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Abstract: Two estimation problems are studied based on the general progressively censored
samples, and the distributions from the inverted scale family (ISF) are considered as prospective
life distributions. One is the exact interval estimation for the unknown parameter θ, which is
achieved by constructing the pivotal quantity. Through Monte Carlo simulations, the average 90%
and 95% confidence intervals are obtained, and the validity of the above interval estimation is
illustrated with a numerical example. The other is the estimation of R = P(Y < X) in the case of ISF.
The maximum likelihood estimator (MLE) as well as approximate maximum likelihood estimator
(AMLE) is obtained, together with the corresponding R-symmetric asymptotic confidence intervals.
With Bootstrap methods, we also propose two R-asymmetric confidence intervals, which have a good
performance for small samples. Furthermore, assuming the scale parameters follow independent
gamma priors, the Bayesian estimator as well as the HPD credible interval of R is thus acquired.
Finally, we make an evaluation on the effectiveness of the proposed estimations through Monte Carlo
simulations and provide an illustrative example of two real datasets.

Keywords: Monte Carlo simulation; inverted scale family; interval estimation; maximum likelihood
estimation; Bayesian estimation; approximate maximum likelihood estimator; Bootstrap method;
general progressive Type-II censoring

1. Introduction

General progressive censoring plays a key role in the field of lifetime analysis. It generalizes the
progressive censoring scheme, which allows removing surviving units from a life test stage-by-stage
and to some extent, resolves the time and money constraints (Sen, [1]). Additionally, it contains
two censoring schemes: left censoring and right censoring. Here considers the situation of general
progressive Type-II right censoring (GPTIIC).

In a life-test, first randomly select N units as the test sample. Suppose that the first r failures are
unobserved; for i = r + 1, . . . , n− 1, while the ith failure is observed, Ri surviving units are withdrawn
from the test randomly; while the nth failure is observed, all remaining units are withdrawn and
the life-test is terminated, that is, Rn = N − n − ∑n−1

i=r+1 Ri. Denote the totally observed failure
times as Xr+1:n:N ≤ . . . ≤ Xn:n:N , which are also called the general progressively Type-II censored
order statistics (GPTIICOS). For notational convenience, represent it with Xr+1 ≤ . . . ≤ Xn. Here,
denote the corresponding censoring scheme as (r, n, N, Rr+1, . . . , Rn). Note that: (i) GPTIIC with
(0, n, N, 0, . . . , 0, N − n) represents the conventional Type-II right censoring scheme. (ii) GPTIIC with
(0, n, N, R1, . . . , Rn) represents the progressive Type-II right censoring scheme. The reader can find more
information by consulting the book by Balakrishnan and Aggarwala [2], which has discussed some
mathematical properties and inferential methods based on this general progressive censoring scheme.
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Consider a class of distributions that have the inverted form of the standard probability density
functions (PDF) and distribution functions (CDF) for the scale family. We call it the inverted scale
family (ISF). It is said that a positive and continuous random variable X with CDF (Equation (1)) and
PDF (Equation (2)) belongs to the inverted scale family (i.e., ISF(θ)) with the scale parameter θ.

F(x, θ) = 1− G(
θ

x
), θ > 0, x > 0 (1)

f (x, θ) =
θ

x2 g(
θ

x
), θ > 0, x > 0 (2)

Note that a positive and continuous random variable Y with CDF G(y) and PDF g(y) is said to
come from a standard scale distribution.

Distributions from ISF are essential for the reliability life data analysis. For example,
the generalized inverse exponential distribution (GIED) from ISF, the case of the inverse exponential
distribution (IED) included, is able to model the aging criteria of various shapes. In addition,
a reliability model based on the inverse Weibull distribution (IWD) from ISF may be suitable when
the empirical studies on a given data set indicate the probability of a unimodal hazard function.
In light of the importance of ISF, statistical inference on the related distributions has appealed to many
authors. For the inverted gamma distribution, Lin [3] acquired the MLE as well as the estimation
of the corresponding reliability function. In the case of Type-II censoring, Kundu [4] dealt with the
Bayesian estimation for IWD. Prakash [5] studied some properties for IED from a Bayesian point
of view. Moreover, articles by Krishna [6], Dey [7], and Essam [8] are several recent works on the
estimation for GIED models under the progressive censoring.

Although the scheme of GPTIIC and distributions from ISF both play a vital role in life researches,
not much attention has been paid to the situation when the samples are from ISF under GPTIIC. So,
in this case, we consider the following two estimation problems.

One is the interval estimation, which, as a classical estimation problem, has engaged the attention
of many authors. Article by Viveros and Balakrishnan [9] derived the interval estimates for some
life-time parameters. Balakrishnan et al. [10] obtained interval estimation for Normal distribution
in the case of progressive Type-II censoring. Wang [11] conducted a study on the scale family under
GPTIIC and proposed the exact interval estimation. Dey [7] derived interval estimations for GIED
under progressive first censoring.

The other is the estimation of R = P(Y < X), which denotes the stress-strength parameter.
Suppose a random stress acts on a system; for constructing a stress-strength modeling, we denote
the system strength as X and the value of the random stress as Y. The system will fail only when its
strength is less than the received stress. Thus, R = P(Y < X) can reflect the system reliability. As R
provides a wide application in many areas, it is necessary to discuss the related estimation problems
in the statistical literature. Articles by Church and Harris [12], Downtown [13], Govidarajulu [14],
Woodward and Kelley [15], and Owen et al. [16] dealt with the situation of X and Y coming from
normal distributions. Raqab and Kundu [17], Kundu and Gupta, [18] and Kundu and Raqad [19]
conducted studies on this estimation problem for the generalized Rayleigh distributions, Weibull
distributions, and three-parameter Weibull distributions, respectively.

Here we conduct a study on the exact interval estimation of θ as well as the estimation of R for
ISF under GPTIIC. First, the exact interval estimation of θ is achieved in Section 2 by constructing the
pivotal quantity. Then we make an assessment on the interval estimation performance through Monte
Carlo simulations and further illustrate the estimation process with a remission time dataset. Moreover,
the estimation of R = P(Y < X) is achieved in Section 3. The MLE, AMLE, and Bayesian estimator
of R are acquired, together with the corresponding interval estimations. In addition, with Bootstrap
methods, we derive two interval estimates, suitable for small samples. Finally, we evaluate the
effectiveness of the proposed estimations through Monte Carlo simulations and provide an illustrative
example of two real datasets.
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2. Exact Interval Estimation for θ

2.1. Interval Estimation with Pivotal Quantity Method

Here, a theorem (proposed by Aggarwala and Balakrishnan [2,20]) is introduced to construct the
pivotal quantity.

Theorem 1. Consider Ur+1, Ur+2, . . . , Un are the GPTIICOS from the Uniform (0,1) distribution. Then

Lr+i =
1−Un−i+1

1−Un−i
, i = 1, . . . , n− r− 1, Ln = 1−Ur+1.

follow independent beta distributions given by Equation (3).

Lr+i ∼ Beta(i +
n

∑
j=n−i+1

Rj, 1), i = 1, . . . , n− r− 1,

Ln ∼ Beta(N − r, r + 1).

(3)

Lemma 1. Consider Xr+1 ≤ . . . ≤ Xn are the GPTIICOS from the inverted scale family. Then

Lr+i =
G( θ

Xn−i+1
)

G( θ
Xn−i

)
, i = 1, . . . , n− r− 1, Ln = G(

θ

Xr+1
) (4)

follow independent beta distributions given by Equation (3).

Proof. Since F(X, θ), ranging from 0 to 1, increases as X increases, F(Xr+1, θ) ≤ . . . ≤ F(Xn, θ) are the
GPTIICOS from the Uniform (0,1) distribution. For i = r + 1, . . . , n, represent Ui in the Theorem 1 with
F(Xi, θ). The proof is thus completed.

Denote the CDF of Beta(N − r, r + 1) as H(x). Then independent random variables

Qr+i = L
i+∑n

j=n−i+1 Rj

r+i , i = 1, . . . , n− r− 1, Qn = H(Ln)

are from the Uniform (0,1) distribution. Here, Lr+i is described as Equation (4). Thus

−2 log (Qr+1),−2 log (Qr+2), . . . ,−2 log (Qn)

are independent χ2(2) random variables. Here, χ2(d f ) represents the χ2 distribution with d f degrees
of freedom. Then we construct the pivotal quantity as:

T(θ) =
n−r

∑
i=1

[−2 log (Qr+i)]

= −2
n

∑
i=r+2

(Ri + 1) log [1− F(Xi, θ)]− 2 log[H(1− F(Xr+1, θ))] (5)

+ 2
n

∑
i=r+2

(Ri + 1) log[1− F(Xr+1, θ)].

It is clear that T(θ) follows χ2(2n− 2r). For the inverted scale family, when r = 0, T(θ) reduces to

T(θ) = −2
n

∑
i=1

(Ri + 1) log[1− F(Xi, θ)] = −2
n

∑
i=1

(Ri + 1) log[G(
θ

Xi
)]. (6)
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As can be seen from Equation (6), for r = 0, T(θ) strictly decreases as θ increases. We can also
find that for any positive integer r < n, the exact confidence interval can be derived from Equation (5)
easily when T(θ) is strictly monotonic as θ increases. Here we consider the failure rate function λ(x, θ)

for the inverted scale family to determine the monotonicity of T(θ). The following is a brief overview
of λ(x, θ).

Suppose a positive continuous random variable X from ISF(θ) as the lifetime of some units in a
life-test. Then, the failure rate function represents the probability intensity that an alive unit will fail at
the time x, which is defined as:

λ(x, θ) =
f (x, θ)

[1− F(x, θ)]
, θ > 0, x > 0.

For the inverted scale family, it becomes

λ(x, θ) =
θ
x2 g( θ

x )

G( θ
x )

. (7)

Here, λ(x, θ) can be seen as a function of θ.
According to λ(x, θ), a theorem is given below. Note that T(θ) (as shown in Equation (5)) is

strictly decreasing on θ ∈ (0,+∞) if the condition given in Theorem 2 is satisfied.

Theorem 2. Consider Xr+1, . . . , Xn are the GPTIICOS from ISF(θ) with censoring scheme (r, n, N, Rr+1,
. . . , Rn). The pivotal quantity T(θ) (as shown in Equation (5)) is strictly decreasing on (0,+∞) if the failure
rate function λ(x, θ) is strictly decreasing on θ ∈ (0,+∞).

Proof. Let h(t) = tg(t)
G(t) and for i = r + 2, . . . , n, let yi(θ) = −[log(1− F(Xi, θ))− log(1− F(Xr+1, θ))].

The pivotal quantity T(θ) becomes

2
n

∑
i=r+2

(Ri + 1)yi(θ)− 2log[H(G(
θ

Xr+1
))].

The failure rate function from Equation (7) can be rewritten as:

λ(x, θ) =
1
x

h(
θ

x
). (8)

According to Equation (8), since λ(x, θ) strictly decreases as θ increases, we can infer that h(t) is
strictly decreasing on t ∈ (0,+∞). Thus the monotonicity of yi(θ) can be determined. The derivative
of yi(θ) is:

y′i(θ) =
g( θ

xr+1
)

xr+1G( θ
xr+1

)
−

g( θ
xi
)

xiG( θ
xi
)
= −1

θ
[h(

θ

xi
)− h(

θ

xr+1
)] < 0. (9)

From the above equation, it is clear that 2 ∑n
i=r+2(Ri + 1)yi(θ) is strictly decreasing on θ ∈ (0,+∞).

Considering the monotonicity of the CDF, we can find −2log[H(G( θ
Xr+1

))] is also strictly decreasing
on θ ∈ (0,+∞). Thus, we complete the proof.

The exact confidence interval of θ is given below.

Theorem 3. For any ξ ∈ (0, 1), if T(θ) is strictly decreasing on (0,+∞), thus

[T−1(χ2
1−ξ/2(2n− 2r)), T−1(χ2

ξ/2(2n− 2r))]. (10)



Symmetry 2020, 12, 731 5 of 21

is an exact 1− ξ confidence interval for θ. Here, T−1(x) denotes the solution to T(θ) = x for any x ∈ (0, ∞)

and χ2
ξ(d f ) denotes the ξ percentile of χ2(d f ).

Proof. Since T(θ) is a strictly decreasing function on (0,+∞), the probability that θ belongs to the interval of
Equation (10) is:

P(T−1(χ2
1−ξ/2(2n− 2r)) ≤ θ ≤ T−1(χ2

ξ/2(2n− 2r)) = P(χ2
ξ/2(2n− 2r) ≤ T(θ) ≤ χ2

1−ξ/2(2n− 2r)) = 1− ξ.

Remark 1. For any ξ ∈ (0, 1), if T(θ) is strictly increasing on (0,+∞), thus

[T−1(χ2
ξ/2(2n− 2r)), T−1(χ2

1−ξ/2(2n− 2r))]. (11)

is an exact 1− ξ confidence interval for θ. Here, T−1(x) denotes the solution to T(θ) = x for x ∈ (0, ∞) and
χ2

ξ(d f ) denotes the ξ percentile of χ2(d f ).

Example 1. The generalized inverse exponential distribution (i.e., GIED(θ, α)), which includes the inverse
exponential distribution (i.e., IED(θ)) as a special case when α = 1, is from the inverted scale family with

F(x; θ, α) = 1− [1− exp(− θ

x
)]α, θ, α > 0, x > 0,

f (x; θ, α) =
αθ

x2 exp(− θ

x
)[1− exp(− θ

x
)]α−1, θ, α > 0, x > 0.

By Theorem 2, we have h(t) = αt
exp(t)−1 with the derivative h′(t) = α[exp(t)−texp(t)−1]

[exp(t)−1]2 . Let h1(t) =

exp(t)− texp(t)− 1, t > 0, then, a system of equations is given by
h1(t) = exp(t)− texp(t)− 1
h
′
1(t) = −texp(t) < 0

h1(0) = 0
(12)

From Equation (12), when t ∈ (0,+∞), we have h1(t) < 0 and thus h′(t) < 0, which proves that h(t) is
strictly decreasing on t ∈ (0,+∞). So λ(x, θ) = 1

x h( θ
x ) is strictly decreasing on θ ∈ (0,+∞).

For the generalized inverse exponential distribution, from Equation (5), the pivotal quantity is developed as:

T(θ) = 2α
n

∑
i=r+2

(Ri + 1) log [
1− exp(− θ

Xr+1
)

1− exp(− θ
Xi
)
]− 2 log [H(1− exp(− θ

Xr+1
))α].

When r = 0, T(θ) reduces to

T(θ) = −2α
n

∑
i=1

(Ri + 1) log[1− exp(− θ

Xi
)].

Then applying Theorem 3, we achieve the exact interval estimation.
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Example 2. The inverse Weibull distribution (i.e., IWD(θ, α)), including the inverse exponential distribution
(when α = 1) and the inverse Rayleigh distribution (IRD(θ), when α = 2) as special cases, is from the inverted
scale family with

F(x; θ, α) = exp[−( θ

x
)α], θ, α > 0, x > 0,

f (x; θ, α) =
α

θ
(

θ

x
)α+1exp[−( θ

x
)α], θ, α > 0, x > 0.

By Theorem 2, we have h(t) = αtα

exp(tα)−1 with the derivative h′(t) = α2tα−1[exp(tα)−tαexp(tα)−1]
[exp(tα)−1]2 .

Let h2(t) = exp(tα)− tαexp(tα)− 1, t > 0, then, a system of equations is given by:
h2(t) = exp(tα)− tαexp(tα)− 1
h′2(t) = −αt2α−1exp(tα) < 0
h2(0) = 0

(13)

Clearly, when t ∈ (0,+∞), we have h2(t) < 0 and thus h′(t) < 0, which proves that h(t) is strictly
decreasing on t ∈ (0,+∞). So λ(x, θ) = 1

x h( θ
x ) is strictly decreasing on θ ∈ (0,+∞).

For the inverse Weibull distribution, from Equation (5), the pivotal quantity is developed as:

T(θ) = 2
n

∑
i=r+2

(Ri + 1) log [
1− exp(−( θ

Xr+1
)α)

1− exp(−( θ
Xi
)α)

]− 2 log [H(1− exp(−( θ

Xr+1
)α))].

When r = 0, T(θ) reduces to

T(θ) = −2
n

∑
i=1

(Ri + 1) log [1− exp(−( θ

Xi
)α)].

Then applying Theorem 3, we achieve the exact interval estimation.

2.2. Simulation Study

Here, the exact interval estimation for ISF under GPTIIC is implemented through Monte Carlo
simulations. Take IED as a prospective life distribution (the CDF and PDF are given in Example 1).
With interval coverage percentages, we evaluate the validity of the exact confidence interval derived
in Theorem 3.

According to Balakrishnan [2], GPTIICOS from IED(θ) can be generated by the following algorithm.

Step 1: Generate a random variable Ln from Beta(N − r, r + 1).
Step 2: Generate n− r− 1 independent Uniform (0,1) random variables Zr+1, . . . , Zn−1.

Step 3: Set Lr+i = Z
1

ar+i where ar+i = i + ∑n
j=n−i+1 Rj, i = 1, . . . , n− r.

Step 4: Set Ur+i = 1− Ln−i+1Ln−i+2 . . . Ln for i = 1, . . . , n− r.
Step 5: Set Xr+i = − θ

log(Ur+i)
for i = 1, . . . , n− r.

Xr+1, . . . , Xn thus denote the GPTIICOS from IED(θ) with the censoring scheme (r, n, N, Rr+1, . . . , Rn).
Here, suppose Xr+1, . . . , Xn are from IED(5). For evaluating the performance of the exact

confidence interval estimation, we consider the cases of N = 20, N = 30 and N = 40 as well as
four different (r, n), including (1, 10), (3, 12), (1, 16), and (3, 18). In this case, we give the average
confidence intervals for θ and the corresponding interval lengths and interval coverage percentages
with 10,000 simulations. The results are shown in Table 1. Here, the considered confidence levels are
90% and 95%.

As can be seen from Table 1, the obtained interval coverage percentage is close to the
corresponding confidence level. This indicates the proposed interval estimation has a good
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performance. Additionally, the simulation results show the relationship between the confidence
interval length and the values of N, r, n:

(a) When n− r (i.e., the number of completely observed failures) and N (i.e., the sample size)
are fixed, the confidence interval length is, to some extent, related to r (that is, the number of the first
unobserved failures), as shown in Table 1 that the average confidence interval is wider when r is larger.

(b) When the values of r and n are fixed, the interval length is related to N as it is larger when N
is smaller.

(c) When the values of N and r are fixed, the interval length is related to n as it is smaller when n
is larger.

Obviously, a narrow confidence interval can provide more information about the unknown
parameter. We conclude that the estimation is more accurate when more samples are completely
observed for the confidence interval length decreases as the number of the completely observed
samples increases.

Table 1. Average confidence intervals (CI), interval lengths (IL), and interval coverage percentages (CP).

1 − ξ = 0.90 1 − ξ = 0.95

(N, r, n) CI IL CP CI IL CP
(20, 1, 10) (2.97, 13.18) 10.21 0.904 (2.63, 15.62) 12.99 0.953
(20, 3, 12) (2.87, 13.85) 10.98 0.900 (2.52, 16.39) 13.87 0.951
(20, 1, 16) (2.93, 10.84) 7.91 0.901 (2.60, 12.33) 9.73 0.951
(20, 3, 18) (2.76, 11.97) 9.21 0.902 (2.42, 13.77) 11.35 0.948
(30, 1, 10) (3.37, 8.40) 5.03 0.897 (3.08, 9.12) 6.04 0.952
(30, 3, 12) (3.27, 9.00) 5.73 0.896 (2.99, 9.91) 6.92 0.952
(30, 1, 16) (3.28, 9.13) 5.85 0.897 (2.99, 10.21) 7.22 0.947
(30, 3, 18) (3.13, 10.46) 7.33 0.895 (2.80, 11.78) 8.98 0.951
(40, 1, 10) (3.53, 7.83) 4.30 0.900 (3.39, 8.48) 5.09 0.949
(40, 3, 12) (3.46, 8.39) 4.93 0.903 (3.19, 9.17) 5.98 0.950
(40, 1, 16) (3.54, 7.71) 4.17 0.900 (3.29, 8.32) 5.03 0.950
(40, 3, 18) (3.41, 8.57) 5.16 0.897 (3.14, 9.37) 6.23 0.950

2.3. An Illustrated Example

A real dataset, reported by Gross and Declark [21], is provided below for illustrating the proposed
estimation process in the previous subsections. It shows the remission time of 20 patients receiving
analgesics (in minutes):

1.1 1.2 1.3 1.4 1.4 1.5 1.6 1.6 1.7 1.7
1.7 1.8 1.8 1.9 2.0 2.2 2.3 2.7 3.0 4.1

Here, we consider three reliability models based on IWD (as shown in Example 2), GIED (as shown
in Example 1), and the Weibull distribution (i.e., WD, the CDF and PDF are given below), respectively.

F(x; θ, α) = 1− e−θxα
, θ, α > 0, x > 0

f (x; θ, α) = αθxα−1e−θxα
, θ, α > 0, x > 0

We use maximum likelihood estimation to construct the above three parametric models, and for
each model, five measures are used to test the goodness-of-fit: (1) −ln, (2) K− S distance, (3) p-value,
(4) AIC, and (5) BIC. Here, for each model, −ln can be calculated with the data and MLEs of the
corresponding parameters. The following briefly introduces AIC and BIC.

(i) AIC, proposed by Akaike [22], can reflect the fitting effect of a reliability model to the data.
The equation is given below:

AIC = 2m− 2ln.
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Here, for an estimated parametric model, m denotes the number of parameters, and ln denotes the
maximum value of the log-likelihood function. For a given data set, the best fit order of several
competing models can be given from their AIC, and the one with lower AIC ranks higher.

(ii) BIC, proposed by Schwarz [23], is a selection criterion for choosing between several estimated
statistical models with different numbers of parameters. The equation is given by:

BIC = m log(n)− 2ln.

Here, for an estimated parametric model, m denotes the number of parameters, n denotes the
number of observed failures, and ln denotes the maximum value of the log-likelihood function. BIC
has a close relationship with the AIC. When a data set is given, same as in AIC, the best fit order
of several competing models can be given from their BIC, and the one with lower BIC ranks higher.
However, compared with AIC, BIC has a greater penalty for additional parameters.

In the case of MLE, the values of the above five measures based on the three reliability models are
listed in Table 2. Clearly, the best fit order for the given data set is:

BEST IWD → GIED → WD WORST

Since IWD has the lowest values of −ln, K− S distance, AIC, BIC, and the highest p-value, it is
considered the best of the three reliability models. Furthermore, the fitting effects of the three reliability
models are intuitively shown in Figure 1. Hence, we fit the IWD model to the data set. It appears
from Table 2 that the values of −ln, K − S distance, p-value, AIC, and BIC in the case of MLE are
15.19896, 0.1306, 0.9187, 34.39793, and 36.17867, respectively, indicating the IWD model fits well to the
data when α takes the value of 3.777054. Hence, for estimating the exact confidence interval of θ, we
can assume that the sample follows IWD(θ,3.777054). Set r = 2, n = 16, and then Table 3 shows the
censoring scheme and the generated censored data.

Figure 1. An empirical distribution function (CDF) and other CDFs based on different statistical models.

Table 2. Fitting results for the three reliability models.

Model α θ −ln K − S p-Value AIC BIC

IWD 3.777054 1.58526 15.19896 0.1306 0.9187 34.39793 36.17867
GIED 19.519704 6.189745 16.22355 0.14001 0.8721 36.4471 38.22784
WD 2.785545 8.779702 19.06114 0.17819 0.6171 42.12228 43.90302
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Table 3. Generated dataset and censoring scheme.

i, j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Xi − − 1.3 1.4 1.6 1.7 1.7 1.8 1.8 1.9 2.0 2.2 2.3 2.7 3.0 4.1
Ri − − 1 1 1 1 0 0 0 0 0 0 0 0 0 0

We compute the exact confidence interval for θ with Equation (5). Here, the 90% and 95%
confidence intervals are obtained to be (1.251123, 1.817043) and (1.208818, 1.874985), respectively.

3. Estimation of R = P(Y < X)

Consider the situation when the distributions of independent random variables X and Y are
ISF(θ1) and ISF(θ2) (the CDF and PDF are shown in Section 1), respectively.

Then, the stress-strength parameter is described as:

R = P(Y < X) =
∫ +∞

0
dx
∫ x

0

θ1

x2
θ2

y2 g(
θ1

x
)g(

θ2

y
)dy

=
∫ +∞

0

θ1

x2 g(
θ1

x
)[1− G(

θ2

x
)]dx (14)

= R(θ1, θ2).

Suppose Xr+1 ≤ . . . ≤ Xn are the GPTIICOS from X with censoring scheme (r, n, N, Rr+1, . . . , Rn);
Yr′+1 ≤ . . . ≤ Ym are the GPTIICOS from Y with censoring scheme (r′, m, M, R′r′+1, . . . , R′m). Based on
the above samples, we discuss the estimation of R.

3.1. Maximum Likelihood Estimator (MLE)

In order to get the MLE of R, the MLEs of θ1 and θ2 need to be derived. Here, denote the MLEs of
θ1, θ2, R as θ̂1, θ̂2, R̂ for convenience.

The likelihood function is described as Equation (15) based on the above samples.

L (θ1, θ2) = c1 [F (xr+1)]
r

n

∏
i=r+1

f (xi) [1− F (xi)]
Ri × c2 [F (yr′+1)]

r′
m

∏
j=r′+1

f
(
yj
) [

1− F
(
yj
)]R′j , (15)

where

c1 =

(
N
r

)
(N − r)

n

∏
j=r+2

(
N −

j−1

∑
i=r+1

Ri − j + 1

)
,

c2 =

(
M
r′

)
(M− r′)

m

∏
j=r′+2

(
M−

j−1

∑
i=r′+1

R′i − j + 1

)
.

It seems impossible to get the MLEs of θ1 and θ2 explicitly from the likelihood Equations (16) and
(17). However, we can solve Equations (16) and (17) with the R programming language to obtain θ̂1

and θ̂2. Then R̂ can be expressed as R̂ = R(θ̂1, θ̂2). In the following subsection, explicit solutions of θ1

and θ2 will be given with an approximative method.

∂ ln L(θ1, θ2)

∂θ1
=

n− r
θ1
−

rg( θ1
xr+1

)

1− G( θ1
xr+1

)

1
xr+1

+
n

∑
i=r+1

[
g′( θ1

xi
)

g( θ1
xi
)

1
xi

+
Rig(

θ1
xi
)

G( θ1
xi
)

1
xi
] = 0 (16)

∂ ln L(θ1, θ2)

∂θ2
=

m− r′

θ2
−

r′g( θ2
yr′+1

)

1− G( θ2
yr′+1

)

1
yr′+1

+
m

∑
j=r′+1

[
g′( θ2

yj
)

g( θ2
yi
)

1
yj

+
R′jg(

θ2
yj
)

G( θ2
yj
)

1
yj
] = 0 (17)
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3.2. Approximate Maximum Likelihood Estimator (AMLE)

From the above analysis, getting explicit solutions for θ1 and θ2 from the nonlinear
Equations (16) and (17) is quite difficult. So we use Taylor expansions to acquire approximate
estimators. Denote the AMLEs of θ1, θ2, R as θ̃1, θ̃2, R̃, respectively.

Considering the transformation Z = θ
X , then its CDF and PDF are respectively given by:

M(z) = 1− G(z), z > 0, (18)

m(z) = −g(z), z > 0. (19)

Remark 2. M(z) is decreasing on (0,+∞).

Proof. According to the monotonicity of G(x), the proof is thus completed.

Let zi =
θ1
xi

and wj =
θ2
yj

. The likelihood equations of θ1 and θ2 can be rewritten by:

∂ ln L∗(θ1, θ2)

∂θ1
=

n− r
θ1

+
r
θ1

m(zr+1)

M(zr+1)
zr+1 +

n

∑
i=r+1

[
1
θ1

m′(zi)

m(zi)
zi −

Ri
θ1

m(zi)

1−M(zi)
zi] = 0, (20)

∂ ln L∗(θ1, θ2)

∂θ2
=

m− r′

θ2
+

r′

θ2

m(wr′+1)

M(wr′+1)
wr′+1 +

m

∑
j=r′+1

[
1
θ2

m′(wj)

m(wj)
wj −

Rj

θ2

m(wi)

1−M(wj)
wj] = 0. (21)

Consider the following Taylor expansions that keep only the first two terms. Let p1(zi) =
m(zi)
M(zi)

,

p2(zi) =
m′(zi)
m(zi)

, p3(zi) =
m(zi)

1−M(zi)
and expand them around the point ei = E(Zi); let q1(wj) =

m(wj)

M(wj)
,

q2(wj) =
m′(wj)

m(wj)
, q3(wj) =

m(wj)

1−M(wj)
and expand them around the point e′j = E(Wj). Note that for

k ∈ {1, 2, 3}, p′k(zi) and q′k(wj) are the derivatives of pk(zi) and qk(wj), respectively.

p1(zi) ≈ p1(ei) + p′1(ei)(zi − ei) = Ai − Bizi, where Ai = p1(ei)− ei p′1(ei), Bi = −p′1(ei),

p2(zi) ≈ p2(ei) + p′2(ei)(zi − ei) = Ci − Dizi, where Ci = p2(ei)− ei p′2(ei), Di = −p′2(ei),

p3(zi) ≈ p3(ei) + p′3(ei)(zi − ei) = Ei − Fizi, where Ei = p3(ei)− ei p′3(ei), Fi = −p′3(ei),

q1(wj) ≈ q1(e′j) + q′1(e
′
j)(wj − e′j) = A′j − B′jwj, where A′j = q1(e′j)− e′jq

′
1(e
′
j), B′j = −q′1(e

′
j),

q1(wj) ≈ q2(e′j) + q′2(e
′
j)(wj − e′j) = C′j − D′jwj, where C′j = q2(e′j)− e′jq

′
2(e
′
j), D′j = −q′2(e

′
j),

q3(wj) ≈ q3(e′j) + q′3(e
′
j)(wj − e′j) = E′j − F′j wj, where E′j = q3(e′j)− e′jq

′
3(e
′
j), F′j = −q′3(e

′
j).

Then we consider the expression for ei and e′j. According to the transformation of Z = θ
X and the

monotonicity of M(z), we have Zr+1 ≥ . . . ≥ Zn and M(Zr+1, θ) ≤ . . . ≤ M(Zn, θ). For i = r+ 1, . . . , n,
let M(Zi) = Ui. Here Ur+1 ≤ . . . ≤ Un denote the GPTIICOS from the Uniform (0,1) distribution.
Then ei can be approximated as ei = E(Zi) ≈ M−1(E(Ui)), where E(Ui) can be obtained from the
following equations (proposed by Balakrishnan [2]).

E(Ur+i) = 1−
n

∏
j=n−i+1

αj, i = 1, . . . , n− r,

where

αi =
ai

1 + ai
, i = r + 1, . . . , n− 1,

αn =
an

1 + r + an
,

ar+i = i +
n

∑
j=n−i+1

Rj, i = 1, . . . , n− r.
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Clearly, e′j can be approximated in a similar way.
Combining the above Taylor expansions, the likelihood Equations (20) and (21) then reduce to

∂ ln L∗(θ1, θ2)

∂θ1
=

1
θ1
{(n− r) + r(Ar+1 − Br+1zr+1)zr+1 +

n

∑
i=r+1

[(Ci − Dizi)zi − Ri(Ei − Fizi)zi ]} = 0,

∂ ln L∗(θ1, θ2)

∂θ2
=

1
θ2
{(m− r′) + r′(A′r′+1 − B′r′+1wr′+1)wr′+1 +

m

∑
j=r′+1

[(C′j − D′jwj)wj − R′j(E′j − F′j wj)wj]}

= 0.

Here, we show two theorems to give the explicit solutions for θ1 and θ2.

Theorem 4. [24] If ln g(x) is concave on (a, b), then it is said that the function g(x) is log-concave, and the
following conditions are satisfied: (i) g′(x)

g(x) is monotone decreasing on (a, b). (ii) (ln g(x))′′ < 0.

Remark 3. It is easy to prove Theorem 4 holds in the case of a = 0 and b = +∞.

Theorem 5. [25] Suppose g(x) is the density function on (0,+∞) and G(x) is the distribution function.
If g(x) is log-concave on (0,+∞), then (i) M(x) = 1− G(x) is log-concave, (ii) G(x) is also log-concave on
(0,+∞).

Lemma 2. If the standard scale density function g(x) is log-concave on (0,+∞), then the AMLEs of θ1 and θ2

are given in Equation (22) and R̃ can be obtained with Equation (14).

θ̃1 =
−α2 −

√
α22 − 4(n− r)α1

2α1
, θ̃2 =

−β2 −
√

β2
2 − 4(m− r′)β1

2β1
, (22)

where

α1 =
n

∑
i=r+1

(
RiFi − Di

xi
2 )− rBr+1

x2
r+1

, α2 =
rAr+1

xr+1
+

n

∑
i=r+1

(
Ci − RiEi

xi
),

β1 =
m

∑
j=r′+1

(
R′jF

′
j − D′j
yj

2 )−
r′B′r′+1

y2
r′+1

, β2 =
r′A′r′+1
yr′+1

+
m

∑
j=r′+1

(
C′j − R′jE

′
j

yj
).

Proof. Substitute zi by θ1
xi

and wj by θ2
yj

and then Equation (22) are the solutions to the likelihood

equations. We need to prove that θ̃1 and θ̃2 are positive. By Theorem 5, M(x) and G(x) are log-concave
on (0,+∞) when g(x) is log-concave and we have p′1(ei), p′2(ei) ≤ 0 and p′3(ei) ≥ 0 applying Theorem 4.
Thus, Bi, D1 ≤ 0 and Fi ≥ 0. It is impossible that Bi, D1, Fi ≡ 0 for i = r + 1, . . . , n. So, α1 is negative.
Thus, from Equation (22), θ̃1 is positive. Similarly, we can prove θ̃2 is also positive.

p1(ei) =
m(ei)

M(ei)
, p2(ei) =

g′(ei)

g(ei)
, p3(ei) = −

g(ei)

G(ei)
.

Note that
(i) in the cases of GIED and IWD (given in Section 2.1, when α > 1), g(x) is log-concave on (0,+∞);
(ii) If g(x) is not log-concave on (0,+∞), we can take the positive roots of the likelihood equations

to get the AMLEs θ̃1 and θ̃2.
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3.3. R-Symmetric and R-Asymmetric Approximate Confidence Intervals

First, we obtain an asymptotic confidence interval, which is symmetric about R̂, with the
asymptotic distributions of θ̂1, θ̂2 as well as R̂. Then considering the obtained confidence interval
may not work well for small samples, with Bootstrap methods, we further acquire two R-asymmetric
interval estimates.

3.3.1. R-Symmetric Interval Estimation Based on Asymptotic Distributions

The asymptotic distribution of θ̂ = (θ̂1, θ̂2) can be derived with the Fisher information matrix of
θ = (θ1, θ2), which is described as follows.

I(θ) = −

 E( ∂2l
∂θ2

1
) E( ∂2l

∂θ1∂θ2
)

E( ∂2l
∂θ1∂θ2

) E( ∂2l
∂θ2

2
)

 =

[
I11 I12

I21 I22

]
, (23)

where

I11 =− E(
∂2l
∂θ2

1
), I22 = −E(

∂2l
∂θ2

2
), I12 = I21 = 0,

∂2l
∂θ2

1
=− n− r

θ2
1
− r

x2
r+1

g′( θ1
xr+1

)[1− G( θ1
xr+1

)] + (g( θ1
xr+1

))2

[1− G( θ1
xr+1

)]2

+
n

∑
i=r+1

[
g
′′
( θ1

xi
)g( θ1

xi
)− (g′( θ1

xi
))2

x2
i (g( θ1

xi
))2

+
Ri

x2
i

g′( θ1
xi
)G( θ1

xi
)− (g( θ1

xi
))2

(G( θ1
xi
))2

],

∂2l
∂θ2

2
=− m− r′

θ2
2
− r′

y2
r′+1

g′( θ2
yr′+1

)[1− G( θ2
yr′+1

)] + (g( θ2
yr′+1

))2

[1− G( θ2
yr′+1

)]2

+
m

∑
j=r′+1

[
g
′′
( θ2

yj
)g( θ2

yj
)− (g′( θ2

yj
))2

y2
j (g( θ2

yj
))2

+
R′j
y2

j

g′( θ2
yj
)G( θ2

yj
)− (g( θ2

yj
))2

(G( θ2
yj
))2

].

I(θ) can further be used to derive the approximate variance-covariance matrix. If all the regularity
conditions are satisfied for the distribution from ISF, we give the following asymptotic distributions
for θ̂ = (θ̂1, θ̂2) and R̂ based on the asymptotic properties of MLE.

Theorem 6. For n − r → ∞, m − r′ → ∞, we have (
√

n− r(θ̂1 − θ1),
√

m− r′(θ̂2 − θ2)) →

N(0, C−1(θ1, θ2)) in distribution where C(θ1, θ2) =

[
c11 0
0 c22

]
with c11 = I11

n−r , c22 = I22
m−r′ .

Theorem 7. For n− r → ∞, m− r′ → ∞, we have
√

n− r(R̂− R)→ N(0, A) where

A = bTC−1b, C−1(θ1, θ2) =

[
n−r
I11

0
0 m−r′

I22

]
, b =

[
b1(θ1, θ2)

b2(θ1, θ2)

]
,

b1(θ1, θ2) =
∫ +∞

0
[

1
x2 g(

θ1

x
) +

θ1

x3 g′(
θ1

x
)][1− G(

θ2

x
)]dx,

b2(θ1, θ2) = −
∫ +∞

0

θ1

x3 g(
θ1

x
)g(

θ2

x
)dx.

Proof. Applying the Delta method and Theorem 6, we can describe the asymptotic distribution of
R̂ = R(θ̂1, θ̂2) as

√
n− r(R̂− R)→ N(0, A), where
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A =
(

∂R(θ1,θ2)
∂θ1

∂R(θ1,θ2)
∂θ2

)
C−1(θ1, θ2)

(
∂R(θ1,θ2)

∂θ1
∂R(θ1,θ2)

∂θ2

)
.

It is easy to prove that b1(θ1, θ2) = ∂R(θ1,θ2)
∂θ1

and b2(θ1, θ2) = ∂R(θ1,θ2)
∂θ2

. Thus the proof
is completed.

From the results of Theorem 7, a 100(1− ξ)% asymptotic confidence interval can be determined

as: [R̂−
√

Â√
n−r z1− ξ

2
, R̂ +

√
Â√

n−r z1− ξ
2
], which is symmetric about R̂. Here, A is estimated with θ̂1 and θ̂2.

zξ is 100ξth percentile of N(0, 1). Similarly, by estimating matrix A with θ̃1 and θ̃2, the R-symmetric
asymptotic confidence interval based on R̃ is thus acquired. Note that θ̃1 and θ̃2 is given in Section 3.2.

3.3.2. R-Asymmetric Interval Estimation Based on Bootstrap Methods

Since the obtained asymptotic distributions may not hold for small samples, two Bootstrap
confidence intervals are thereby proposed, which are R-asymmetric and considered to have a better
performance.

(a) Bootstrap-p method

Step 1: Generate (x∗r+1, . . . , x∗n) from (xr+1, . . . , xn) and (y∗r′+1, . . . , y∗m) from (yr′+1, . . . , ym),
respectively. Based on the generated samples, calculate R̂∗ with Equation (14);

Step 2: Repeat step 1, NBOOT times;
Step 3: Define the CDF of R̂∗ as Φ1(z) = P(R̂∗ ≤ z). Let R̂BP(z) = Φ−1

1 (z) for a given z. Thus an
approximate 100(1− ξ)% confidence interval of R is (R̂BP(

ξ
2 ), R̂BP(1− ξ

2 )).

(b) Bootstrap-t method

Step 1: Calculate θ̂1, θ̂2 and R̂ with (xr+1, . . . , xn) and (yr′+1, . . . , ym);
Step 2: Generate (x∗r+1, . . . , x∗n) from (xr+1, . . . , xn) and (y∗r′+1, . . . , y∗m) from (yr′+1, . . . , ym),

respectively;
Step 3: Calculate R̂∗ with Equation (14) and calculate B∗ with B∗ =

√
n−r(R̂∗−R̂)√

Var(R̂∗)
(Note that Var(R̂∗)

can be derived from Theorem 7);
Step 4: Repeat steps 2 and 3, NBOOT times;

Step 5: Define the CDF of B∗ as Φ2(z) = P(B∗ ≤ z). Let R̂BT(z) = R̂ + Φ−1
2 (z)

√
Var(R̂)

n−r for a given z.

Thus an approximate 100(1− ξ)% confidence interval of R is (R̂BT(
ξ
2 ), R̂BT(1− ξ

2 )).

3.4. Bayesian Estimation

Since gamma distributions are frequently used as prior distributions for parameters from the
inverted scale family according to the related articles [4,7,26–28], we assume independent gamma
priors on θ1 and θ2, that is, θi ∼ Gamma(αi, βi) for i ∈ {1, 2}. The PDFs are given in Equation (24).
Note that R can be derived in a similar way when θ follows other prior distributions.

π(θi|αi, βi) =
β

αi
i

Γ(αi)
θ

αi−1
i e−βiθi , i = 1, 2, αi, βi > 0 (24)

Then, the joint posterior density function of θ1 and θ2 is:

L(θ1, θ2|data) =
L(data|θ1, θ2)π(θ1)π(θ2)∫ ∞

0

∫ ∞
0 L(data|θ1, θ2)π(θ1)π(θ2)dθ1dθ2

. (25)

Equation (25) is found to be intractable, and therefore, getting the respective Bayesian estimator
analytically is quite difficult. However, samples can be generated from the posterior distribution with
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Gibbs sampling so that the Bayesian estimator of R and HPD credible interval, proposed by Chen [29],
can be obtained easily. Here give the posterior density functions of θ1 and θ2:

f (θ1|θ2, data) ∝ [1− G(
θ1

xr+1
)]r

n

∏
i=r+1

θ1

x2
i

g(
θ1

xi
)G(

θ1

xi
)Rj × θα1−1

1 e−β1θ1 ,

f (θ2|θ1, data) ∝ [1− G(
θ2

yr′+1
)]r
′ m

∏
j=r′+1

θ2

y2
j

g(
θ2

yj
)G(

θ2

yj
)

R′j × θα2−1
2 e−β2θ2 .

Both posterior density functions are found to be unknown. So the Metropolis-Hastings (M− H)
method is used to generate θ

(k)
1 and θ

(k)
2 from f (θ1|θ2, data) and f (θ2|θ1, data), respectively. Gibbs

sampling algorithm is as follows:

Step 1: Determine the initial value (θ
(0)
1 , θ

(0)
2 );

Step 2: Set k = 1;
Step 3: Using the M− H method, generate θ

(k)
1 from f (θ1|θ2, data). Here, the proposal distribution is

exp(θ(k−1)
1 );

Step 4: Using the M− H method, generate θ
(k)
2 from f (θ2|θ1, data). Here, the proposal distribution is

exp(θ(k−1)
2 );

Step 5: Compute R(k) by Equation (14);
Step 6: Set k = k + 1;
Step 7: Repeat steps 3 to 6 K times.

Then the approximate posterior mean and posterior variance of R is:

Ê(R|data) =
1
K

K

∑
k=1

R(k),

V̂ar(R|data) =
1
K

K

∑
k=1

[R(k) − Ê(R|data)]2.

The HPD credible interval at 100(1− ξ)% credible level can be given by:

(R
[ ξ

2 K], R
[(1− ξ

2 )K]
).

Here, R[i] denotes the ith smallest of {R(k)(k = 1, 2, . . . , K)}.

3.5. Simulation Study

Supposing both X and Y are from IED (as shown in Example 1), the obtained estimations for R
can be achieved through Monte Carlo simulations. The GPTIICOS from X and Y are generated with
the algorithm in Section 2.2.

Here three censoring schemes are considered, which are listed and numbered in Table 4, and six sets
of parameter values (θ1, θ2) are used for simulations, including (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), and (3, 3).

Table 4. Censoring schemes (C.S.).

C.S. (r, n, N, Rr+1, Rr+2, . . . , Rn)

R1 (2, 10, 29, 3, 1, 2, 3, 1, 2, 3, 4)
R2 (2, 10, 26, 2, 2, 2, 2, 2, 2, 2, 2)
R3 (2, 10, 26, 4, 2, 4, 2, 1, 1, 1, 1)

We make an evaluation on the validity of estimations obtained from each censoring scheme and
each value of (θ1, θ2). The evaluation process is as follows. First, the accuracy of the point estimates
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is compared in light of their mean squared errors (MSE) and biases. Then, with the average interval
lengths and interval coverage percentages, we make an assessment on the different interval estimates.

The average point estimates for each parameter value and censoring scheme are obtained through
1000 simulations, which are shown in Table 5 together with the corresponding average biases and
MSEs. Further, we give the heat maps of Table 5 in Figures 2 and 3. The proposed intervals at 95%
confidence/credible level are also obtained. Table 6 gives the obtained average interval lengths and
interval coverage percentages for different methods. In our simulations, the HPD credible intervals are
acquired after 2000 samples while the Bootstrap confidence intervals are acquired after 250 resamples.

From Table 5, all the point estimates are quite effective as the corresponding MSEs and biases are
pretty small. Additionally, we speculate from Figures 2 and 3 that the accuracy of the estimators is
somewhat related to the true value of (θ1, θ2) because the MSEs and biases of the Bayesian estimator
show a great difference between the case of θ1 = θ2 and the others. We can find in the cases that (θ1, θ2)

takes (1, 3) and (2, 3), the MSEs and biases of the Bayesian estimator are much higher than those in the
other cases. However, in the cases of θ1 = θ2, Bayes estimates are extremely accurate.

For the interval estimations, we refer to Table 6. It can be seen that the interval length of
the Bootstrap-t interval is wider than others for most cases and according to the interval coverage
percentages, the performance of Bootstrap-t intervals is slightly better than the performance of
asymptotic confidence intervals obtained from R̂ and R̃. Moreover, the interval coverage percentages
of the R-symmetric asymptotic confidence intervals are more deviated from 95%, which indicates
that their performances are not good when compared with others. That is probably because small
samples may affect the asymptotic distribution of R, which thereby may affect the accuracy of interval
estimation. However, it is obvious that the HPD credible interval performs better when compared to
the asymptotic intervals and Bootstrap intervals since the corresponding interval coverage percentages
are closer to the nominal level. So, Bayes estimation is considered as the best method, and according to
the interval coverage percentages, the ranking of the three methods is given below.

BEST Bayes → Bootstrap → Asymptotics WORST

Figure 2. The bias heat map.
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Table 5. Average point estimates of R and the corresponding Biases (MSEs).

MLE AMLE Bayes

(θ1, θ2) C.S. R Bias(Mse) R Bias(Mse) R Bias(Mse)

(1, 1)

(R1, R1) 0.50085 0.00085(0.00513) 0.50291 0.00291(0.00481) 0.50016 0.00016(0.00018)
(R1, R2) 0.50468 0.01468(0.00479) 0.50699 0.00699(0.00576) 0.50049 0.00049(0.00017)
(R1, R3) 0.51370 0.01370(0.00555) 0.52850 0.02850(0.00649) 0.50050 0.00050(0.00018)
(R2, R2) 0.50230 0.00230(0.00515) 0.50231 0.00231(0.00523) 0.50009 0.00009(0.00016)
(R2, R3) 0.50833 0.00833(0.00550) 0.51731 0.01731(0.00634) 0.50078 0.00078(0.00016)
(R3, R3) 0.50295 0.00295(0.00592) 0.50262 0.00262(0.00541) 0.50066 0.00066(0.00017)

(1, 2)

(R1, R1) 0.33615 0.00315(0.00425) 0.34790 0.01490(0.00603) 0.33341 0.00041(0.00007)
(R1, R2) 0.34654 0.01354(0.00402) 0.34425 0.01125(0.00434) 0.35512 0.02212(0.00327)
(R1, R3) 0.34605 0.01305(0.00473) 0.34831 0.01531(0.00473) 0.35051 0.01751(0.00289)
(R2, R2) 0.33812 0.00512(0.00436) 0.33780 0.00480(0.00494) 0.35882 0.02582(0.00370)
(R2, R3) 0.33332 0.00032(0.00464) 0.34141 0.00841(0.00485) 0.35614 0.02314(0.00352)
(R3, R3) 0.33670 0.00370(0.00459) 0.33432 0.00132(0.00454) 0.36062 0.02762(0.00377)

(1, 3)

(R1, R1) 0.25153 0.00153(0.00292) 0.25651 0.00651(0.00308) 0.32660 0.07660(0.01191)
(R1, R2) 0.25812 0.00812(0.00290) 0.25621 0.00621(0.00291) 0.32476 0.07476(0.01080)
(R1, R3) 0.25847 0.00847(0.00371) 0.27132 0.02132(0.00353) 0.32228 0.07228(0.01192)
(R2, R2) 0.25594 0.00594(0.00354) 0.25403 0.00403(0.00362) 0.32491 0.07491(0.01116)
(R2, R3) 0.25292 0.00292(0.00337) 0.25022 0.00022(0.00341) 0.32323 0.07323(0.01163)
(R3, R3) 0.25245 0.00245(0.00301) 0.25808 0.00808(0.00346) 0.32516 0.07516(0.01053)

(2, 2)

(R1, R1) 0.50245 0.00245(0.00495) 0.50019 0.00019(0.00520) 0.50005 0.00005(0.00007)
(R1, R2) 0.50341 0.00341(0.00550) 0.51469 0.01469(0.00575) 0.50044 0.00044(0.00007)
(R1, R3) 0.50896 0.00896(0.00552) 0.52607 0.02607(0.00611) 0.50027 0.00027(0.00006)
(R2, R2) 0.50033 0.00033(0.00565) 0.50055 0.00055(0.00542) 0.50013 0.00013(0.00007)
(R2, R3) 0.50055 0.00055(0.00618) 0.51098 0.01098(0.00578) 0.50010 0.00010(0.00008)
(R3, R3) 0.50365 0.00365(0.00554) 0.50225 0.00255(0.00596) 0.50079 0.00079(0.00007)

(2, 3)

(R1, R1) 0.40467 0.00467(0.00464) 0.40345 0.00345(0.00465) 0.49350 0.09350(0.00879)
(R1, R2) 0.41019 0.01019(0.00485) 0.40838 0.00838(0.00458) 0.49376 0.09376(0.00885)
(R1, R3) 0.40929 0.00929(0.00445) 0.42179 0.02179(0.00531) 0.49361 0.09361(0.00882)
(R2, R2) 0.40152 0.00152(0.00449) 0.40775 0.00775(0.00604) 0.49382 0.09382(0.00885)
(R2, R3) 0.40044 0.00044(0.00530) 0.41298 0.01298(0.00560) 0.49362 0.09362(0.00882)
(R3, R3) 0.40132 0.00132(0.00526) 0.40099 0.00099(0.00526) 0.49382 0.09382(0.00886)

(3, 3)

(R1, R1) 0.50172 0.00172(0.00522) 0.50209 0.00209(0.00495) 0.50009 0.00009(0.00005)
(R1, R2) 0.50577 0.00577(0.00519) 0.51180 0.01180(0.00581) 0.50010 0.00010(0.00005)
(R1, R3) 0.50220 0.00220(0.00598) 0.52334 0.02334(0.00622) 0.50086 0.00086(0.00005)
(R2, R2) 0.50062 0.00062(0.00550) 0.50583 0.00583(0.00590) 0.50003 0.00003(0.00004)
(R2, R3) 0.50077 0.00077(0.00545) 0.50499 0.00499(0.00601) 0.50043 0.00043(0.00005)
(R3, R3) 0.50363 0.00363(0.00602) 0.50470 0.00470(0.00629) 0.50020 0.00020(0.00004)
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Table 6. Average interval length (interval coverage percentage) for different interval estimations.

(θ1, θ2) C.S. MLE AMLE Bayes Boot − p Boot − t

(1, 1)

(R1, R1) 0.268(0.943) 0.272(0.925) 0.250(0.954) 0.268(0.922) 0.299(0.948)

(R1, R2) 0.272(0.899) 0.273(0.911) 0.250(0.938) 0.275(0.924) 0.302(0.943)

(R1, R3) 0.278(0.914) 0.276(0.875) 0.250(0.930) 0.276(0.931) 0.305(0.954)

(R2, R2) 0.282(0.912) 0.284(0.924) 0.250(0.947) 0.282(0.914) 0.305(0.926)

(R2, R3) 0.286(0.919) 0.280(0.907) 0.247(0.946) 0.287(0.930) 0.309(0.935)

(R3, R3) 0.284(0.935) 0.284(0.925) 0.247(0.955) 0.311(0.954) 0.311(0.946)

(1, 2)

(R1, R1) 0.237(0.914) 0.239(0.929) 0.249(0.935) 0.241(0.929) 0.266(0.915)

(R1, R2) 0.248(0.927) 0.245(0.911) 0.249(0.953) 0.253(0.937) 0.270(0.929)

(R1, R3) 0.255(0.912) 0.247(0.909) 0.249(0.943) 0.258(0.928) 0.272(0.941)

(R2, R2) 0.250(0.905) 0.251(0.914) 0.250(0.931) 0.255(0.943) 0.276(0.920)

(R2, R3) 0.256(0.922) 0.253(0.910) 0.249(0.947) 0.261(0.944) 0.277(0.930)

(R3, R3) 0.257(0.933) 0.257(0.906) 0.250(0.949) 0.261(0.946) 0.279(0.931)

(1, 3)

(R1, R1) 0.205(0.924) 0.205(0.934) 0.249(0.930) 0.210(0.939) 0.228(0.928)

(R1, R2) 0.215(0.910) 0.208(0.913) 0.250(0.951) 0.219(0.936) 0.231(0.919)

(R1, R3) 0.221(0.924) 0.211(0.896) 0.249(0.947) 0.226(0.917) 0.232(0.902)

(R2, R2) 0.214(0.914) 0.214(0.919) 0.249(0.940) 0.221(0.938) 0.236(0.926)

(R2, R3) 0.221(0.909) 0.217(0.905) 0.249(0.943) 0.226(0.937) 0.236(0.910)

(R3, R3) 0.217(0.931) 0.217(0.909) 0.250(0.957) 0.223(0.957) 0.236(0.927)

(2, 2)

(R1, R1) 0.269(0.920) 0.265(0.925) 0.250(0.937) 0.268(0.949) 0.298(0.924)

(R1, R2) 0.274(0.912) 0.275(0.921) 0.250(0.936) 0.276(0.932) 0.303(0.924)

(R1, R3) 0.274(0.900) 0.276(0.911) 0.249(0.946) 0.277(0.926) 0.306(0.859)

(R2, R2) 0.281(0.911) 0.279(0.911) 0.249(0.962) 0.282(0.942) 0.307(0.920)

(R2, R3) 0.281(0.907) 0.281(0.908) 0.250(0.955) 0.283(0.933) 0.308(0.934)

(R3, R3) 0.286(0.930) 0.284(0.914) 0.251(0.945) 0.287(0.949) 0.309(0.931)

(2, 3)

(R1, R1) 0.257(0.909) 0.256(0.900) 0.250(0.943) 0.260(0.925) 0.285(0.911)

(R1, R2) 0.267(0.926) 0.262(0.911) 0.249(0.956) 0.269(0.952) 0.293(0.934)

(R1, R3) 0.270(0.912) 0.264(0.896) 0.250(0.934) 0.272(0.929) 0.293(0.922)

(R2, R2) 0.267(0.907) 0.270(0.916) 0.250(0.947) 0.272(0.939) 0.296(0.918)

(R2, R3) 0.274(0.921) 0.271(0.910) 0.250(0.940) 0.275(0.943) 0.297(0.929)

(R3, R3) 0.272(0.912) 0.271(0.907) 0.249(0.952) 0.275(0.944) 0.296(0.933)

(3, 3)

(R1, R1) 0.267(0.908) 0.267(0.923) 0.249(0.959) 0.269(0.939) 0.296(0.923)

(R1, R2) 0.274(0.914) 0.275(0.895) 0.249(0.947) 0.275(0.935) 0.302(0.939)

(R1, R3) 0.276(0.888) 0.276(0.899) 0.250(0.934) 0.276(0.913) 0.305(0.921)

(R2, R2) 0.281(0.915) 0.282(0.927) 0.250(0.929) 0.283(0.934) 0.308(0.925)

(R2, R3) 0.283(0.917) 0.280(0.908) 0.250(0.925) 0.284(0.950) 0.308(0.909)

(R3, R3) 0.285(0.907) 0.283(0.911) 0.251(0.945) 0.285(0.939) 0.307(0.911)
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Figure 3. The MSE heat map.

3.6. An Illustrated Example

Here, an analysis of two real datasets, reported by Badar and Priest [30], is given below. Many
reliability models, for example, the models based on the generalized Rayleigh distributions, Weibull
distributions and three-parameter Weibull distributions, have been applied to the two datasets
(see Raqab and Kundu [17], Kundu and Gupta [18], and Kundu and Raqad [19]).

Data Set 1. The data below shows the breaking strength for 63 carbon fibers of 10 mm gauge length in a tension
test (unit: GPA).

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445
2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618
2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937
2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243
3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501
3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027
4.225 4.395 5.020

Data Set 2. The data below shows the breaking strength for 69 carbon fibers of 20 mm gauge length in a tension
test (unit: GPA).

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958
1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179
2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382
2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554
2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726
2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

Here, the fitting of three reliability models based on GIED (as shown in Example 1), WD (as shown
in Section 2.3), IWD (as shown in Example 2) is considered. We use maximum likelihood estimation to
construct the above three parametric models. Same as in Section 2.3, for each model, five measures
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are considered to test the goodness-of-fit: (1) −ln, (2) K− S distance, (3) p-value, (4) AIC, and (5) BIC.
In the case of MLE, these values based on the three reliability models are listed in Table 7. Clearly,
the best fit order for both datasets is:

BEST GIED → WD → IWD WORST

Table 7. Fitting results for the three reliability models.

Data Set Model α θ −ln K − S p-Value AIC BIC

1
GIED 175.2879 16.8110 57.7251 0.8601 0.7399 119.4504 123.7367
WD 5.0494 424.5597 61.9570 0.0876 0.7192 127.914 132.2002
IWD 5.433788 2.721432 58.9022 0.1001 0.5528 121.8043 126.0906

2
GIED 205.87851 13.88254 49.16796 0.041419 0.9998 102.3359 106.8041
WD 5.504847 214.130524 49.59614 0.056132 0.9816 103.1923 107.6605
IWD 4.126731 2.143723 63.62361 0.13363 0.1700 131.2472 135.7154

Since GIED has not only the lowest values of −ln, AIC, and BIC but also the highest p-value,
it is considered as the best model. Furthermore, the fitting effects of the three reliability models are
intuitively shown in Figure 4. So GIED models are used to fit the two datasets separately. It appears
from Table 7 that for Data Set 1, the values of −ln, K− S distance, p-value, AIC, and BIC in the case of
MLE are 57.7251, 0.8601, 0.7399, 123.7367, and 119.4504, respectively, indicating the GIED model fits
the Data Set 1 very well when α takes 175.2879. Same as for Data Set 1, the GIED model fits Data Set
2 very well when α takes 205.87851. Hence, it is reasonable to assume X follows GIED(θ1,175.2879)
and Y follows GIED(θ2,205.87851). Set r = 3. Table 8 shows the respective censoring schemes and the
generated censored data.

Figure 4. An empirical CDF and other CDFs based on different statistical models for the datasets.

Table 8. Generated datasets and censoring schemes.

i, j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Xi - - - 2.228 2.397 2.522 2.616 2.738 2.937 3.125 3.235 3.332 3.493 3.628 4.024
Ri - - - 4 4 4 4 4 4 4 4 4 4 4 4

Yj - - - 1.552 1.944 2.021 2.140 2.270 3.359 2.435 2.535 2.629 2.697 2.807 2.954
R′j - - - 4 4 4 4 4 4 4 4 4 4 4 10

With the R programming language, the proposed estimates of R are derived. As shown in Table 9,
the MLE, AMLE, Bayesian estimator are 0.782, 0.794, and 0.782, respectively. The corresponding
95% confidence/credible intervals are (0.680,0.885), (0.690,0.898), and (0.651,0.871). Additionally,
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The Bootstrap-p and Bootstrap-t confidence intervals are obtained to be (0.665,0.878) and (0.694,0.913),
respectively.

Table 9. Estimation results for the proposed estimators and confidence/credible intervals.

Estimation MLE AMLE Bayes Bootstrap-p Bootstrap-t

Point Estimation 0.782 0.794 0.782 − −
Interval Estimation (0.680, 0.885) (0.690, 0.898) (0.651, 0.871) (0.665, 0.878) (0.694, 0.913)

4. Conclusions

Two estimation problems are solved in this paper. Under GPTIIC, we first achieve the exact
interval estimation for ISF, and the Monte Carlo simulations indicate that it has a good performance.
Then we derive the point and interval estimates of R in the case of ISF. The three point estimates
are all accurate according to their biases and MSEs. However, according to the results of Bayes
estimators, the accuracy of the estimators is thought to be related to the true values of the scale
parameters. For interval estimates, the simulation results show that the HPD credible interval performs
better since the corresponding interval coverage percentage is closer to the nominal level. But the
R-symmetric asymptotic intervals based on R̂ and R̃ are not good due to the small sample size.
Moreover, the Bootstrap-t interval has the widest interval length in most cases. According to the
interval percentages, the ranking of the three methods is: Bayes > Bootstrap > Asymptotics. For each
estimation problem, we also demonstrate the estimation process using real datasets to show the
feasibility of the proposed methods. Further work should focus on the two estimation problems for
other distributions based on GPTIICS. In addition, under other censoring schemes other than GPTIIC,
we can further consider the estimation problems for ISF.
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