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Abstract: Filtration is one of the most used technologies in chemical engineering. Development of
computer technology and computational mathematics made it possible to explore such processes by
mathematical modeling and computational methods. The article deals with the study of suspension
filtration in a porous medium with modified deposition kinetics. It is suggested that deposition is
formed in two types, reversible and irreversible. The model of suspension filtration in porous media
consists of the mass balance equation and kinetic equations for each type of deposition. The model
includes dynamic factors and multi-stage deposition kinetics. By using the symmetricity of porous
media, the higher dimensional cases are reduced to the one-dimensional case. To solve the problem,
a stable, effective and simple numerical algorithm is proposed based on the finite difference method.
Sufficient conditions for stability of schemes are found. Based on numerical results, influences of
dynamic factors on solid particle transport and deposition characteristics are analyzed. It is shown
that the dynamic factors mainly affect the profiles of changes in the concentration of deposition of the
active zone.

Keywords: deep bed filtration; deposition kinetics; dynamical factors; porous media; stability of
difference scheme

1. Introduction

The problem of filtering disperse systems in a porous medium is of big practical importance.
Many technological processes, natural phenomena, production processes, etc. are associated with
the flow of dispersed systems in porous [1,2] and fractured-porous media [3,4]. In contrast to the
filtration of homogeneous liquids, when filtering disperse systems, a number of new phenomena
arise, the study of which is very important for understanding the mechanisms of the filtration process.
If we consider suspensions as dispersed, then the most important question is to study the processes
of transport of the dispersed phase of solid particles in a porous medium, the interaction of these
particles with the surface of the skeleton of a porous medium, deposition in the pore space, the release
of pore channels from deposited particles, etc. Note that such questions were studied very poorly
from both the theoretical and experimental sides. In industrial and natural conditions, there are only
a few studies. Perhaps one of the reasons for the poor knowledge of the problem is the extreme
complexity of the physical and mathematical modeling of particle transport processes in pore space [5].
Fast development of computer technology and computational mathematics in recent years allow us to
use more complex models to describe the process.
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It is obvious that the study of the filtration of disperse systems taking into account the deposition
and release of particles in addition to the experimental direction should be based on mathematical
models [6]. However, the specifics of filtering dispersed systems in comparison with filtering conventional
homogeneous systems are not always possible to take into account in mathematical models. Moreover,
the mechanism of the deposition of particles in pores and their release by the filtration flow has not
yet been sufficiently studied, although experimental data convincingly show clogging of the pores
and it is possible to fix the distribution of the impurity concentration along the length of the filtration
zone [7,8]. The theoretical basis of filtration of inhomogeneous fluids can be found in the books of
Ives [9] and Shekhtman [10].

From the above, we see that one of the most important tasks in the study of dispersed system
filtration is the developing of mathematical models of the process that adequately reflect the basic
characteristic properties of the process under study. Various approaches have been developed to
simulate the suspended particle transport and deposition process in porous media or in literature,
the so-called deep bed filtration, which can be arbitrarily divided into the so-called empirical
models [11–13], network models [14–16], models for analyzing particle trajectories [17–19] and
stochastic models [20–22].

In the empirical (phenomenological) approach, the mathematical model for suspension filtration
in porous media consists of mass balance equation and capture kinetics [11,12,23–30]. Balance equation
for three dimensional case is in the following form

∂(mc + ρ)

∂t
+ v

(
∂c
∂x

+
∂c
∂y

+
∂c
∂z

)
= 0, (1)

where c is the concentration of the suspension, v is the filtration velocity, m is the porosity of the
medium, ρ is the concentration of deposition, t is the time, x, y, z are coordinates of space. This equation
is symmetric with respect to x, y, z.

As mentioned in [31] the filters used in water purification have two main categories: symmetric
(homogeneous) and asymmetric (anisotropic). The pores in symmetric filters have close to a uniform
diameter throughout the depth of the filter. So, in homogeneous porous media all characteristics
are the same in all directions of coordinates (x, y, z). One can assume that particle concentration in
the stream c and the velocity v is uniform across the filter cross-section. Accordingly, the expected
depositions are uniform across the cross-section, too. These common assumptions mean that the model
can be developed as one-dimensional in space. Balance equation in one-dimensional case takes the
form [11,12,23–30]

∂(mc + ρ)

∂t
+ v

∂c
∂x

= 0, (2)

Kinetic equation is in following form [11,23–28]

∂ρ

∂t
= λ(ρ)c, (3)

where λ(ρ) is the coefficient characterizing the kinetics.
The first kinetic equation for deep bed filtration is given by Iwasaki [32]. Kinetic equations given in

the literature can be divided into two approaches [6,12]: irreversible deposition, which means deposited
particles never get back to flow again and reversible deposition, meaning some of the deposited particles
may be detached from the media grain by the flow. Irreversible kinetic equations are usually given in
the form (3), where λ(ρ) can be changed during the filtration. λ(ρ) can be increasing [32] or decreasing
function [33], but in some cases a combination of both kinds of behaviour mentioned above [34] are
used. First reversible kinetic equations given by Mints [35] mentioned and experimentally showed
that during the filtration due to the increasing of pressure gradient, detachment of less strongly linked
particles from grain occurs. This kind of process can be described in the form ∂ρ/∂t = βattc− βdetρ,
where βatt and βdet phenomenological attachment and detachment coefficients respectively. In [12],
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given multistage deposition kinetics, in the first stage an irreversible layer is formed, then in the
operable stage reversible deposition is formed.

In [12,28,29] mass balance equation is given with diffusion equation

∂(mc + ρ)

∂t
+ v

∂c
∂x

= D
∂2c
∂x2 , (4)

where D is diffusion (dispersion) coefficient.
In the last decade fractional diffusion equation is used for fractural porous media [3,4,36].
In the present paper, we consider the problem of filtering a suspension in a porous medium,

taking into account the deposition of solid particles of the suspension in the pore volume and their
release. For this we use the well-known model of Venitsianov [23,24] and suggest its modification.
The problem is considered taking into account dynamic factors in the kinetics of deposition. To solve
the problem, a numerical method is developed based on finite difference scheme. The stability of the
method is proved. By using the symmetry properties of porous media, the model was reduced to a
one-dimensional case. The numerical algorithm developed in the present paper can be easily used for
2D and 3D cases by using “alternating direction method”, which means the values of functions in new
time layer will be found separately for each coordinate. Based on the numerical solution of the problem,
the role of dynamic factors on the filtration and transport characteristics is estimated.

2. Formulation of the Problem

The deposition in the porous space of the deep bed filters has two forms—washable and nonwashable.
Accordingly, the filter zones are called active and passive [23,24]. The active zones washed by the
flow form a reversible deposition with a concentration of ρa, passive zones that are stagnant form an
irreversible deposition do the same with a concentration of ρp. Denote the total filter capacity by ρ0.
From the foregoing

ρ0 = ρa0 + ρp0 (5)

where ρa0 and ρp0 are the capacities of the active and passive zones, respectively. The indicated
capacities have dynamic characteristics. They depend not only on the “quality” of the dispersed phase
but also on the speed and structure of the flow, as well as the geometry of the layer [23].

We consider a semi-infinite homogeneous media with an initial porosity m0, filled with a homogeneous
liquid. At the point x = 0, starting from t = 0 to when the reservoir enters the suspension with a
concentration c0 and filtration velocity v (t) = v0 = const.

The system of equations for suspension filtration with two deposition zones with a constant
speed regime consists of the equation of balance and kinetic equations for each zone, which in the
one-dimensional case is represented as

m0
∂c
∂t

+ v
∂c
∂x

+
∂ρa

∂t
+

∂ρp

∂t
= 0, (6)

∂ρa

∂t
= βa

(
c− ρa

ρa0
c0

)
, (7)

∂ρp

∂t
= βp(ρp)c, (8)

where c is the concentration of the suspension (m3/m3), v is the filtration velocity (m/s), m0 is the
initial porosity of the medium, ρa is the concentration of deposition in the active zone (m3/m3), ρp is
the concentration of deposition in the passive zone (m3/m3), βa is the coefficient characterizing the
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kinetics in the active zone (1/s), βp is the coefficient (1/s) associated with the effect of compaction
(aging) of the deposition, which was proposed as βp = α

(
ρp
)

βp0 [23],

α(ρp) =


1 for ρp ≤ ρp1,
ρp1/ρp for ρp1 < ρp < ρp0 ,
0 for ρp = ρp0 ,

(9)

where ρp1 is the value of ρp at which “aging” begins.
Therefore, at the beginning of deposition formation, α = 1. Starting with a certain concentration

of ρp1, the value of α becomes less than 1, and a further decrease in α goes inversely with the amount
of deposition ρp. Finally, when the deposition concentration is close to saturation, α decreases more
rapidly. This section is approximated by a step.

The system of Equations (6)–(8) is solved taking into account the above dependence (9) and with
the following initial and boundary conditions

c(x, 0) = 0, ρa(x, 0) = ρp(x, 0) = 0, c(0, t) = c0 = const. (10)

3. Finite Difference Schemes for Model

To solve problem (6)–(10), we apply the finite difference method [37–41]. In the area D = {0 ≤ x < ∞,
0 ≤ t ≤ T} we introduce a net, where T is the maximum time during which the process is studied.
For this, we divide the interval [0, ∞) in steps h and [0, T] into J parts in steps of τ. As a result we
have a net

ωhτ =
{(

xi, tj
)

, xi = ih, i = 0, 1, ..., tj = jτ, j = 0, 1, ..., J, τ = T/J
}

. (11)

Instead of functions c (t, x), ρa (t, x), ρp (t, x) we consider the net functions and denote their

values at the nodes
(

xi, tj
)

by cj
i , ρ

j
a,i, ρ

j
p,i, respectively.

Equation (6) is approximated on a grid ωhτ by the equation

m0
cj+1

i − cj
i

τ
+ v

cj+1
i − cj+1

i−1
h

+
ρ

j+1
a,i − ρ

j
a,i

τ
+

ρ
j+1
p,i − ρ

j
p,i

τ
= 0. (12)

The difference scheme for Equation (7) will have the form

ρ
j+1
a,i − ρ

j
a,i

τ
= βa

cj
i −

ρ
j
a,i

ρa0
c0

 . (13)

The difference scheme for Equation (8) is

ρ
j+1
p,i − ρ

j
p,i

τ
= α

(
ρ

j
p,i

)
βp0cj

i . (14)

The initial and boundary conditions (10) are also presented in a net form as follows

ρ
j
a,i = 0, i = 0, I, j = 0,

ρ
j
p,i = 0, i = 0, I, j = 0,

cj
i = 0, i = 0, I, j = 0,

cj
i = c0, i = 0, j = 0, J,

(15)

where I is a sufficiently large number for which the equation cj
I = 0 is approximately satisfied .
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4. Stability of the Finite Difference Schemes

Theorem 1. The sufficient stability conditions for the initial data of the schemes (12) and (13) are τ ≤ min

{
2ρa0
βac0

; 2m0h
βah−v+hα(ρ

j
p,i)β0

}
,

v < h(βa + α(ρ
j
p,i)β0).

(16)

and the scheme (14) is unconditionally stable.

Proof of Theorem 1. Schemes (12)–(14) are two-layer schemes. When studying the stability of two-layer
schemes, we will use their canonical form [37]

Byt + Ay = ϕ(t), t = tn = nτ ∈ ωτ , y(0) = y0. (17)

where y = yn = y(tn), ŷ = yn+1 = y(tn+1) = y(tn + τ), yt =
ŷ−y

τ , yn is vector-solution defined on the
layer tn,

yn = {yn
0 , yn

1 , ..., yn
I } . (18)

Let Hh be a finite-dimensional real space, ( , ) be the scalar product, ‖x‖ =
√
(x, x) is the norm

in Hh.
It is necessary to find sufficient conditions for the stability of the scheme (17) and obtain a priori

estimates for its solution, expressing the stability of the scheme from the initial data.
The solution to the problem (17) can be represented in the form y = ȳ + ỹ, where ȳ is a solution

to the homogeneous equation with the initial condition ȳ (0) = y(0) = y0 :

Byt + Ay = 0, t ∈ ωτ , y(0) = y0, (19)

and ỹ is a solution of a nonhomogeneous equation with zero initial condition

Byt + Ay = ϕ(t), t = ωτ , y(0) = 0. (20)

Estimation of the solution of problem (19)

‖y(t + τ)‖(1) ≤ M1 ‖y(0)‖(1) (21)

means that the scheme (17) is stable according to the initial data, and the estimate of the solution to the
problem (20)

‖y(t + τ)‖(1) ≤ M2 max
0≤t′≤t

∥∥ϕ(t′)
∥∥
(2) (22)

expresses the stability of the scheme (17) on the right hand side.
It is known [37] that the uniform stability of the scheme (19) from the initial data implies the

stability of the scheme (20) on the right-hand side. Therefore, it is enough to show the uniform stability
of the scheme (19). For this, it is necessary to obtain an a priori estimate such as

‖yn+1‖ ≤ δ ‖yn‖ ,

for all n and for all yn, where δn ≤ M1, δ and M1 are independent of the net steps and n.
To study stability, a method based on an estimate of the norm of the transition operator from layer

to layer can be applied.
We write the difference scheme (19) in the form

ŷ = Sy, S = E− τB−1 A, (23)
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where S is transition operator.
If A = A∗ > 0, we can obtain the stability condition in the energy norms ‖·‖A. From the inequality

‖ŷ‖A = ‖Sy‖A ≤ ‖S‖A ‖y‖A ,

it can be seen that the scheme (23) is stable in HA, if the norm of the transition operator does not
exceed unity:

‖S‖A ≤ 1. (24)

We will check the inequality (24) for transition operators for (12)–(14).
The scheme (12) can be represented as

m0
cj+1

i − cj
i

τ
+ v

cj+1
i − cj+1

i−1
h

+ βa

cj
i −

ρ
j
a,i

ρa0
c0

+ α
(

ρ
j
p,i

)
βp0cj

i = 0.

We transform this equation to obtain

m0h(cj+1
i − cj

i) + vτ(cj+1
i − cj+1

i−1) + τhβa

cj
i −

ρ
j
a,i

ρa0
c0

+ τhα
(

ρ
j
p,i

)
βp0cj

i = 0,

(m0h + vτ)cj+1
i = vτcj+1

i−1 +
(

m0h− τhβa − τhα
(

ρ
j
p,i

)
βp0

)
cj

i − τhβa
ρ

j
a,i

ρa0
c0,

cj+1
i =

(
m0h− τhβa − τhα

(
ρ

j
p,i

)
βp0

)
m0h + vτ

cj
i + f , (25)

where f = 1
m0h+vτ

(
vτcj+1

i−1 − τhβa
ρ

j
a,i

ρa0
c0

)
. Introducing the solution vector cj =

{
cj

0, cj
1, ... , cj

I

}
, from (25)

discarding f (since stability is checked against the initial data) we get∥∥∥cj+1

∥∥∥ ≤ ‖S‖ ∥∥cj
∥∥ ,

where

‖S‖ =

∣∣∣∣∣∣
m0h− τhβa − τhα

(
ρ

j
p,i

)
βp0

m0h + vτ

∣∣∣∣∣∣ ≤ 1.

This inequality is split down into two inequalities. The first one is

m0h− τhβa − τhα
(

ρ
j
p,i

)
βp0

m0h + vτ
≤ 1,

m0h− τhβa − τhα
(

ρ
j
p,i

)
βp0 ≤ m0h + vτ,

−τhβa − τhα
(

ρ
j
p,i

)
βp0 ≤ vτ,

−h
(

βa + α
(

ρ
j
p,i

)
βp0

)
≤ v.
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The validity of this inequality is obvious, since the left hand side is negative and the right hand
side is positive. So let us look at the second inequality

−1 ≤
m0h− τhβa − τhα

(
ρ

j
p,i

)
βp0

m0h + vτ
,

−m0h− vτ ≤ m0h− τhβa − τhα
(

ρ
j
p,i

)
βp0,

τ
(

hβa + hα
(

ρ
j
p,i

)
βp0 − v

)
≤ 2m0h.

By the second inequality in (16) v < h(βa + α(ρ
j
p,i)β0), and hence

τ ≤ 2m0h

βah− v + hα(ρ
j
p,i)β0

,

We transform (13) to obtain

ρ
j+1
a,i = ρ

j
a,i + τβa

cj
i −

ρ
j
a,i

ρa0
c0

 ,

whence

ρ
j+1
a,i = ρ

j
a,i

(
1− τβac0

ρa0

)
+ τβacj

i .

Ignoring the term τβacj
i and introducing the solution vector ρa,j =

{
ρ

j
a,0, ρ

j
a,1, ... , ρ

j
a,I

}
the scheme

is written as
ρa,j+1 = S · ρa,j,

where S =
(

1− τβac0
ρa0

)
E, E is unit operator.

Condition ‖S‖ ≤ 1 gives
∣∣∣1− τβac0

ρa0

∣∣∣ ≤ 1, from which we can find τ ≤ 2ρa0
βac0

.
From (14) we obtain

ρ
j+1
p,i = ρ

j
p,i + τα

(
ρ

j
p,i

)
βp0cj

i

If ρ
j
p,i ≤ ρp1, then α

(
ρ

j
p,i

)
= 1 and hence ρ

j+1
p,i = ρ

j
p,i + τβp0cj

i . Ignoring the term τβp0cj
i and by

introducing the solution vector ρp,j =
{

ρ
j
p,0, ρ

j
p,1, ... , ρ

j
p,I

}
last formula can be written in the form

ρp,j+1 = S · ρp,j,

where S = E, ‖S‖ = 1.
If ρp1 < ρ

j
p,i < ρp0, then α

(
ρ

j
p,i

)
=

ρp1

ρ
j
p,i

,

ρ
j+1
p,i = ρ

j
p,i + τ

ρp1

ρ
j
p,i

βp0cj
i .

Since ρp1 < ρ
j
p,i < ρp0, then 0 <

ρp1

ρ
j
p,i

< 1, we will take the maximum value,

ρ
j+1
p,i = ρ

j
p,i + τβp0cj

i .

ρp,j+1 = S · ρp,j, S = E, ‖S‖ = 1.
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If ρ
j
p,i = ρp0, then α

(
ρ

j
p,i

)
= 0 and ρ

j+1
p,i = ρ

j
p,i, ρp,j+1 = S · ρp,j,

S = E, ‖S‖ = 1.

Let us look to another difference scheme. Let us introduce implicit schemes for (7) and (8) in the form

ρ
j+1
a,i − ρ

j
a,i

τ
= βa

cj+1
i −

ρ
j+1
a,i

ρa0
c0

 , (26)

ρ
j+1
p,i − ρ

j
p,i

τ
= α

(
ρ

j+1
p,i

)
βp0cj

i (27)

instead of explicit schemes (13) and (14).

Theorem 2. Scheme (26) is unconditionally stable, but scheme (27) is unstable.

Proof of Theorem 2. Since

ρ
j+1
a,i

(
1 +

τc0

ρa0

)
= ρ

j
a,i + τβacj+1

i ,

we obtain

ρ
j+1
a,i =

(
1 +

τc0

ρa0

)−1
ρ

j
a,i + τβacj+1

i .

Clearly, (
1 +

τc0

ρa0

)−1
< 1.

Therefore scheme (26) is unconditionally stable.
Next, for (27), if

ρp1 < ρ
j+1
p,i < ρp0, then α

(
ρ

j+1
p,i

)
=

ρp1

ρ
j+1
p,i

.

Using the Taylor series, we obtain

α
(

ρ
j+1
p,i

)
=

ρp1

ρ
j
p,i

+
ρ

j+1
p,i − ρ

j
p,i

1

− ρp1(
ρ

j
p,i

)2

 ,

and so

ρ
j+1
p,i = ρ

j
p,i +

 ρp1

ρ
j
p,i

+
ρ

j+1
p,i − ρ

j
p,i

1

− ρp1(
ρ

j
p,i

)2


 τβp0cj

i .

Finally,

ρ
j+1
p,i =


(

ρ
j
p,i

)2
+ 2ρp1τβp0cj

i(
ρ

j
p,i

)2
+ ρp1τβp0cj

i

 · ρj
p,i.

It is obvious that (
ρ

j
p,i

)2
+ 2ρp1τβp0cj

i(
ρ

j
p,i

)2
+ ρp1τβp0cj

i

> 1.
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meaning that scheme (27) is unstable.

It is unexpected that, in some cases explicit difference schemes are “better” than implicit ones.

5. Numerical Algorithm

Transforming the difference schemes (12)–(14) we get

cj+1
i =

h
vτ + hm0

(vτ

h
cj+1

i−1 + m0cj
i −
(

ρ
j+1
a,i − ρ

j
a,i + ρ

j+1
p,i − ρ

j
p,i

))
, (28)

ρ
j+1
a,i = ρ

j
a,i + τβa

cj
i −

ρ
j
a,i

ρa0
c0

 , (29)

ρ
j+1
p,i = ρ

j
p,i + τα

(
ρ

j
p,i

)
βp0cj

i , (30)

where

α(ρ
j
p,i) =


1 for ρ

j
p,i ≤ ρp1,

ρp1

/
ρ

j
p,i for ρp1 < ρ

j
p,i < ρp0 ,

0 for ρ
j
p,i = ρp0 .

The system (28)–(30) is solved under the known initial and boundary conditions (15). The calculations
are carried out in the following order. According to (29) and (30), the values ρ

j+1
a,i and ρ

j+1
p,i are determined

through the known quantities ρ
j
a,i, ρ

j
p,i and cj

i of the lower layer at the corresponding points, from (28) we

determine cj+1
i .

6. Numerical Experiments and Their Analyses

To carry out numerical experiments we developed a program in Python.
As the initial parameters, we take the following numerical values as [23,24]: c0 = 0.05, m0 = 0.3,

v0 = 10−4 m/s, ρ0 = 0.1, ρa0 = 0.01, ρp0 = 0.09, βa0 = 0.005 s−1, βp0 = 0.005 s−1.
Let us analyse the numerical results. Over time, the values of c, ρa and ρp at fixed points in the

reservoir increase (Figure 1). With an increase in the parameter ρp1 to 0.05 at t = 450 s (Figure 1), near the
point x = 0, the capacitance of the passive zone is completely saturated with deposition and this leads
to an increase in the concentration of suspended solids in the liquid c and deposition in the active zone
ρa. Increasing the parameter ρp1 leads to a delay in the front of the advance c, ρa and ρp.

Figure 2 shows graphs of the characteristics of the solute transport for various ρp1, which allow
us to estimate the effect of this parameter. As can be seen from the figures, nonmonotonic changes in
all characteristics occur. An increase in ρp1 leads to a progressive dynamics of c/c0, ρa, ρp for small x
and for relatively large x the opposite is observed.

It can be seen from Figure 3 that increasing the value of the parameter βp0 leads to increased
“ageing”, that is the concentration of irreversible deposition increases near the point x = 0. This leads
to an increase in the concentration of reversible deposition and concentrations of suspended particles.
However, at the points away from x = 0 we can see the opposite scene. Most of the particles are
deposited near the point x = 0 and this does not lead to distribution of suspended particles further.
Figure 4 shows the time of the beginning of ageing according to the coordinate for various values
of ρp1. For ρp1 = 0.01, ageing is started at the point x = 0.02 approximately at t = 150 s, and for
ρp1 = 0.03 at t = 350 s, for ρp1 = 0.05 at t = 550 s (Figure 4).



Symmetry 2020, 12, 696 10 of 15

0.00 0.05 0.10 0.15 0.200.0

0.2

0.4

0.6

0.8

1.0
c/c0

x,m

a
t=450s

t=900s

t=1350s

0.00 0.05 0.10 0.15 0.200.000

0.002

0.004

0.006

0.008

0.010
ρa, m3/m3

x,m

b
t=450s

t=900s

t=1350s

0.00 0.05 0.10 0.15 0.200.00

0.03

0.06

0.09
ρp, m3/m3

x,m

c
t=450s

t=900s

t=1350s

Figure 1. Profiles of c/c0 (a), ρa (b), ρp (c), at ρp1 = 0.03.
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Figure 4. Dynamics of ρp at the point x = 0.02 m at different values of ρp1.

7. Improving the Model

Over the time when deposition is increasing it leads to change in porosity and permeability of
porous media. Changes in porosity can be written as m = m0 −

(
ρa + ρp

)
. It also leads to change in

filtration coefficient K (m). Several formulas have been obtained for filtration coefficient in terms of
porosity. Of these formulas the Carman–Kozeny formula [42–44] is widely used, which was developed
for laminar flow in a packed bed of spherical grains. In our case porous media is homogenous and
filtration velocity is small enough. So, for K (m), we use Carman–Kozeny equation [42–44]

K (m) = k0m3
/
(1−m)

2
, (31)

where k0 = const is initial permeability coefficient of media before deposition occurs.
In constant flow regime, increasing of porosity and permeability leads to change in pressure gradient

also. Darcy’s law basically used an equation describing the flow of a fluid through a porous medium.
To find pressure gradient, we use Darcy’s law [26,27], which was first determined experimentally by
Darcy, but it can be derived from the Navier–Stokes equations for small Reynolds numbers when inertial
effects are ignored. In our case filtration velocity is small enough and we can ignore inertial effects,
and so we use Darcy’s law in the form

v = K (m) |∇p| , (32)

where |∇p| is module of pressure gradient.
In [42], kinetic equations of the process of deposition (capture) of solid particles of a suspension

as well as their release were generalised, taking into account dynamic factors. In accordance with [42],
the process of particle deposition and release depends on the pressure gradient, and the greater
module of pressure gradient the smaller probability of the deposition of the particles and greater the
probability of the release of the particles from pores. In accordance with [42,45], the kinetic Equation (7)
characterising the deposition and release of solid particles in the active zone of the porous medium is
written as

∂ρa

∂t
=

βa

1 + γ |∇p| c− βa
ρa (1 + ω |∇p|)

ρa0
c0. (33)

where, constant parameters γ and ω characterise the intensity of the influence of |∇p| on attachment
and detachment of particles, respectively.

Thus, model of suspension filtration in porous media taking into account changes in porous
medium and dynamical factors consists of (6), (8), (31)–(33). The system of partial differential equations
is solved under initial and boundary conditions (10) by using the finite difference schemes.

Some results are presented in Figures 5–7. Dynamic factors mainly affect the profiles of changes in
the concentration of the deposition in active zone. In the case when dynamic factors are not taken into
account over time, the capacity of active zone ρa0 is completely saturated with deposition, here near
the point x = 0 over time first ρa increases, then decreases, and finally ∂ρa

/
∂t = 0, even ρa0 is not

completely saturated with deposition (Figure 5b). Why the capacity of active zone is not completely
saturating with deposition can be explained by the fact that the capacity of active zone is dynamical.
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Which means by increasing the pressure gradient the structure of porous media can be partially
destroyed and some previously deposited particles can get back to flow. This conclusion is quite
consistent with conclusions of Mints [35]. The dynamical equilibrium, meaning that the number of
deposited particles within the unit time is equal to the detached particles in this time in the active
zone, occurs before the deposited particles volume get the capacity of the active zone. Dynamical
equilibrium in active zone leads to an increase in suspended particles concentration which in turn
leads to an increase in concentration of deposited particles in the passive zone. For ρp1 = 0.01 from
t ≈ 1700 s and for ρp1 = 0.03 from t ≈ 600 s the dynamical equilibrium in active zone occurs, that is
∂ρa
/

∂t = 0 (Figure 6a). We can say that an increase in the parameters γ and ω leads to a decrease in
ρa at the corresponding points in the reservoir. Figure 7 shows the graphics of |∇p| for various ρp1.
For large values of ρp1 we can see the presence of large and almost constant values of |∇p| for small x,
as in the previous cases, the nature of the |∇p| changes in greater values of x.
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Figure 5. Profiles of c/c0 (a), ρa (b), ρp (c), at ρp1 = 0.03, γ = 0.25 m/MPa, ω = 0.25 m/MPa,
k0 = 0.01 m2/(MPa · s).
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ω = 0.1 m/MPa.
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8. Discussion

On the basis of numerical analyses it has been established that for small values of ageing parameter,
the deposition concentration in the passive zone still does not reach the capacitance of the passive zone
in the studied times. With an increase in the ageing parameter near the point of inlet, the capacity of the
passive zone is completely saturated with deposition and this leads to an increase in the concentration
of suspended solids in fluid and the deposition in the active zone. It is shown that the consideration of
dynamic factors mainly affects the profiles of changes in the concentration of the deposition in active
zone. In the case when dynamic factors are not taken into account over time, the capacity of active
zone is completely saturated with deposition. Here, near the inlet point over the time, deposition
in active zone first increases, then decreases, and finally stops changing; even the capacity of active
zone is not completely saturated with deposition. This can be explained as follows: over the time
deposition is growing, it leads to a decrease of porosity and permeability. In constant, the filtration
velocity regime decrease of porosity leads to an increase of pressure gradient. So, the probability of
deposited particles detachment in the active zone increases and dynamical equilibrium (number of
deposited and released particles in unity of time) occurs before the deposition reaches the capacity.

9. Conclusions

In this paper, the problem of filtration of a single-component suspension in a porous medium
is posed. A mathematical model of suspension filtration in porous media is considered as a system
of partial differential equations, which consists of mass balance equation, kinetic equations, Darcy’s
law and Carman–Kozeny equation. The model takes into account the effects of ageing and dynamical
factors. The influence of module of pressure gradient have been taken into account in kinetic equations
directly. This allows us to estimate how the change in porous media characteristics affects particle
deposition and release processes. To solve the problem, a numerical method has been developed on
the basis of finite difference schemes. Though there are many finite difference schemes examined
for partial differential equations, there are only a few examined for the system of partial differential
equations. In addition, stability of difference schemes has been proved. As we know, implicit schemes
are “better” than explicit schemes in stability, but in our case it has been shown that in some cases
explicit schemes are more stable than implicit ones. To carry out numerical experiments, a program
has been developed in Python.
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