R”,
stand out from the background in the figure but most pixels in them have similar depth values.
It means the CS-TOF approach fails to successfully recover the scene in this system. Figure 5d is
the reconstructed depth map of multiple planar objects applying M-CS-TOF. Two letters at separate
positions are successfully recovered, the depth of each pixel in the target is determined accurately
except for some acceptable noise. For a specific subrate, two intensity images containing range
information are reconstructed in CS framework by two sets of measurements modulated with gin (t)
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and gde (t), respectively. A depth map of the target scene can be obtained from them by the proposed
method. Figure 5f is the reconstructed map of the objects at separate positions with unknown depth by
applying the proposed method. The object planes and edges are recovered accurately to demonstrate
the depth and transverse resolution which indicates the feasibility of the proposed method.

Given subjective observation of the reconstructed maps, Peak Signal to Noise Ratio (PSNR)
criterion, Normalized Mean Squared Error (NMSE) metric and a measure of Structural SIMilarity
(SSIM) are adopted to assess the reconstruction quality as shown in Figure 6. A standard definition of
the PSNR for the reconstructed intensity map x̂ and the original intensity map x is of the form:

PSNR (x̂, x) (dB) = 10log10
N ·max (x)2

∑N
i=1 (x̂ (i)− x (i))2 , (28)

where N is the total number of pixels in x, x̂ (i) and x (i) are the intensity of the ith pixel corresponding
to the reconstructed intensity maps and the original intensity maps, respectively [41]. NMSE is adopted
to compare the reconstructed depth maps with the original depth map:

Figure 5. The 3D reconstruction results of the “U & R” target scene by various methods: (a) the
reconstructed intensity map by CS-TOF; (b) the reconstructed depth map by CS-TOF; (c) the
reconstructed intensity map by M-CS-TOF; (d) the reconstructed depth map by M-CS-TOF; (e) the
reconstructed intensity map by the proposed method; (f) the reconstructed depth map by the
proposed method.
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NMSE
(

d̂, d
)
=

∑N
i=1

(
d (i)− d̂ (i)

)2

∑N
i=1 (d (i))

2 , (29)

where d (i) and d̂ (i) are the depth of the ith pixel corresponding to the original depth maps and the
estimated depth maps, respectively [42].

Besides the criterion above which have clear physical meanings in context of optimization,
another kind of criterion is adopted that is well matched to perceived visual quality for extracting
structural information. SSIM is widely used by comparing local patterns of pixels after normalized for
illuminance and contrast. The index is in a specific form as follows:

SSIM(x, x̂) =
(2µxµx̂ + C1) (2σxx̂ + C2)(

µ2
x + µ2

x̂ + C1
) (

σ2
x + σ2

x̂ + C2
) , (30)

where µ∗ is the mean of the image, σ∗ is the standard deviation, C1 and C2 are constant to avoid
instability under certain circumstances [43]. The index ranges from 0 to 1 and it equals to 1 when two
images are exactly the same.

Figure 6. The objective assessment of reconstruction qualities of the “U & R” target scene using different
approaches: (a) the plots of PSNR for reconstructed intensity maps as a function of subrates; (b) the
plots of SSIM for reconstructed intensity maps as a function of subrates; (c) the plots of NMSE for
reconstructed depth maps as a function of subrates; (d) the plots of SSIM for reconstructed depth maps
as a function of subrates.
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Figure 6 provide the objective assessment of reconstruction qualities of the “U & R” target scene in
the presence of white Gaussian noise with SNR = 30 dB. Figure 6a presents the plots of the PSNR values
for reconstructed intensity maps on various subrates (from 2% to 14%) using different approaches.
It shows that PSNRs of the proposed method are always higher than those of the TOF-based methods as
the subrates increase. The plots corresponding to M-CS-TOF and the proposed method stay stubbornly
high and the PSNRs are more than 40 dB when the subrates reach 6% so that high-quality intensity
maps are achieved. However, the PSNRs of the CS-TOF reconstructing intensity maps are much
lower which results from the error of measurements caused by the echo pulses with different delays
overlapping each other. Figure 6b presents the plots of the SSIM values for reconstructed intensity
maps on various subrates (from 2% to 14%) using different approaches. The plots corresponding to
M-CS-TOF and the proposed method stay stubbornly high and the SSIMs are close to 1 when the
subrates reach 6% so that the structures of the target and the reconstructed image are extraordinary
similar. On the contrary, the SSIMs of the CS-TOF reconstructing intensity maps are much lower.
The SSIMs show similar pattern to the PSNR results, further verify the effectiveness and advantage of
the proposed method. Figure 6c presents the plots of the NMSE values for reconstructed depth maps on
various subrates (from 2% to 14%) using different approaches. It shows that NMSEs of M-CS-TOF and
the proposed method are extremely low especially when the subrates reach 6%. These two methods
are feasible and high-quality depth maps are achieved. There are significant errors in the depth maps
reconstructed by CS-TOF because it fails to conduct multiple peak detection in overlapped echo pulses.
Figure 6d presents the plots of the SSIM values for reconstructed depth maps on various subrates
(from 2% to 14%) using different approaches. All of the SSIMs are close to 1 because the structures
of the depth distribution are simple and the targets are located at only two unique distances. Still,
the performance of the proposed method is as good as M-CS-TOF as the subrate increases which
surpass CS-TOF obviously. These quantitative comparisons clearly indicate that the proposed method
consistently surpasses CS-TOF and achieves the same effect with M-CS-TOF.

From both subjective observation and objective assessment in the above-mentioned, we can assert
that the proposed 3D recover method is effective for discrete 3D targets imaging.

4.2. Reconstruction Performance of the Continuous Target

As is shown in Figure 7a, a 3D scene is designed as the space continuous target which is a 3D
model of a tank T80. Observing from the left anterior of the tank, its entire length is more than 10 m
long. The distance between the tank and RGI system is about 100 m and therefore the gate opening
range of 15 m is designed. The 3D scene is modeled by a combination of two matrices which are
showed as the original intensity map, Figure 7b and the original depth map, Figure 7c. In Figure 7c,
colors correspond to the distance and the bar on the right side is added as an annotation.

Figure 7. 3D scene ranged from 100 m to 115 m: (a) a 3D model of a tank T80 in the target scene; (b) the
original intensity map; (c) the original depth map.
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The visual comparison of the imaging results of the T80 target scene by various methods is given
in Figure 8. The measurements are in the presence of white Gaussian noise with SNR = 30 dB and all
of the subrates are equal to 10%. Colors correspond to the distance from 100.0 m to 115.0 m and the
bar on the right side is added as an annotation.

Figure 8. The 3D reconstruction results of the T80 target scene by various methods: (a) the reconstructed
intensity map by CS-TOF; (b) the reconstructed depth map by CS-TOF; (c) the reconstructed intensity
map by M-CS-TOF; (d) the reconstructed depth map by M-CS-TOF; (e) the reconstructed intensity map
by the proposed method; (f) the reconstructed depth map by the proposed method.

Figure 8a shows the reconstructed intensity maps of the target applying CS-TOF. There is a
big error in terms of the pixel values and the structures of the target are incomplete between the
result and the original intensity map. Figure 8c,e are the reconstructed intensity maps of the target
applying M-CS-TOF and the proposed method, respectively. These figures show that due to the full
use of the CS framework, high-quality intensity maps are obtained which not only describe the shape
feature of the scene but also have the edge detail of the target. Figure 8b is the reconstructed depth
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map from the measurements applying CS-TOF. Unfortunately, the depth map is not only able to
describe the integral outline of the target but also lacks the time-resolved ability. Figure 8d,f are the
reconstructed depth maps of the continuous object applying M-CS-TOF and the proposed method.
The object planes and edges are recovered well to demonstrate the depth and transverse resolution by
determining the depth of each pixel accurately except for some acceptable noise. The errors in the edge
of the object in Figure 8f result from some inaccurate pixels obtained in the optimization computation
procedure, which will be eliminated as the subrate increases. The result indicates the feasibility of the
proposed method.

Figure 9 provides the objective assessment of reconstruction qualities of the T80 target scene in the
presence of white Gaussian noise with SNR = 30 dB. Figure 9a presents the plots of the PSNR values
for reconstructed intensity maps on various subrates (from 2% to 14%) using different approaches.

Figure 9. The objective assessment of reconstruction qualities of the T80 target scene using different
approaches: (a) the plots of PSNR for reconstructed intensity maps as a function of subrates; (b) the
plots of SSIM for reconstructed intensity maps as a function of subrates; (c) the plots of NMSE for
reconstructed depth maps as a function of subrates; (d) the plots of SSIM for reconstructed depth maps
as a function of subrates.

It shows that PSNRs of the proposed method are always higher than those of the TOF-based
methods as the subrates reach 10%. The plots corresponding to M-CS-TOF and the proposed method
stay stubbornly high and the PSNRs are more than 30 dB so that high-quality intensity maps are
achieved. However, the PSNRs of the CS-TOF reconstructing intensity maps are much lower which
results from the error of the measurements used for reconstruction. The phenomenon that the echo



Symmetry 2020, 12, 748 16 of 20

pulses with different delays overlap each other always leads to significant reconstruction errors
applying TOF-based methods. Figure 9b presents the plots of the SSIM values for reconstructed
intensity maps on various subrates (from 2% to 14%) using different approaches. The plots
corresponding to M-CS-TOF and the proposed method stay stubbornly high and the SSIMs are
close to 1 when the subrates reach 10% so that the structures of the target and the reconstructed image
are extraordinary similar. On the contrary, the SSIMs of the CS-TOF reconstructing intensity maps are
much lower. With similar pattern to the PSNR results, the SSIMs further verify the effectiveness and
advantage of the proposed method. Figure 9c presents the plots of the NMSE values for reconstructed
depth maps on various subrates (from 2% to 14%) using different approaches. It shows that NMSEs
of M-CS-TOF and the proposed method are extremely low especially when the subrates reach 10%.
These two methods are feasible and high-quality depth maps are achieved. Figure 9d presents the
plots of the SSIM values for reconstructed depth maps on various subrates (from 2% to 14%) using
different approaches. The SSIMs are close to 1 when the subrates reach 10% except for CS-TOF. Both
the pixel-wise and the structure-wise assessment demonstrates the reconstruction quality. Moreover,
These quantitative comparisons clearly indicate that the proposed method consistently surpasses
CS-TOF and achieves the comparative effect with M-CS-TOF.

From both subjective observation and objective assessment in the above-mentioned, we can assert
that the proposed 3D recover method is effective for continuous 3D targets imaging.

Figure 10 provide the 3D reconstruction results of the “U & R” target with varying reflectance.
The measurements are in the presence of white Gaussian noise with SNR = 30 dB and all of the subrates
equal to 10%. Colors correspond to the distance from 20.0 m to 21.0 m and the bar on the right side is
added as an annotation. The objects are with varying reflectance in the intensity map in Figure 10a,b is
the depth map where two letters are at separated locations. The results demonstrate that the proposed
method is effective for 3D imaging of targets with varying reflectance.

Figure 10. The 3D reconstruction results of the “U & R” target with varying reflectance: (a) the
reconstructed intensity map; (b) the reconstructed depth map.

Table 2 is provided for comparison with the performance of several CS-based 3D imaging methods
in terms of FWHM, sampling rate and the number of frames. To achieve a particular range resolution
as is shown in the simulation above, the required parameters are given when each method is adopted
respectively. The required width of the transmitting laser pulses is free and the required sampling
frequency of the detector is lower because they are not directly relevant to the range resolution.
It means that the proposed method can achieve range super-resolution to reconstruct the 3D scene
when conventional methods are ineffective against the limitation of narrow-bandwidth pulsed lasers
and high-frequency sampling. Moreover, a frame refers to an intensity image recovered from the
measurements which are recorded from the total echo waveforms. Compared with conventional
methods, the proposed method leads to smaller data sets and shorter measuring time that it can obtain
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specific range resolution with much fewer frames. Reconstructing only two frames to achieve 3D
imaging reduces the computation expense resulting in a faster procedure.

Table 2. Performance of several CS-based 3D imaging methods.

Imaging Methods CS-TOF M-CS-TOF Proposed

FWHM resolution related free free
Sampling rate higher higher lower

Sets of measurements some dozens 2
Number of frames some dozens 2

Execution time medium long short

5. Conclusions

In this paper, we presented a compressive sensing based electro-optic modulation method for
nonscanning 3D laser imaging to overcome the limitations of traditional methods. Generally, the flying
time values of laser pulses from multiple pixels do not possess linear properties which means they are
not compressible. The proposed method transforms the flying time values into intensity values of the
echo pulses through electro-optic modulation and peak values of the total echo pulses are recorded
in CS framework. As a result, both the time and reflectivity information are compressible and can
be reconstructed from much smaller sets of their linear projection. Two sets of CS measurements
are obtained to recover the modulated images of the target when a monotone increasing and a
monotone decreasing voltage functions are applied respectively. We formulate a minimization model
integrated with a detail-preserving regularization and TV regularization for the inverse problem
of image retrieval. Then we propose an ADMM imbedded algorithm to solve the unconstrainted
regulated optimization problem efficiently. Finally, the 3D form of the target scene is completed as a
combination of the intensity map and the depth map extracted from the two reconstructed images
with gain modulation. The simulation results demonstrate that the proposed method is able to achieve
high-quality 3D imaging for both the discrete target and the continuous target. More importantly, it has
the advantage of range super-resolution with fewer required frames compared with CS-TOF method
and M-CS-TOF method when echo pulses from targets with different ranges are indistinguishable.
With fewer reconstructed frames in need, the proposed method requires less data for further processing,
thus reducing the computation expense in reconstruction to achieve a faster performance. The research
has important scientific value and is beneficial for the extensive application of 3D laser imaging such
as low-cost LiDAR, high-speed image acquisition and remote sensing. A natural progression of this
work is to build a realizable system for 3D imaging of various targets..
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Abbreviations

The following abbreviations are used in this manuscript:

LiDAR Laser Detection and Ranging
3D Three-dimensional
CS compressive sensing
TOF Time-Of-Flight
ADMM alternating direction method of multiplier
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RGI Range-Gated Imaging
NBF NarrowBand filter
EOM Electro-Optic Modulator
DMD Digital Micromirror Device
APD Avalanche PhotoDiode
SNR Signal-to-Noise Ratio
FWHM Full Width at Half Maximum
DCT Discrete Cosine Transform
DWT Discrete Wavelet Transfrom
RIP Restricted Isometry Property
TV Total Variation
TVAL3 Total Variation minimization based on Augmented Lagrangian and ALternating direction Algorithm
TGV Generalization of TV
PSNR Peak Signal to Noise Ratio
NMSE Normalized Mean Squared Error
SSIM Structural SIMilarity
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