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Abstract: In this paper, a stochastic SIRC epidemic model for Influenza A is proposed and investigated.
First, we prove that the system exists a unique global positive solution. Second, the extinction of the
disease is explored and the sufficient conditions for extinction of the disease are derived. And then
the existence of a unique ergodic stationary distribution of the positive solutions for the system
is discussed by constructing stochastic Lyapunov function. Furthermore, numerical simulations
are employed to illustrate the theoretical results. Finally, we give some further discussions about
the system.
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1. Introduction

Influenza is an infectious disease characterized by acute respiratory infection caused by the RNA
influenza virus of the mucinous virus family [1,2]. The clinical features of influenza are fever, headache,
myalgia, fatigue, nasal congestion, sore throat and cough, and the severity of the disease varies [3].
The complications and deaths caused by the flu are very serious. The flu can aggravate the underlying
diseases such as cardiopulmonary diseases, and can also cause primary influenza virus pneumonia or
secondary bacterial pneumonia. According to estimates by the World Health Organization, about 20%
of children and 5% of adults worldwide are infected with the flu each year, and the global pandemic
causes approximately 3 million to 5 million serious cases each year and approximately 290,000 to
650,000 deaths related to respiratory diseases [4]. Prevention of influenza is an important global public
health issue. The use of vaccines provides an effective guarantee for the prevention and control of
influenza, and has achieved remarkable results.

According to the antigenicity of nuclear proteins and matrix proteins, influenza viruses can be
generally divided into three types: A, B, and C [5]. In 2011, virologists first isolated influenza D
virus from pigs in Oklahoma, USA [6]. The influenza virus is also isolated in sheep and goats [7–10].
Every type contains a wide variety of subtypes according to hemagglutinin (HA) and neuraminidase
(NA) differences [11]. Influenza A virus can be divided into 18 different HA subtypes (H1-H18) and
9 different NA subtypes (N1-N9) [12]. Among them, only H1N1, H2N2, and H3N2 mainly infect
humans, and many other subtypes of natural hosts are a variety of birds and animals. Among them,
H5, H7 and H9 subtype strains are the most harmful to birds. Under normal circumstances, the avian
flu virus does not infect animals other than birds and pigs. However, in 1997, Hong Kong reported
for the first time 18 cases of H5N1 human avian influenza infection, of which 6 cases died, causing
widespread concern worldwide. Since 1997, there have been several incidents of avian influenza virus
infection in the world. Avian influenza viruses such as H5N1, H7N7, H7N9, and H9N2 with high
pathogenicity, once mutated and having human-to-human transmission ability, will lead to human
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bird flu epidemic, indicating that bird flu virus has a great potential threat to humans. Influenza A is
highly pathogenic to humans and has caused worldwide pandemics. Among the influenza A viruses,
the avian influenza virus subtypes that have been found to directly infect humans are: H1N1, H5N1,
H7N1, H7N2, H7N3, H7N7, H7N9, H9N2 and H10N8. Among them, H1, H5 and H7 subtypes are
highly pathogenic, and H1N1, H5N1 and H7N9 are particularly worthy of attention [13].

Mathematical modeling plays an part role in the study of the spread of epidemic diseases.
Mathematical models can provide a more typical, more refined, and more quantitative description
of complex epidemics. Mathematical models find the various theoretical indicators of disease
transmission by studying the rate of change of disease state variables, and use these indicators
to analyze the characteristics and patterns of different disease epidemics, simulate the process of
disease epidemics under various conditions, predict the possible epidemic trends, and simulate and
evaluate the effects of different prevention strategies and measures. Then based on the classical SIR
modes, a large number of mathematical models were established to model the evolution of epidemic
diseases, such as influenza A, tuberculosis, measles, hand-foot-mouth disease, etc [14–18]. However,
the antigenic variation of influenza viruses is very frequent, by constantly changing the antigenicity,
the flu virus can escape the attack of the host immune system. Mutations in the two important
glycoproteins on the surface of influenza viruses, hemagglutinin (HA) and neuraminidase (NA) are the
main causes of variability in influenza viruses. According to the degree of antigenic variation, it can be
divided into antigenic drift and antigenic shift. The former is caused by point mutation and can cause
seasonal influenza epidemic. The latter is caused by genetic recombination, which may produce a new
influenza pandemic [5,19,20].

Recently, considering the cross-immunity phenomenon during the spread of influenza A [21–23],
Casagrandi et al. [24] proposed an SIRC model as follows,

Ṡ(t) = µ(1− S(t))− βS(t)I(t) + γC(t),
İ(t) = βS(t)I(t) + pβC(t)I(t)− (µ + α)I(t),
Ṙ(t) = (1− p)βC(t)I(t) + αI(t)− (µ + δ)R(t),
Ċ(t) = δR(t)− βC(t)I(t)− (µ + γ)C(t),

(1)

where S(t), I(t), R(t) and C(t) are the sizes of susceptible, infected, recovered and cross-immune
individuals, respectively. µ is the death rate in every compartment. β is the contact rate. γ is the
rate at which cross-immune populations lose immunity and become susceptible. p is the rate at
which cross-immune populations become infected by reinfection. α is the recovery rate. δ is the
cross-immunity acquisition rate. All parameter values are nonnegative.

Li and Guo [25] have given a completed stability analysis of the equilibria of model (1) based on the
basic reproduction number R0 = β

µ+α , and if R0 < 1, system (1) has a unique globally asymptotically
stable disease-free equilibrium E0 = (1, 0, 0, 0), and on the other hand, if R0 > 1, E0 lost its stability
and system (1) has a unique globally asymptotically stable endemic equilibrium E∗ = (S∗, I∗, R∗, C∗).

However, there are stochastic factors everywhere in nature, so it makes sense to study biological
models with stochastic factors because random factors provide one more dimension, for example,
Zhu et al. [26], Zhang and Zhang [27], Liu et al. [28] and Chi and Zhao [29] have considered
stochastic effect on population. In particular, infectious diseases are inevitably affected by stochastic
factors during the process of transmission. Compared with deterministic epidemic models, stochastic
epidemic models can better reflect the evolution of infectious diseases in nature. According to the way
of considering different stochastic disturbances, many scholars have established a variety of stochastic
infectious disease models, and investigated the asymptotic behavior of the system. For example,
the impact of environmental disturbances on the rate of transmission have been considered based
on SIR (Susceptible-Infected-Recovered) [30–36], SIS (Susceptible-Infected-Susceptible) [37–42] and
SIRS (Susceptible-Infected-Recovered-Susceptible) model [43–46]. However, the above literatures on
infectious diseases have evolved mainly among the three compartments(S,I and R). According to the
study in [24], cross-immunity causes complex transmission of infectious diseases. Then based on
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model (1), we consider the impact of environmental disturbances on SIRC model and get a stochastic
SIRC model as follows:

dS(t) = [µ(1− S(t))− βS(t)I(t) + γC(t)]dt + σ1S(t)dB1(t),
dI(t) = [βS(t)I(t) + pβC(t)I(t)− (µ + α)I(t)]dt + σ2 I(t)dB2(t),
dR(t) = [(1− p)βC(t)I(t) + αI(t)− (µ + δ)R(t)]dt + σ3R(t)dB3(t),
dC(t) = [δR(t)− βC(t)I(t)− (µ + γ)C(t)]dt + σ4C(t)dB4(t),

(2)

where Bi(t) are independent standard Brownian motions and Bi(0) = 0(i = 1, 2, 3, 4), the
corresponding stochastic integrals w.r.t. the Brownian motions under consideration are all of the
Itô typ, and σi > 0(i = 1, 2, 3, 4) represent the intensities of the noise to the susceptible, infected,
recovered and cross-immune, respectively.

The main text is organised as follows. The extinction conditions of the disease are explored
In Section 4. The existence of stationary distribution as well as the ergodic property is discussed
under certain sufficient conditions in Section 5. We present some numerical examples to illustrate the
theoretical results in Section 6, and some further discussion of the model is given in Section 7.

2. Preliminaries

In this section, we introduce some essential theory with respect to stochastic differential equations
(SDEs) which can be found in [47,48]. Let Ω is a nonempty set, also known as sample space, then
(Ω,F ,P) is called a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions.
The functions Bi(t)(i = 1, 2, 3, 4) are defined on (Ω,F ,P) and we also let Rl

+ = {y ∈ Rl : yi > 0, 1 ≤
i ≤ l}, El denote l-dimensional Euclidean space and 〈g(t)〉 = 1

t
∫ t

0 g(s)ds.
Next, let us consider the l-dimensional SDE

dY(t) = g(Y(t), t)dt + h(Y(t), t)dB(t), t ≥ t0, (3)

with initial value y(t0) = y0 ∈ Rl .
Define a differential operator L [47] of (3) as

L =
∂

∂t
+ ∑ gi(Y, t)

∂

∂Yi
+

1
2

l

∑
i,j=1

[hT(Y, t)h(Y, t)]ij
∂2

∂Yi∂Yj
. (4)

If L acts on a function V ∈ C2,1(Rl × [t0, ∞];R+), then

LV(Y, t) = Vt(Y, t) + VY(Y, t)g(Y, t) +
1
2

trace[hT(Y, t)VYY(Y, t)h(Y, t)], (5)

where Vt =
∂V
∂t , VY = ( ∂V

∂y1
, · · · , ∂V

∂yl
), VYY = ( ∂2V

∂Yi∂Yj
)l×l . Appling Itô’s formula, one gets

dV(Y(t), t) = LV(y(t), t)dt + VY(Y(t), t)h(Y(t), t)dB(t), (6)

where Y(t) ∈ Rl .
Let Y(t) be a homogenous Markov process in El , and be expressed by

dY(t) = b(Y)dt +
k

∑
r=1

hr(Y)dBr(t), (7)

then

A(y) = (aij(y)), aij(y) =
k

∑
r=1

hi
r(y)h

j
r(y) (8)

is defined as the diffusion matrix.
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Lemma 1. ( [49]) For any solution (S(t), I(t), R(t), C(t)) ∈ R4
+ of model (2) with initial value

(S(0), I(0), R(0), C(0)) ∈ R4
+, we have the following results:

lim
t→∞

S(t)
t

= 0, lim
t→∞

I(t)
t

= 0, lim
t→∞

R(t)
t

= 0, lim
t→∞

C(t)
t

= 0 a.s.

3. Global Existence and Uniqueness of the Positive Solution

Theorem 1. For any given initial value (S(0), I(0), R(0), C(0)) ∈ R4
+, there exists a unique global positive

solution (S(t), I(t), R(t), C(t)) of system (2) on t ≥ 0.

Proof. First, we show the solution exists locally. In fact, the solution exists locally on t ∈ [0, τexp), here
τexp is the explosion time, since the coefficients satisfy the local Lipschitz conditions.

Next, we show the solution exists globally. Let k0 > 0 large enough for any initial value
S(0), I(0), R(0) and C(0) in [ 1

k0
, k]. To each integer k ≥ k0, let us consider the following stopping

time

τk = inf
{

t ∈ [0, τe) : min{S(t), I(t), R(t), C(t)} ≤ 1
k

or max{S(t), I(t), R(t), C(t)} ≥ k
}

,

Let inf ∅ = ∞, where ∅ is the empty set. Obsviously, τk is increasing as k → ∞. Denote
limk→∞ τk = τ∞, then τ∞ ≥ τk a.s. Next, let us verify τ∞ = ∞ a.s., if not, there must exist two constants
T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Thus there exists an integer k1 ≥ k0 such that
P{τk ≤ T} ≥ ε, k ≥ k1. Let us define a C2-function V: R4

+ → R+ as follows:

V = S− a− a ln
S
a
+ I − 1− ln I + R− 1− ln R + C− a− a ln

C
a

, (9)

applying Itô’s formula, one gets

dV =LVdt + σ1(S− a)dB1(t) + σ2(I − 1)dB2(t) + σ3(R− 1)dB3(t) + σ4(C− a)dB4(t), (10)

where
LV =

(
1− a

S

)
[µ(1− S)− βSI + γC] +

1
2

a1σ2
1

+

(
1− 1

I

)
[βSI + pβCI − (µ + α)I] +

σ2
2

2

+

(
1− 1

R

)
[(1− p)βCI + αI − (µ + δ)R] +

σ2
3

2

+
(

1− a
C

)
[δR− βCI − (µ + γ)C] +

σ2
4

2

=µ− µ(S + I + R + C)− aµ

S
+ aµ + aβI − aγC

S
− βS− pβC + µ + α

− (1− p)β
CI
R
− αI

R
+ µ + δ− aδR

C
+ aβI + aµ + aγ

≤(2aβ− µ)I + (3 + 2a)µ + α + δ + aγ.

(11)

Choose a = µ
2β such that 2aβ− µ = 0, then

LV ≤ (3 +
µ

β
)µ + α + δ +

µγ

2β
:= K, a positive constant.

The remainder of the proof can be found in [50], here we omit it. This finishes the proof.
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4. Extinction of the Disease

Let us define
R1 =

β

µ + α +
σ2

2
2

, (12)

Theorem 2. If R1 < 1, then the disease will eventually be eliminated, i.e.,

lim
t→+∞

I(t) = 0, a.s.

Moreover,
lim
t→∞
〈S(t)〉 = 1 a.s.

Proof. Summing the four variables in model (2) yeilds

d(S + I + R + C) = [µ− µ(S + I + R + C)]dt + σ1SdB1 + σ1 IdB2 + σ3RdB3 + σ4CdB4, (13)

then we obtain

S(t) + I(t) + R(t) + C(t)
t

=µ− µ〈(S(t) + I(t) + R(t) + C(t))〉

+

∫ t
0 σ1S(s)dB1(s)

t
+

∫ t
0 σ2 I(s)dB2(s)

t
+

∫ t
0 σ3R(s)dB3(s)

t

+

∫ t
0 σ4C(s)dB4(s)

t
+

S(0) + I(0) + R(0) + C(0)
t

,

(14)

thus we get
〈S(t)〉+ 〈I(t)〉+ 〈R(t)〉+ 〈C(t)〉 = 1 + ϕ(t), (15)

where

ϕ(t) =

∫ t
0 σ1S(s)dB1(s)

t
+

∫ t
0 σ2 I(s)dB2(s)

t
+

∫ t
0 σ3R(s)dB3(s)

t
+

∫ t
0 σ4C(s)dB4(s)

t

− S(t) + I(t) + R(t) + C(t)
t

+
S(0) + I(0) + R(0) + C(0)

t
.

(16)

According to the Lemma in [51] and Lemma 1, one has

lim
t→∞

ϕ(t) = 0 a.s. (17)

Applying Itô’s formula on function ln I yeilds

d ln I(t) =

[
βS + pβC−

(
µ + α +

σ2
2

2

)]
dt + σ2dB2(t). (18)

Integrating (18) from 0 to t and dividing by t on both sides yields

ln I(t)− ln I(0)
t

=β〈S(t)〉+ pβ〈C(t)〉 −
(

µ + α +
σ2

2
2

)
+

∫ t
0 σ2B2(t)dt

t
. (19)
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By (15), we obtain

ln I(t)
t

=β〈S(t)〉+ pβ〈C(t)〉 −
(

µ + α +
σ2

2
2

)
+

∫ t
0 σ2B2(t)dt

t
+

ln I(0)
t

≤β−
(

µ + α +
σ2

2
2

)
+ βϕ(t) +

∫ t
0 σ2B2(t)dt

t
+

ln I(0)
t

.

(20)

Then together with (17), one gets

lim sup
t→+∞

ln I(t)
t
≤
(

µ + α +
σ2

2
2

)
(R1 − 1) < 0, (21)

then we deduce that
lim

t→+∞
I(t) = 0 a.s.

From model (2), we can easily get

lim
t→∞
〈S(t)〉 = 1 a.s.

The proof is completed.

5. Existence of Ergodic Stationary Distribution

Assumption 1. For a bounded domain Ξ ⊂ En with regular boundary Γ such that Ξ ⊂ En(Ξ is the closure of
Ξ) satisfies

(i) The smallest eigenvalue of diffusion matrix Ã(y) is bounded away from zero in the domain Ξ and some
neighborhood thereof;

(ii) If y ∈ En\Ξ, the mean time τ at which a path issuing from y reaches the set Ξ is finite, and sup
y∈Θ

Eyτ < ∞

for every compact subset Θ ⊂ En.

For the Markov process Y(t) and a function f (·) integrable with respect to measure π, we have
the following lemma.

Lemma 2. ( [48]) If Assumption 1 is satisfied, then Y(t) has a stationary distribution π(·). Furthermore,

Py

{
lim

T→∞

1
T

∫ T

0
f (Y(t))dt =

∫
En

f (y)π(dy)
}

= 1 (22)

for all y ∈ En.

By [52,53], we can get the follow alternative conditions.

Remark 1. (i) To verify Assumption 1(i) [52], we only need to illustrate that F is uniformly elliptical in
any bounded domain G, here

Fu = b(y)uy +
1
2

trace(A(y)uyy), (23)

i.e., there has a positive number Z such that

n

∑
i,j=1

aij(y)ξiξ j ≥ Z|ξ|2, y ∈ G, ξ ∈ Rn. (24)
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(ii) To verify Assumption 1(ii) [53], we need to find a nonnegative C2-function V and a neighborhood U such
that ∀y ∈ En\U, LV(y) < 0.

Let us define
R2 =

µβ(
µ +

σ2
1
2

)(
µ + α +

σ2
2
2

) , (25)

then by Lemma 2, we get the following theorem.

Theorem 3. If R2 > 1, then model (2) has a unique stationary distribution π(·) and it has ergodic property.

Proof. Construct a C2-function V1: R4
+ → R as

V1(S, I, Q, R) =M(−b ln S− ln I) +
1

θ + 1
(S + I + R + C)θ+1 − ln S− ln R− ln C, (26)

where b = µβ

(µ+
σ2

1
2 )2

and 0 < θ < 2µ

σ2
1∨σ2

2∨σ2
3∨σ2

4
. There exists M > 0 large enough such that

−MΦ + 3µ + γ + δ +
σ2

1
2

+
σ2

3
2

+
σ2

4
2

+ A ≤ −2, (27)

where

Φ :=

(
µ + α +

σ2
2

2

)
(R2 − 1). (28)

Obviously,
lim inf

w→(S,I,R,C)∈R4
+\Ξw

V(S, I, R, C) = ∞, (29)

here Ξw =
(

1
w , w

)
×
(

1
w , w

)
×
(

1
w , w

)
×
(

1
w , w

)
. Then for a positive-definite C2-function V2: R4

+ →
R+:

V2(S, I, R, C) =V1(S, I, R, C)−V1(S[, I[, R[, C[)

=M(−b ln S− ln I) +
1

θ + 1
(S + I + R + C)θ+1

− ln S− ln R− ln C−V1(S[, I[, R[, C[)

=MV3 + V4 + V5,

(30)

where V1(S[, I[, R[, C[) is the minimum of V1(S, I, R, C), and

V3 =− b ln S− ln I,

V4 =
1

θ + 1
(S + I + R + C)θ+1,

V5 =− ln S− ln R− ln C−V1(S[, I[, R[, C[).

(31)
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Applying Itô’s formula, we obtain

LV3 =− bµ

S
+ bµ + bβI − bγC

S
+ b

σ2
1

2
− βS− pβC + µ + α +

σ2
2

2

≤− 2
√

bµβ + b

(
µ +

σ2
1

2

)
+

(
µ + α +

σ2
2

2

)
+ bβI

≤−
(

µ + α +
σ2

2
2

) µβ(
µ +

σ2
1
2

)(
µ + α +

σ2
2
2

) − 1

+ bβI

≤−
(

µ + α +
σ2

2
2

)
(R2 − 1) + bβI

:=−Φ + bβI.

(32)

Similarly,

LV4 =(S + I + R + C)θ [µ− µ(S + I + R + C)]

+
θ

2
(S + I + R + C)θ−1

(
σ2

1 S2 + σ2
2 I2 + σ2

3 R2 + σ2
4 C2

)
≤µ(S + I + R + C)θ −

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
(S + I + R + C)θ+1

≤A− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
(S + I + R + C)θ+1

≤A− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] (
Sθ+1 + Iθ+1 + Rθ+1 + Cθ+1

)
,

(33)

where

A = sup
(S,I,R,C)∈R4

+

{
µ(S + I + R + C)θ − 1

2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
(S + I + R + C)θ+1

}
< ∞.

(34)
By Itô’s formula, one gets

LV5 ≤−
µ

S
− α

I
R
− δ

R
C
+ 3µ + γ + δ +

σ2
1

2
+

σ2
3

2
+

σ2
4

2
+ 2βI. (35)

Therefore,

LV ≤−MΦ + (Mb + 2)βI − µ

S
− α

I
R
− δ

R
C
+ 3µ + γ + δ +

σ2
1

2
+

σ2
3

2
+

σ2
4

2

+ A− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] (
Sθ+1 + Iθ+1 + Rθ+1 + Cθ+1

)
.

(36)

Consider a compact subset U:

U =

{
ε ≤ S ≤ 1

ε
, ε ≤ I ≤ 1

ε
, ε2 ≤ R ≤ 1

ε2 , ε3 ≤ C ≤ 1
ε3

}
, (37)

where ε is small enough such that

− µ

ε
+ B ≤ −1, (38)

−MΦ + (Mb + 2)βε + 3µ + γ + δ +
σ2

1
2

+
σ2

3
2

+
σ2

4
2

+ A ≤ −1, (39)
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− α

ε
+ B ≤ −1, (40)

− δ

ε
+ B ≤ −1, (41)

− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] 1
εθ+1 + D ≤ −1, (42)

− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] 1
εθ+1 + E ≤ −1, (43)

− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] 1
ε2(θ+1)

+ D ≤ −1, (44)

− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] 1
ε3(θ+1)

+ D ≤ −1, (45)

here positive constants B, D and E will be determined by (52), (57) and (59), respectively. Then

R4
+\U = U1 ∪U2 ∪U3 ∪U4 ∪U5 ∪U6 ∪U7 ∪U8, (46)

with

U1 =
{
(S, I, R, C) ∈ R4

+| 0 < S < ε
}

, U5 =

{
(S, I, R, C) ∈ R4

+| S >
1
ε

}
, (47)

U2 =
{
(S, I, R, C) ∈ R4

+| 0 < I < ε
}

, U6 =

{
(S, I, R, C) ∈ R4

+| I >
1
ε2

}
, (48)

U3 =
{
(S, I, R, C) ∈ R4

+| I ≥ ε, 0 < R < ε2
}

, U7 =

{
(S, I, R, C) ∈ R4

+| R >
1
ε3

}
, (49)

U4 =
{
(S, I, R, C) ∈ R4

+| R ≥ ε2, 0 < C < ε3
}

, U8 =

{
(S, I, R, C) ∈ R4

+| C >
1
ε4

}
. (50)

Next we discuss the negativity of LV for any (S, I, R, C) ∈ R4
+\U in eight cases.

Case I. If (S, I, R, C) ∈ U1, we get

LV ≤− µ

S
− 1

2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] (
Sθ+1 + Iθ+1 + Rθ+1 + Cθ+1

)
+ (Mb + 2)βI + 3µ + γ + δ +

σ2
1

2
+

σ2
3

2
+

σ2
4

2
+ A

≤− µ

S
+ B

≤− µ

ε
+ B,

(51)

where

B = sup
(S,I,R,C)∈R4

+

{
− 1

2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] (
Sθ+1 + Iθ+1 + Rθ+1 + Cθ+1

)
+ (Mb + 2)βI + 3µ + γ + δ +

σ2
1

2
+

σ2
3

2
+

σ2
4

2
+ A

}
< ∞.

(52)

According to (38), for all (S, I, R, C) ∈ U1, LV ≤ −1.
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Case II. If (S, I, R, C) ∈ U2, we can obtain that

LV ≤−MΦ + (Mb + 2)βI + 3µ + γ + δ +
σ2

1
2

+
σ2

3
2

+
σ2

4
2

+ A

≤−MΦ + (Mb + 2)βε + 3µ + γ + δ +
σ2

1
2

+
σ2

3
2

+
σ2

4
2

+ A.

(53)

According to (39), one has LV ≤ −1 for all (S, I, R, C) ∈ U2.
Case III. If (S, I, R, C) ∈ U3, we have

LV ≤− α
I
R
− 1

2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] (
Sθ+1 + Iθ+1 + Rθ+1 + Cθ+1

)
+ (Mb + 2)βI + 3µ + γ + δ +

σ2
1

2
+

σ2
3

2
+

σ2
4

2
+ A

≤− α
I
R
+ B

≤− α

ε
+ B.

(54)

By (40), one has LV ≤ −1 for all (S, I, R, C) ∈ U3.
Case IV. If (S, I, R, C) ∈ U4, it follows that

LV ≤− δ
R
C
− 1

2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] (
Sθ+1 + Iθ+1 + Rθ+1 + Cθ+1

)
+ (Mb + 2)βI + 3µ + γ + δ +

σ2
1

2
+

σ2
3

2
+

σ2
4

2
+ A

≤− δ
R
C
+ B

≤− δ

ε
+ B.

(55)

Together with (41), one deduces LV ≤ −1 for all (S, I, R, C) ∈ U4.
Case V. If (S, I, R, C) ∈ U5, we can get

LV ≤− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Sθ+1 − 1

2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Iθ+1

+ (Mb + 2)βI + 3µ + γ + δ +
σ2

1
2

+
σ2

3
2

+
σ2

4
2

+ A

≤− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Sθ+1 + D

≤− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] 1
εθ+1 + D,

(56)

where

D = sup
(S,I,R,C)∈R4

+

{
− 1

2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Iθ+1

+ (Mb + 2)βI + 3µ + γ + δ +
σ2

1
2

+
σ2

3
2

+
σ2

4
2

+ A
}

< ∞.

(57)

Therefore, in view of (42), we get LV ≤ −1 for all (S, I, R, C) ∈ U5.
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Case VI. If (S, I, R, C) ∈ U6, we obtain

LV ≤− 1
4

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Iθ+1 − 1

4

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Iθ+1

+ (Mb + 2)βI + 3µ + γ + δ +
σ2

1
2

+
σ2

3
2

+
σ2

4
2

+ A

≤− 1
4

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Iθ+1 + E

≤− 1
4

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] 1
εθ+1 + E,

(58)

where

E = sup
(S,I,R,C)∈R4

+

{
− 1

4

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Iθ+1

+ (Mb + 2)βI + 3µ + γ + δ +
σ2

1
2

+
σ2

3
2

+
σ2

4
2

+ A
}

< ∞.

(59)

According to (43), one has LV ≤ −1 for all (S, I, R, C) ∈ U6.
Case VII. If (S, I, R, C) ∈ U7, we have

LV ≤− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Rθ+1 − 1

2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Iθ+1

+ (Mb + 2)βI + 3µ + γ + δ +
σ2

1
2

+
σ2

3
2

+
σ2

4
2

+ A

≤− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Rθ+1 + D

≤− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] 1
ε2(θ+1)

+ D.

(60)

Combining with (44), one has LV ≤ −1 for all (S, I, R, C) ∈ U7.
Case VIII. If (S, I, R, C) ∈ U8, similarly, we have

LV ≤− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Cθ+1 − 1

2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Iθ+1

+ (Mb + 2)βI + 3µ + γ + δ +
σ2

1
2

+
σ2

3
2

+
σ2

4
2

+ A

≤− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)]
Cθ+1 + D

≤− 1
2

[
µ− θ

2

(
σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4

)] 1
ε3(θ+1)

+ D.

(61)

According to (45), we obtain LV ≤ −1 for all (S, I, R, C) ∈ U8.
Thus from the above eight cases, we conclude that

LV ≤ −1 for all (S, I, R, C) ∈ R4
+\U,

where ε is sufficiently small. Then Assumption 1(ii) is satisfied.
On the other hand, the diffusion matrix of model (2) is

Ã =


σ2

1 S2 0 0 0
0 σ2

2 I2 0 0
0 0 σ2

3 R2 0
0 0 0 σ2

4 C2

 .
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There has a positive number

Z = min
(S,I,R,C)∈U

{
σ2

1 S2, σ2
2 I2, σ2

3 R2, σ2
4 C2

}
(62)

such that

4

∑
i,j=1

aijξiξ j = σ2
1 S2ξ2

1 + σ2
2 I2ξ2

2 + σ2
3 R2ξ2

3 + σ2
4 C2ξ2

4 ≥ Z|ξ|2, (S, I, R, C) ∈ U, ξ ∈ R4, (63)

which indicates that Assumption 1(i) is satisfied. Then according to Lemma 2, model (2) has a unique
stationary distribution and it has ergodic property. The proof is completed.

6. Numerical Simulations

In this section, we verify the theoretical results by some numerical examples. We employ the
discrete system of model (2):

Sk+1 =Sk + [µ(1− Sk)− βSk Ik + γCk]∆t + σ1Sk∆B1,k,

Ik+1 =Ik + [βSk Ik + pβCk Ik − (µ + α)Ik]∆t + σ2 Ik∆B2,k,

Rk+1 =Rk + [(1− p)βCk Ik + αIk − (µ + δ)Rk]∆t + σ3Rk∆B3,k,

Ck+1 =Ck + [δRk − βCk Ik − (µ + γ)Ck]∆t + σ4Ck∆B4,k,

(64)

where ∆Bi,k , B(tk+1)− B(tk)(i = 1, 2, 3, 4) obey the Gaussian distribution N(0, ∆t).
The basic parameters are taken for model (1) and model (2) as µ = 0.2, p = 0.4, β = 0.8, δ =

0.4, γ = 0.2, α = 0.35 with (S(0), I(0), R(0), C(0)) = (0.3, 0.2, 0.3, 0.2). First, we focus on the
deterministic model (1), direct calculation shows that R0 = 1.4545 > 1, then by Theorem 2.2 in
Li and Guo [25], the equilibrium E∗ is globally asymptotically stable, which implies that the disease
will eventually spread (see Figure 1).

0 50 100 150 200 250 300 350 400 450 500
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
I
R
C

Figure 1. Time series of S, I, C, R for model (1), the epidemic disease is persistent.

Now, Let us consider the effect of white noise, we have the following cases to be discussed.
Case 1. Let σi = 0.1(i = 1, 3, 4), σ2 = 0.9, direct calculation shows R1 = 0.8376 < 1, it follows

from Theorem 2, the disease will go to extinction eventually (see Figure 2).
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Figure 2. Time series of S, I, C, R for the stochastic model, where σi = 0.1(i = 1, 3, 4), σ2 = 0.9,
the epidemic disease goes to extinction.

Case 2. If we let σi = 0.1(i = 1, 3, 4), σ2 = 0.2, then we obtain R2 = 1.3693 > 1, according to
Theorem 3, the model (2) has a unique stationary distribution, Figures 3b–e depict the probability
density of the variables S, I, R and C, respectively, the filled contour is sample distribution and the
drawn line is density function. Figure 3a is the corresponding sample paths.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
t
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1
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(a) The sample paths for the solutions of model (2).
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(b) The density function of S of stochastic model (2).
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(c) The density function of I of stochastic model (2).
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(d) The density function of R of stochastic model (2).

Figure 3. Cont.
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(e) The density function of C of stochastic model (2).

Figure 3. Basic behavior of solutions for stochastic model where σi = 0.1(i = 1, 3, 4), σ2 = 0.2.

7. Discussion

In present paper, we proposed and analyzed a SIRC epidemic model for Influenza A with
stochastic perturbation. The effect of stochastic white noise to the SIRC epidemic is investigated.
Our results show the white noise has a great impact on the elimination and spread of epidemic disease.
Mathematically, on the one hand, we obtain if the threshold R1 < 1, then the epidemic disease will go
to extinction. On the other hand, if the value R2 > 1, then stochastic SIRC model has a unique ergodic
stationary distribution π(·).

However, besides the effect of white noise, we also can consider the colored noise which can switch
the state of the system [54,55]. Generally, this switching usually can be portrayed by a continuous-time
Markov chain (ξ(t))t≥0 in a finite state space G = {1, 2, ..., N}, where the generator Υ̃ = (γij)N×N can
be expressed as

P{ξ(t + ∆t) = j|ξ(t) = i} =
{

γij∆t + o(∆t), i f i 6= j,

1 + γii∆t + o(∆t), i f i = j,
(65)

here ∆t > 0, γij ≥ 0 for i, j = 1, 2, ..., N with j 6= i and γii = −∑j 6=i γij for each i = 1, 2..., N.
If ξ(t) and Brownian motions are mutually independent on (Ω,F , {Ft}t≥0,P) and γij > 0

for i, j = 1, 2, ..., N with j 6= i, then ξ(t) is irreducible, and a unique stationary distribution π =

(π1, π2, ..., πN) of ξ(t) can be determined by

πΥ̃ = 0, (66)

satisfying ∑N
i=1 πi = 1 and πi > 0 for any i ∈ G.

Then we get a stochastic SIRC model with regime switching as follows,
dS(t) = [µ(ξ(t))(1− S(t))− β(ξ(t))S(t)I(t) + γ(ξ(t))C(t)]dt + σ1(ξ(t))S(t)dB1(t),
dI(t) = [β(ξ(t))S(t)I(t) + p(ξ(t))β(ξ(t))C(t)I(t)− (µ(ξ(t)) + α(ξ(t)))I(t)]dt + σ2(ξ(t))I(t)dB2(t),
dR(t) = [(1− p(ξ(t)))βC(t)I(t) + α(ξ(t))I(t)− (µ(ξ(t)) + δ(ξ(t)))R(t)]dt + σ3(ξ(t))R(t)dB3(t),
dC(t) = [δ(ξ(t))R(t) + β(ξ(t))C(t)I(t)− (µ(ξ(t)) + γ(ξ(t)))C(t)]dt + σ4(ξ(t))C(t)dB4(t),

(67)

For any k ∈ G, µ(k), α(k), β(k), p(k), γ(k), δ(k) and σi(k)(i = 1, 2, 3, 4) are all positive constants.
Define

R∗ =

[
∑N

k=1 πk
√

µ(k)β(k)
]2

∑N
k=1 πk

(
µ(k) + σ2

1 (k)
2

)
∑N

k=1 πk

(
µ(k) + α(k) + σ2

2 (k)
2

) . (68)

Theorem 4. If R∗ > 1 holds, the solution (S(t), I(t), R(t), C(t), ξ(t)) ∈ R4
+ ×M of system (67) with initial

value (S(0), I(0), R(0), C(0), ξ(0)) ∈ R4
+ ×G, produces a unique ergodic stationary distribution.
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Case 3. Let G = {1, 2} and the generator Υ̃ takes

Υ̃ =

(
−0.6 0.6
0.4 −0.4

)
. (69)

Then, we get the unique stationary distribution

π = (π1, π2) = (0.4, 0.6). (70)

In model (67), let µ(1) = 0.2, α(1) = 0.25, β(1) = 0.8, p(1) = 0.3, δ(1) = 0.2, γ(1) = 0.15,
(σ1(1), σ2(1), σ3(1), σ4(1)) = (0.05, 0.05, 0.05, 0.05), µ(2) = 0.3, α(2) = 0.3, β(2) = 0.9, p(2) =

0.3, δ(2) = 0.3, γ(2) = 0.25, (σ1(2), σ2(2), σ3(2), σ4(2)) = (0.1, 0.1, 0.1, 0.1). Simple calculation shows
R∗ = 1.5545 > 1, by Theorem 4, model (67) has a stationary distribution. In Figure 4, Figure 4a shows
Markov chain and Figure 4b shows the sample paths for the solutions of stochastic SIRC model (19).
Figure 4c–f show the probability density functions of S(t), I(t), R(t) and C(t), respectively, and the
filled contour is sample distribution and the drawn line is density function.

(a) The movement of Markov chain in state space
G over time in model (67).
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(b) The sample paths for the solutions of stochastic
model (67).

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
x

0

2000

4000

6000

8000

10000

12000

14000

(c) The density function of S of stochastic
model (67).
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(d) The density function of I of stochastic
model (67).

Figure 4. Cont.
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(e) The density function of R of stochastic
model (67).
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(f) The density function of C of stochastic
model (67).

Figure 4. Illustration of basic behavior of solutions of stochastic model where σi = 0.1(i = 1, 3, 4), σ2 = 0.2.
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