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Abstract: The research at hand deals with the mechanical behavior of beam-like nanostructures.
Nanobeams are assembled of multiple layers of different materials and geometry giving a layered
nanobeam. To properly address experimentally noticed size effects in structures of this type,
an adequate nonlocal elasticity formulation must be applied. The present model relies on
the stress-driven integral methodology that effectively circumvents known deficiencies of other
approaches. As a main contribution, a set of differential equations and boundary conditions governing
the underlaying mechanics is proposed and applied to two benchmark examples. The obtained results
show the expected stiffening nonlocal behavior exhibiting most of smaller and smaller structures and
modern devices.

Keywords: nonlocal beams; composite nanobeams; laminated beams; layered nonlocal beams;
stress-driven integral nonlocality

1. Introduction

The mechanical behavior at the micro- and nanoscale is governed by different forces and
potentials than the macroscale structures [1]. It is well-established that relations between forces and
displacements are influenced by small dimensions of such structures, nowadays widely employed to
model nanocomposites [2,3] and new-generation devices, such as micro-bridges [4], nano-switches [5],
nano-generators [6], and energy harvesters [7–9]. In other words, the whole neighborhood of a point
contributes to these relations and the term nonlocal is appropriately used in these circumstances.
For instance, early experimental observations [10] find that silicon is strongly influenced by size-effects.
Measurements show that Young’s modulus varies from approximately 80 GPa for lower nanocantilever
thicknesses, converging to 170 GPa for higher thicknesses. The upper limit value corresponds to [110]
bulk silicon. For the investigation at hand, beams assembled of several layers of different materials
are of particular interest. Thin metal films are typically used in such applications. Bending load is
often introduced by means of contactless electrostatic attraction. In [11], an experimental analysis
of a nanocantilever made of copper and silicon layers is presented. It is found that the rather high
Young’s modulus of copper (approximately 750 GPa) for low thicknesses decreases dramatically with
the increase in thickness, converging to about 120 GPa. Hence, to analyze structures of such small
dimensions, one needs a different mechanical apparatus than the macroscale engineer.

The aforesaid experimental observations triggered the high interest of researchers of different
specialties. A detailed insight into the size-effects of nanostructures can be achieved by the
molecular dynamics (MD) [12] or molecular structural mechanics [13–15]. Such simulations can
be computationally intensive and, at least for applications involving sensors, analytical nonlocal
beam models are preferred. To complicate the issue even further, most of the results dealing with
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the laminated beams fall within the scope of dynamics and cover a variety of boundary conditions,
geometry, and loadings. As an illustration, several examples are mentioned. In [16], a nonlinear finite
element analysis of the bending of a rotating laminated nanocantilever is analyzed. The vibrational
framework for electro-magneto-elastic bending analysis of three-layer nanobeams is presented in [17].
The differential formulation involving the stress gradient is used. The formulation is extended to
curved nanobeams in [18]. Attempts to include temperature effects can also be found (see [19,20]).
Feng et al. [20] clearly demonstrated that both the cantilever dimensions and even small temperature
changes contribute to the statics and dynamics of layered nanocantilevers.

The influence of the interface and surface effects in layered nanobeams is analyzed in [21] by
means of analytical models. Although the approach relies on a different size effect methodology than
this paper, some results have to be pointed out. In particular, the interface and surface effects can
have in some configurations (especially in beams with a large length/thickness ratio) a profound
influence on the elastic deformation; thus, a nonlinear analysis incorporating these effects could be
more suitable. An interested reader is referred to the work of Müller and Saúl [22] for a comprehensive
analysis on the subject and that of Miller and Shenoy [23] for another approach to size-dependent
behavior of nanosized structural elements, nanoplates and nanobeams in particular. When dynamics
of coated layered beams of microscopic thickness is to be addressed, then a surface model including
damping can also have an important role. For instance, Rongong et al. [24] presented an experimental
work about a novel damping layered coating, reporting important properties of the damping layer.
Other sources [25,26] report that experimental verification in some cases confirms the importance of
the interface effects, while in other cases the interface effects can be disregarded. Thus, one should
carefully study the layered beam in question to decide if the surface and interface effects are important
or not.

Most of the previous efforts are related to the gradient-based nonlocal formulation. The original
theory, as proposed by Eringen [27], is based on the strain-driven integral convolution leading to an
equivalent gradient formulation. These results became a popular starting point for many nonlocal
applications in mechanics. However, the theory involves some assumptions that are frequently
overlooked. In particular, the original contribution was developed to describe surface waves in
unbounded continua, thus applications to bounded continua such as beams or plates can be affected
by a non-physical behavior. To assure equivalence of the integral and gradient formulation, a suitable
set of boundary conditions must be provided. Unfortunately, these boundary conditions contradict
equilibrium constraints, as shown in [28,29]. The paradoxical behavior has been known to occur [30,31]
for quite some time. This is particularly true for the nanocantilever with a tip loading, a frequently
used nanostructure. An efficient answer to this problem is the stress-driven integral formulation [29,32]
in which the strain state at a point is influenced by the stress distribution in the neighborhood. It also
introduces the constitutive boundary conditions necessary for the correct solution of the equivalent
differential formulation. In strong contrast to existing formulations, the present research takes the
stress-drive integral formulation as the starting point.

This paper aims to contribute to the current body of literature on the mechanics of small-scale
structures in nonlocal integral elasticity. To this end, the stress-driven integral formulation [32] is
extended in the present paper to effectively capture scale phenomena in composite beams made of an
arbitrary number of layers of different constitutive materials, with an arbitrary width of each layer.
The presented model can accommodate beams simultaneously loaded by axial and bending loads.

2. Fundamental Concepts

2.1. Geometry of the Beam

The present section defines assumptions regarding the geometry for beams assembled of n layers
of different materials (Figure 1). Bending in the x− z plane is analyzed by means of the Bernoulli–Euler
formulation. We select the x-axis as the longitudinal axis, while the vertical position of the origin
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of the coordinate system is situated at the geometric centroid of the cross-section. Therefore, some
layer i ∈ {1, 2, ..., n} ⊂ N is represented by the rectangular cross-section of height hi = zi − zi−1. It is
assumed that coordinates zi and zi−1 define the upper and lower side of layer i. The width bi is defined
in the y direction, i.e., orthogonal to the bending plane. Indices throughout the paper denote the layer
number and are not used in the sense of the Einstein summation convention. The beam’s length is
denoted by L.

Thus, the cross-section of the beam is assumed to be composed of n rectangles. If the cross-section
is symmetric with respect to the x− z plane and if the origin of the coordinate system O is situated at
the centroid, then the first moment of area must vanish:

∫
Ω

zdA =
n

∑
i=1

bi

∫ zi

zi−1

zdz =
1
2

n

∑
i=1

bi(z2
i − z2

i−1) = 0. (1)

However, due to differences in the Young’s modulus of each layer, the physical neutral surface in
which the normal stresses vanish does not correspond in general to the geometrical middle surface [33].
A similar situation occurs in functionally graded beams along the vertical coordinate z (see [34–36]).
The distance between these two surfaces is denoted by ζ0.

Figure 1. Cross-section and stress resultants of a layered nonlocal beam.

2.2. Notation

To simplify elaborations, new notation for vectors describing geometry and material of layers can
be introduced in a more compact manner as:

b =


b1

b2
...

bn

 , h =


h1

h2
...

hn

 , A = b� h =


b1h1

b2h2
...

bnhn

 ,

S =


b1
∫ z1

z0
(z− ζ0)dz

b2
∫ z2

z1
(z− ζ0)dz

...
bn
∫ zn

zn−1
(z− ζ0)dz

 , I =


b1
∫ z1

z0
(z− ζ0)

2dz
b2
∫ z2

z1
(z− ζ0)

2dz
...

bn
∫ zn

zn−1
(z− ζ0)

2dz

 ,

Lλ = Lλ = L


λ1

λ2
...

λn

 =


Lλ,1
Lλ,2

...
Lλ,n

 , E =


E1

E2
...

En

 , 1 =


1
1
...
1

 ,

(2)
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where the last vector consists of n ones and the symbol � represents the Hadamard product, i.e.,
the component-wise multiplication of two vectors. Elements of the vector b are widths and h heights
of each layer; and A, S, and I contain cross-section areas and first and second moments of cross-section
area for each layer, respectively. Young’s moduli of layers Ei are given as elements of E. The nonlocal
parameters that are described below are given in Lλ. Although using boldface uppercase Latin letters
violates standard vector notation, its meaning is hopefully more easily interpreted by readers due to
familiarity to the equivalent scalar notation.

The following scalar quantities describing local stiffnesses are also introduced

kEA = ∑n
i=1 biEi

∫ zi
zi−1

dz = ∑n
i=1 biEihi = ∑n

i=1 AiEi = (E�A) · 1,

kES = ∑n
i=1 biEi

∫ zi
zi−1

(z− ζ0)dz = (E� S) · 1,

kEI = ∑n
i=1 biEi

∫ zi
zi−1

(z− ζ0)
2dz = (E� I) · 1,

(3)

while the nonlocal contributions are denoted by

kNL
EA = ∑n

i=1 biEihiL2
λ,i = (A� E� Lλ � Lλ) · 1,

kNL
ES = ∑n

i=1 biEiL2
λ,i
∫ zi

zi−1
(z− ζ0)dz = (S� E� Lλ � Lλ) · 1,

kNL
EI = ∑n

i=1 biEiL2
λ,i
∫ zi

zi−1
(z− ζ0)

2dz = (I� E� Lλ � Lλ) · 1.
(4)

The symbol · denotes the scalar product of two vectors as usual.

2.3. Kinematics of the Beam

The presence of the shift of neutral surface ζ0 requires the modification of the standard equation
representing the longitudinal displacement u(x, z) of each point in the x− z plane:

u(x, z) = u0(x) + ϕ(x)(z− ζ0). (5)

The first term is an average longitudinal displacement due to axial loading. Differences in the
stiffness of each layer are causing the variation of the longitudinal displacement in the transverse
direction even in the simplest case of axial loading. In that way, it is more convenient to work with an
average longitudinal displacement. The average longitudinal displacement in a particular cross-section
x can be evaluated as:

u0(x) =
1
A

∫
Ω

u(x, z)dA =
1
A

n

∑
i=1

bi

∫ zi

zi−1

u(x, z)dz, (6)

where A = ∑n
i=1 Ai = A · 1 is the total cross-section area. The second term in Equation (5) accounts for

the rotation of the cross-section due to bending loads.
The Bernoulli–Euler hypothesis imposes the absence of the shear stresses and thus relates the

transversal displacement w(x) in the direction of the z-axis and angle of rotation ϕ in a usual manner:

w(1)(x) = −ϕ(x), (7)

where the apex (n) denotes the nth derivative with respect to x. Differentiation of the longitudinal
displacement with respect to x now gives the normal strain:

ε(x, z) = u(1)
0 − w(2)(z− ζ0). (8)

3. Nonlocal Material Model

Application of the stress-driven nonlocality within the beam framework was initially introduced
in a series of papers [29,32] to overcome applicative difficulties of the strain-driven purely nonlocal
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approach [28]. The same concept can be adopted for layered beams as well. The normal strain in
some layer i depends on the axial stress σ(x, z) in the neighborhood, and the closest points have more
influence than the more distant ones:

ε(x, z) =
∫ L

0
φλ,i(x− ξ)E−1

i σ(ξ, z)dξ. (9)

The kernel function φλ,i(x− ξ) can be selected in several ways. In this particular
instance, the exponential form is conveniently chosen. The kernel is a function of a single
variable—the longitudinal coordinate x—thus only normal stresses in points with the same coordinate
z contribute to the nonlocality:

φλ,i(x) =
1

2Lλ,i
exp

(
− |x|

Lλ,i

)
. (10)

The parameter governing nonlocal behavior is the characteristic length Lλ,i = λiL, where λi is the
small-size parameter of a particular material layer. The reader should be warned that the value of this
parameter for a particular material is still unknown in most cases. The parameter should be ideally
determined experimentally, but this is rarely done so (see [37–39] for some attempts). Alternatively,
molecular dynamics or molecular structural mechanics can be employed [15,40–44] for the purpose,
but the reported results also indicate that the precise value of the small-size parameter is far from
being accurately determined.

The equivalent differential problem can be stated in each layer as [45,46]:

σ = Ei

(
−L2

λ,iε
(2) + ε

)
, (11)

with the following boundary conditions:

Lλ,iε
(1) − ε = 0

∣∣∣
at (0,z)

,

Lλ,iε
(1) + ε = 0

∣∣∣
at (L,z)

.
(12)

In the context of beams, the nonlocal framework involving stresses and strains is not that useful.
The usual practice is to work with displacements and stress resultants. The normal force in the
cross-section follows from the balance of the linear momentum:

N(x) =
n

∑
i=1

bi

∫ zi

zi−1

σ(x, z)dz =
n

∑
i=1

Ni = N · 1. (13)

Likewise, the bending moment follows from the balance of the angular momentum:

M(x) =
n

∑
i=1

bi

∫ zi

zi−1

σ(x, z)(z− ζ0)dz =
n

∑
i=1

Mi = M · 1. (14)

Above, the vectors N =
{

N1 N2 . . . Nn

}T
and M =

{
M1 M2 . . . Mn

}T
represent the

contribution of each layer to total stress resultants.
The problem in Equations (11) and (12) can now be expressed in the setting involving the

displacements and stress resultants. In the first step, the kinematics of the beam in Equation (8)
is exploited to obtain:

σ
Ei

= −L2
λ,i(u

(3)
0 − w(4)(z− ζ0)) + u(1)

0 − w(2)(z− ζ0), (15)

and constraints
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Lλ,i

(
u(2)

0 − w(3)(z− ζ0)
)
− (u(1)

0 − w(2)(z− ζ0)) = 0|x=0 ,

Lλ,i

(
u(2)

0 − w(3)(z− ζ0)
)
+ (u(1)

0 − w(2)(z− ζ0)) = 0|x=L .
(16)

The latter non-standard constraints are constitutive boundary conditions. Introducing the stress
in Equation (15) into the stress resultant N(x), Equation (13) yields the contribution of each layer Ni(x)
to the total N(x):

Ni(x) = biEi(−L2
λ,i(u

(3)
0 hi − w(4)

∫ zi
zi−1

(z− ζ0)dz) + (u(1)
0 hi − w(2)

∫ zi
zi−1

(z− ζ0)dz)). (17)

For the complete cross-section, this can be represented by means of the vectorial representation:

N =


N1

N2
...

Nn

 =



b1E1

(
−L2

λ,1(u
(3)
0 h1 − w(4)

∫ z1
z0
(z− ζ0)dz) + u(1)

0 h1 − w(2)
∫ z1

z0
(z− ζ0)dz

)
b2E2

(
−L2

λ,2(u
(3)
0 h2 − w(4)

∫ z2
z1
(z− ζ0)dz) + u(1)

0 h2 − w(2)
∫ z2

z1
(z− ζ0)dz

)
...

bnEn

(
−L2

λ,n(u
(3)
0 hn − w(4)

∫ zn
zn−1

(z− ζ0)dz) + u(1)
0 hn − w(2)

∫ zn
zn−1

(z− ζ0)dz
)


. (18)

Scalar multiplication by 1 gives:

N(x) = −(A� E� Lλ � Lλ) · 1 u(3)
0 + (S� E� Lλ � Lλ) · 1 w(4) + (E�A) · 1 u(1)

0 − (E� S) · 1 w(2) (19)

or more compactly:
N(x) = −kNL

EAu(3)
0 + kNL

ES w(4) + kEAu(1)
0 − kESw(2). (20)

A similar procedure can be applied to the constitutive boundary conditions in Equation (16)
which become:

(Lλ � E) ·
(

u(2)
0 A− w(3)S

)
− E · (u(1)

0 A− w(2)S) = 0|x=0 ,

(Lλ � E) ·
(

u(2)
0 A− w(3)S

)
+ E · (u(1)

0 A− w(2)S) = 0|x=L .
(21)

As for the bending moment, the same steps are followed. Starting from the normal stresses in
Equation (15) that are multiplied by (z− ζ0), it is obtained:

M(x) = −kNL
ES u(3)

0 + kNL
EI w(4) + kESu(1)

0 − kEIw(2). (22)

The constitutive boundary conditions are:

(Lλ � E) ·
(

u(2)
0 S− w(3)I

)
− E · (u(1)

0 S− w(2)I) = 0|x=0 ,

(Lλ � E) ·
(

u(2)
0 S− w(3)I

)
+ E · (u(1)

0 S− w(2)I) = 0|x=L .
(23)

This completes the nonlocal stress-driven beam relations between the displacements and
stress resultants.

4. A Nonlocal Variational Setting for Beams

The governing differential equations for the beam B should follow from a suitable potential.
Denoting the internal potential as Ui and the external potential as Ue, the potential is then:

Π(u0, w) = Ui −Ue, (24)

where
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Ui =
∫
B
∫ ε

0 σdεdV,
Ue =

∫
L qxu0dx +

∫
L qzwdx +N0u0(0) +NLu0(L) + T0w(0) + TLw(L)−M0w(1)(0)−MLw(1)(L). (25)

Above, qz(x) and qx(x) represent distributed loadings in the transverse and longitudinal
directions. N0, NL, T0, TL, and M0, ML are the external axial forces, transversal forces, and
bending moments at x ∈ {0, L}, respectively.

Longitudinal and transverse displacement fields follow from the principle of minimum
potential energy:

(u0, w) = arg inf
u0,w

Π(u0, w), (26)

upon the enforcement of the stationarity conditions. This is pursued in the following section.

4.1. Stationarity with Respect to Axial Displacement

To obtain the axial displacements, the stationary conditions δu0 Π = 0 is applied. With the total
energy potential in Equations (24) and (13) and the strain in Equation (8), it follows that

δu0 Π =
∫

L
Nδu(1)

0 dx−
∫

L
qxδu0dx−N0δu0(0)−NLδu0(L) = 0. (27)

Application of integration by parts gives:

δu0 Π = Nδu0

∣∣∣L0 − ∫
L

N(1)δu0 dx−
∫

L
qxδu0dx−N0δu0(0)−NLδu0(L) = 0. (28)

Assembling terms with virtual displacements δu0(0) and δu0(L) and accounting for the
arbitrariness of the virtual displacements yields boundary conditions:

N(0) = −N0 or prescribe u0(0),
N(L) = NL or prescribe u0(L).

(29)

Likewise, the terms with δu0 in Equation (28) can now be assembled. Due to the arbitrariness of
the virtual displacement, it is:

N(1) + qx = 0, (30)

which serves as a governing equation of the problem. The first derivative of the normal force follows
from Equation (20):

N(1) = −kNL
EAu(4)

0 + kNL
ES w(5) + kEAu(2)

0 − kESw(3), (31)

which now gives the final form of the equation governing the axial equilibrium from Equation (30):

− kNL
EAu(4)

0 + kNL
ES w(5) + kEAu(2)

0 − kESw(3) + qx = 0. (32)

In addition, the boundary conditions in Equation (29) can be rearranged by the application of
Equation (20):

(−kNL
EAu(3)

0 + kNL
ES w(4) + kEAu(1)

0 − kESw(2))
∣∣∣
x=0

= −N0 or prescribe u0(0),

(−kNL
EAu(3)

0 + kNL
ES w(4) + kEAu(1)

0 − kESw(2))
∣∣∣
x=L

= NL or prescribe u0(L).
(33)

These boundary conditions must be accompanied by the constitutive boundary conditions in
Equation (21). In this manner, the stress resultants are eliminated from the formulation and only
displacements are involved. Nevertheless, the normal force can be recovered in the post-processing
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phase from Equation (20) if required. For the solution procedure involving both displacements and
stress resultants, see the works in [47–49].

4.2. Stationarity with Respect to Transverse Displacement

However, it remains to invoke the stationary condition with respect to the transverse displacement
δwΠ = 0 to describe bending of the nonlocal beam. Following the same steps as for the longitudinal
displacement, but with application of the equilibrium equation (Equation (14)), it is obtained:

δwΠ = −
∫

L Mδw(2) dx−
∫

L qzδwdx− T0δw(0)− TLδw(L) +M0δw(1)(0) +MLδw(1)(L) = 0. (34)

Integrating by parts twice provides:

δwΠ = −Mδw(1)
∣∣L
0 + M(1)δw

∣∣L
0

−
∫

L M(2)δw dx−
∫

L qzδwdx− T0δw(0)− TLδw(L) +M0δw(1)(0) +MLδw(1)(L) = 0.
(35)

The arbitrariness of δw(1) at x ∈ {0, L} provides the first set of boundary conditions:

M(0) = −M0 or prescribe w(1)(0),
M(L) =ML or prescribe w(1)(L),

(36)

while the corresponding part for δw at x ∈ {0, L} gives:

M(1)(0) = −T0 or prescribe w(0),
M(1)(L) = TL or prescribe w(L).

(37)

The constitutive boundary conditions in Equation (23) must be respected as well.
The remaining terms in Equation (35) provide the governing differential equation for bending:

−
∫

L M(2)δwdx−
∫

L qzδwdx = 0, (38)

or
−M(2) − qz = 0. (39)

The second derivative of the bending moment is obtained from Equation (22). This provides:

M(2) = −kNL
ES u(5)

0 + kNL
EI w(6) + kESu(3)

0 − kEIw(4). (40)

With the above result at hand, the differential equation (Equation (39)) that governs the transverse
displacement now becomes:

−kNL
ES u(5)

0 + kNL
EI w(6) + kESu(3)

0 − kEIw(4) + qz = 0, (41)

along with the constitutive boundary conditions in Equation (23). Following the same reasoning as in
the longitudinal displacements, the boundary conditions in Equations (38) and (39) are rearranged by
Equation (22):

(−kNL
ES u(3)

0 + kNL
EI w(4) + kESu(1)

0 − kEIw(2))
∣∣∣
x=0

= −M0 or prescribe w(1)(0),

(−kNL
ES u(3)

0 + kNL
EI w(4) + kESu(1)

0 − kEIw(2))
∣∣∣
x=L

=ML or prescribe w(1)(L)
(42)

while the corresponding part for δw at x ∈ {0, L} gives:
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(−kNL
ES u(4)

0 + kNL
EI w(5) + kESu(2)

0 − kEIw(3))
∣∣∣
x=0

= −T0 or prescribe w(0),

(−kNL
ES u(4)

0 + kNL
EI w(5) + kESu(2)

0 − kEIw(3))
∣∣∣
x=L

= TL or prescribe w(L).
(43)

The bending moment can be conveniently obtained in the post-processing step from Equation (22).

4.3. Neutral Surface Position

The exact position of the neutral surface can be determined from the condition that the bending
stress must disappear. To simplify further presentation, beams symmetric with respect to x− z plane
are considered. Such an assumption is consistent with the vast majority of practical applications. Now,
suppose that the neutral surface is positioned in the layer i. Using Equation (9) as a starting point
along with Equation (8) yields:

u(1)
0 − w(2)(z− ζ0) =

∫ L

0
φλ,i(x− ξ)E−1

i σ(ξ, z)dξ. (44)

Setting σ = 0 in the latter equation and then integrating over the cross-section, with focus on the
transverse displacement part, gives:

∑n
i=1 biEi

∫ zi
zi−1

(z− ζ0)dz = E · S = kES = 0 (45)

or
∑n

i=1 biEi
∫ zi

zi−1
zdz−∑n

i=1 biEiζ0
∫ zi

zi−1
dz = 0. (46)

Simple transformation now provides the required neutral surface shift ζ0:

ζ0 =
∑n

i=1 biEi(z2
i −z2

i−1)

2(A�E)·1 = ∑n
i=1 bihiEi(zi+zi−1)

2kEA
. (47)

Note that equality kES = 0 arising from symmetry of the cross-section reduces coupling effects
in the differential formulations in Equations (32) and (41) and the constitutive boundary conditions
in Equations (21) and (23). The important case of complete decoupling of axial and transverse
displacements can be achieved only if the term kNL

ES = (S� E� Lλ � Lλ) · 1 vanishes (see Equation (4)).
This can happen if one of the following conditions is met:

• all small-size parameters are equal, λi = λ, i ∈ {1, 2, ..., n}; or
• symmetry about the x − y plane in all material properties (Young’s modulus and small-size

parameter) and geometry (width and height) of each layer exists.

In the latter case, the neutral surface shift ζ0 = 0. Depending on the particular beam configuration,
a decoupled system of differential equations can be significantly easier to solve compared to the
coupled problem. For readers’ convenience, frameworks for both coupled and decoupled formulation
are summarized in Tables 1 and 2.
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Table 1. Coupled nonlocal layered beams framework for beams with x − z symmetry of the
cross-section, kES = 0.

Calculate stiffnesses: kEA = (E�A) · 1,
kEI = (E� I) · 1,
kNL

EA = (A� E� Lλ � Lλ) · 1,
kNL

ES = (S� E� Lλ � Lλ) · 1,
kNL

EI = (I� E� Lλ � Lλ) · 1.

Coupled formulation: −kNL
EAu(4)

0 + kNL
ES w(5) + kEAu(2)

0 + qx = 0,
−kNL

ES u(5)
0 + kNL

EI w(6) − kEIw(4) + qz = 0.

Boundary conditions: (−kNL
EAu(3)

0 + kNL
ES w(4) + kEAu(1)

0 )
∣∣∣
x=0

= −N0 or prescribe u0(0),

(−kNL
EAu(3)

0 + kNL
ES w(4) + kEAu(1)

0 )
∣∣∣
x=L

= NL or prescribe u0(L),

(−kNL
ES u(3)

0 + kNL
EI w(4) − kEIw(2))

∣∣∣
x=0

= −M0 or prescribe w(1)(0),

(−kNL
ES u(3)

0 + kNL
EI w(4) − kEIw(2))

∣∣∣
x=L

=ML or prescribe w(1)(L),

(−kNL
ES u(4)

0 + kNL
EI w(5) − kEIw(3))

∣∣∣
x=0

= −T0 or prescribe w(0),

(−kNL
ES u(4)

0 + kNL
EI w(5) − kEIw(3))

∣∣∣
x=L

= TL or prescribe w(L).

Constitutive boundary (Lλ � E) ·
(

u(2)
0 A− w(3)S

)
− u(1)

0 E ·A = 0|x=0,

conditions: (Lλ � E) ·
(

u(2)
0 A− w(3)S

)
+ u(1)

0 E ·A = 0|x=L ,

(Lλ � E) ·
(

u(2)
0 S− w(3)I

)
+ w(2)E · I = 0|x=0 ,

(Lλ � E) ·
(

u(2)
0 S− w(3)I

)
− w(2)E · I = 0|x=L .

Table 2. Decoupled nonlocal layered beams framework for beams with material and geometric
symmetry of the cross-section, kES = 0 and kNL

ES = 0.

Calculate stiffnesses: kEA = (E�A) · 1,
kEI = (E� I) · 1,
kNL

EA = (A� E� Lλ � Lλ) · 1,
kNL

EI = (I� E� Lλ � Lλ) · 1.

Axial displacements: −kNL
EAu(4)

0 + kEAu(2)
0 + qx = 0

Constitutive boundary (Lλ � E) ·Au(2)
0 − E ·Au(1)

0 = 0|x=0 ,
conditions: (Lλ � E) ·Au(2)

0 + E ·Au(1)
0 = 0|x=L ,

Boundary conditions: (−kNL
EAu(3)

0 + kEAu(1)
0 )
∣∣∣
x=0

= −N0 or prescribe u0(0),

(−kNL
EAu(3)

0 + kEAu(1)
0 )
∣∣∣
x=L

= NL or prescribe u0(L).

Transverse displacements: −kNL
EI w(6) + kEIw(4) − qz = 0

Constitutive boundary −(Lλ � E) · I w(3) + E · I w(2) = 0|x=0 ,
conditions: −(Lλ � E) · I w(3) − E · I w(2) = 0|x=L ,
Boundary conditions: (kNL

EI w(4) − kEIw(2))
∣∣∣
x=0

= −M0 or prescribe w(1)(0),

(kNL
EI w(4) − kEIw(2))

∣∣∣
x=L

=ML or prescribe w(1)(L),

(kNL
EI w(5) − kEIw(3))

∣∣∣
x=0

= −T0 = 0 or prescribe w(0),

(kNL
EI w(5) − kEIw(3))

∣∣∣
x=L

= TL = 0 or prescribe w(L).



Symmetry 2020, 12, 717 11 of 20

5. Examples

5.1. Cantilever Beam

Consider a cantilever beam with length L = 100 nm, loaded at the free end (x = L) with the
longitudinal force Fx = 1 nN and transverse force Fz = 1 nN. The beam is composed of two layers
with the following geometrical and material properties:

b =

{
1
1

}
nm, h =

{
5
5

}
nm, λ =

{
0.1
0.2

}
, E =

{
106

2 · 106

}
nN/nm2. (48)

Consequently, z coordinates defining the beginning and the end of each layer are:
z0

z1

z2

 =


−5
0
5

 nm. (49)

Geometry of the beam cross-section is symmetric about x− z and x− y plane, but is not symmetric
with respect to material properties. Therefore, kES = 0 and

kNL
ES = (S� E� Lλ � Lλ) · 1 = − b1b2E1E2(h1+h2)

2L2(λ2
1−λ2

2)
4(b1E1+b2E2)

= 5× 109 nN nm3. (50)

and the framework in Table 1 applies. Remaining local and nonlocal stiffnesses in Equations (3) and (4) are:

kEA = (E�A) · 1 = 1.5× 107 nN,
kEI = (E� I) · 1 = 1.15× 108 nN nm2,

(51)

and
kNL

EA = (A� E� Lλ � Lλ) · 1 = 4.5× 109 nN nm2,
kNL

EI = (I� E� Lλ � Lλ) · 1 = 2.6× 1010 nN nm4.
(52)

The shift of the neutral surface ζ0 is then:

ζ0 = h
4

b2E2−b1E1
b1E1+b2E2

= 0.833 nm. (53)

With these data, the differential formulation of the problem can be defined. According to Table 1,
the governing set of differential equation to be solved is:

−kNL
EAu(4)

0 + kNL
ES w(5) + kEAu(2)

0 = 0,

−kNL
ES u(5)

0 + kNL
EI w(6) − kEIw(4) = 0.

(54)

The boundary conditions are:

u0(0) = 0,

(−kNL
EAu(3)

0 + kNL
ES w(4) + kEAu(1)

0 )
∣∣∣
x=L

= Fx,

w(0) = 0,
w(1)(0) = 0,

(−kNL
ES u(4)

0 + kNL
EI w(5) − kEIw(3))

∣∣∣
x=0

= 0,

(−kNL
ES u(4)

0 + kNL
EI w(5) − kEIw(3))

∣∣∣
x=L

= Fz,

(55)
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while the constitutive boundary conditions are:

(Lλ � E) ·
(

u(2)
0 A− w(3)S

)
− u(1)

0 E ·A = 0|x=0 ,

(Lλ � E) ·
(

u(2)
0 A− w(3)S

)
+ u(1)

0 E ·A = 0|x=L ,

(Lλ � E) ·
(

u(2)
0 S− w(3)I

)
+ w(2)E · I = 0|x=0 ,

(Lλ � E) ·
(

u(2)
0 S− w(3)I

)
− w(2)E · I = 0|x=L .

(56)

The problem was solved by the aid of Wolfram Mathematica software. The specific form of
the function describing the axial displacement is too long to be presented here in detail. Instead,
the graphical representation is provided in Figure 2. It is well known that the local formulation exhibits
linear behavior. In the nonlocal formulation marked curvature is observed providing a nonlinear
distribution. Similar effects are noted elsewhere [50,51] in the presence of thermal effects. If the nonlocal
parameters λ1, λ2 are allowed to vary, the obtained surface describing the maximal elongation of the
beam can be graphically presented (Figure 3). Smaller values of nonlocal parameters lead toward steep
surface’s gradients, but as the nonlocal parameters are increased the effect diminishes. Interestingly,
for a certain choice of nonlocal parameters average axial displacements, u0(L) take negative values,
although the nanobeam is loaded by the tensile axial force. This is a direct consequence of coupling
terms associated to kNL

ES and the neutral surface shift. Finally, the distribution of the normal force along
the beam N = FA = 1 nN is constant as expected (Figure 4).

0 20 40 60 80 100
0.00000

2. × 10-6

4. × 10-6

6. × 10-6

8. × 10-6

0.00001

x

u0

Figure 2. Axial displacement u0 (nm) of the beam loaded with the longitudinal force at the free end,
λ1 = 0.1, λ2 = 0.2 (continuous line) and local solution (dotted line), x (nm).

-0.000015

-0.000010

-5.×10-6

0

5.×10-6

0.000010

0.000015

Figure 3. Three-dimensional representation of the free end’s longitudinal displacement u0(L) (nm) for
different values of nonlocal parameters.
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0 20 40 60 80 100

-100

-80

-60

-40

-20

0

x

M(x}

N(x)

Figure 4. Distribution of the normal force N(x) (nN) and bending moment M(x) (nN nm) along the
cantilever beam, x (nm).

The curve representing the deformed shape of the beam for given nonlocal parameters is provided
in Figure 5. The expected shape is obtained. The maximal transverse displacement at the beam’s tip
for different values of the nonlocal parameters λ1, λ2 is given in Figure 6. Similar conclusions about
gradients as in the case of longitudinal displacement can be drawn. The bending moment is distributed
linearly along the beam (Figure 4). The moment is recovered in the post-processing from Equation (22)
as M = Fz(x− L) = −100 + x nN nm.

0 20 40 60 80 100
0.0000

0.0005

0.0010

0.0015

0.0020

x

w

Figure 5. Transverse displacement w(L) (nm) of the beam loaded with the transverse force at the free
end, λ1 = 0.1, λ2 = 0.2, x (nm).

0.0010

0.0015

0.0020

0.0025

Figure 6. Three-dimensional representation of the free end’s transverse displacement w(L) (nm) for
different values of nonlocal parameters.

Statically determined problems, such as this one, show no dependence of support reactions on
the nonlocal parameters (Figure 7).
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Figure 7. Support reaction MA (nN nm) is independent of nonlocal parameters.

5.2. Doubly Clamped Beam

The second example presents a statically indeterminate problem. A doubly clamped beam
L = 500 nm long is subjected to longitudinal constant distributed loading qx = 1 nN/nm and
distributed transversal loading qz = 1 nN/nm. The beam is assembled of three layers. The first
and third layers have identical geometrical and material properties. These data are provided below:

b =


3
1
3

 nm, h =


10
30
10

 nm, λ =


0.1
0.2
0.1

 , E =


106

2 · 106

106

 nN/nm2. (57)

Consequently, z coordinates defining the beginning and the end of each layer are:
z0

z1

z2

z3

 =


−25
−15
15
25

 nm. (58)

The beam’s cross-section is geometrically symmetric with respect to both x− y and x− z plane as
well as with respect to material properties, thus kES = 0 and kNL

ES = 0. With these data, the decoupled
differential formulation of the problem can be set. Again, according to Table 2, the governing
differential equation to be solved for the axial displacements is:

− kNL
EAu(4)

0 + kEAu(2)
0 + qx = 0. (59)

The boundary conditions are:
u0(0) = 0,
u0(L) = 0.

(60)

The constitutive boundary conditions are:

(Lλ � E) ·Au(2)
0 − E ·Au(1)

0 = 0|x=0 ,

(Lλ � E) ·Au(2)
0 + E ·Au(1)

0 = 0|x=L .
(61)

As for the bending problem, the corresponding differential framework is:

−kNL
EI w(6) + kEIw(4) + qz = 0, (62)
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augmented with the following boundary conditions:

w(0) = 0, w(1)(0) = 0,
w(L) = 0, w(1)(L) = 0,

(63)

and constitutive boundary conditions:

−(Lλ � E) · I w(3) + E · I w(2) = 0|x=0 ,
−(Lλ � E) · I w(3) − E · I w(2) = 0|x=L .

(64)

The distribution of the axial displacement along the beam is given in Figure 8. The middle point
of the beam (x = L/2) experiences the largest displacement, while the ends fulfill prescribed boundary
conditions. Next, the movement of the middle point is analyzed for dependence on the nonlocal
parameters (Figure 9). The increase in either nonlocal parameter does lead toward maximal axial
displacement converging toward a limit value. The linear distribution of the normal force along the
beam is defined as N(x) = FA − qxx = 250− x nN (Figure 10). Support reactions are obtained as
N(0) = 250 nN and N(500) = −250 nN.

The bell-shaped curve represents the deformed shape of the beam due to bending (Figure 11).
The maximal transverse displacement takes place at the middle of the beam as expected. Influence
of the nonlocal parameters λ1 = λ3, λ2 is given in Figure 12. Higher gradients are obtained for
lower values of the nonlocal parameter λ1 compared to λ2. The bending moment distribution in
Equation (22) is defined by the parabolic polynomial M(x) = − 1

2 x2 + 250x − 22, 156.1 (Figure 13),
giving MA = M(0) = MB = M(L) = 22, 156.1 nN nm with the maximum M = 9093.85 nN nm at
x = L/2 = 250 nm. In addition, contrary to the previous example, in the statically indeterminate
problems, support reactions do depend on the nonlocal parameters (Figure 14).

0 100 200 300 400 500
0.00000

0.00005

0.00010

0.00015

x

u0

Figure 8. The longitudinal displacement u0 (nm) of a doubly clamped beam, x (nm).

Figure 9. Three-dimensional representation of the beam’s middle axial displacement u0(L/2) (nm) for
different values of nonlocal parameters, λ1 = λ3, λ2.
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0 100 200 300 400 500

-200

-100

0

100

200

x

N(x)

Figure 10. Distribution of the normal force N(x) (nN) along the doubly clamped beam, x (nm).

0 100 200 300 400 500
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

x

w

Figure 11. The transverse displacement w(x) (nm) and x (nm).

Figure 12. Three-dimensional representation of the beam’s middle transverse displacement w(L/2)
(nm) for different values of nonlocal parameters, λ1 = λ3, λ2.

,

,

,

,

,

,

Figure 13. Bending moment M(x) (nN nm) in the doubly clamped beam, x (nm).
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,
,
,
,
,

Figure 14. Support reaction MA (nN nm) in the doubly clamped beam in terms of nonlocal parameters.

6. Conclusions

The following main results of the presented research are summarized below.

• The stress-driven integral approach based on Bernoulli–Euler kinematical hypotheses is extended
to composite beams assembled of multiple layers, not necessarily of equal width. As demonstrated
in the examples, the approach does not suffer from paradoxes present in some other formulations.

• The more standard approach that includes mixed boundary conditions, i.e., both stress
resultants and prescribed displacements, is replaced by the purely kinematical framework.
In this way, it is not necessary to explicitly determine support reactions in order to calculate
displacements. Support reactions and stress resultant distributions are conveniently calculated in
the post-processing phase.

• The example section demonstrates that in statically undetermined structural problems, reaction
systems exhibit technically significant size effects which therefore have to be taken in due account
in design and optimization of a wide variety of new-generation sensors and actuators.

• In the general case of layered beams, the resulting formulation exhibits coupling between axial
and transverse displacements. This gives rise to unusual nonlocal phenomena, such as shortening
of the nanobeam in the presence of tensile axial force. Coupling of axial and bending terms in the
governing differential equations, as well as the neutral surface shift, give rise to such effects.

• Finally, as discussed in the Introduction, if the beams with larger length/thickness ratios are to
be considered, one must be wary about the surface and interface effects. An extension with a
specialized size-dependent model is recommended in such cases.
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