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Abstract: This paper presents the design and features of frequency-selective wallpaper—based on
periodic and symmetric metallic hexagons—intended to be attached to standard walls for filtering out
5 GHz signals (e.g., IEEE 802.11a systems) without blocking other selected radio communication services
(e.g., cellular mobile communication signals). It analyzes the characteristics of the radio channel—as
found within standard indoor environments—with both regular walls and walls with the proposed
frequency-selective wallpaper, examined using a ray-launching program for single-input single-output
(SISO) and multiple-input multiple-output (MIMO) systems. This allows the harvesting of parameters,
including channel capacity, power delay profile, and signal-to-interference ratio, for proper comparison
between the two environments under study: with and without the presented wallpaper. The achieved
results clearly show that the use of the proposed frequency-selective wallpaper in an indoor scenario
reduces interference levels by an additional attenuation of up to 20 dB in comparison to an unpapered
wall. Additionally, with MIMO systems, radio channel characteristics, such as capacity, are improved
due to the increase in the magnitude of all singular values of the channel transfer matrix compared to
the unpapered wall case, thereby leading to the existence of more relevant subchannels.

Keywords: frequency-selective surfaces; radio channel architecture; MIMO systems

1. Introduction

Over the last 10 years, the increase in wireless communication systems has made it necessary to
minimize the interference between different systems in the same environment, and to resolve difficulties
of capacity caused by strains imposed by user numbers and spectrum availability. Techniques proposed
for mitigating these problems have included new antenna designs and advanced signal processing
technology. Unfortunately, these measures are frequently complicated and/or costly. An alternative
means of addressing this problem in indoor environments would be modification of the physical
wave propagation environment by applying frequency-selective (F-S) wallpaper to the walls to block
(reflect) unwanted interference while still allowing the desired radio communication services to pass
through [1–7]. Such a strategy can improve the signal-to-interference ratio (SIR) [8,9].

Because F-S wallpapers restrict the frequency signal of the systems that are being blocked to
the room where they are located, radio channel characteristics can experience improvement using
high-performance systems, e.g., multiple-input multiple-output (MIMO) systems, that usually gain
within rich scattering environments and where radio channel capacities are expanded by the quantity of
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uncorrelated channels and the strength of each [10]. Therefore, this paper, extending the analysis carried
out in previous studies where the performance solely of single-input single-output (SISO) systems was
examined in indoor environments with F-S surfaces [1–9,11], presents the design and features of new
F-S wallpaper when both SISO and MIMO systems are considered. The wallpaper—based on periodic
and symmetric metallic hexagons—is intended to be attached to standard walls for filtering out 5 GHz
signals (e.g., IEEE 802.11a systems) without blocking other selected radio communication services
(e.g., cellular mobile communication signals). This way, the presented work analyzes the characteristics
of the radio channel—as found within standard indoor environments—with both regular walls and
walls with the proposed F-S wallpaper, examined using a ray-launching program. Thus, the capacity
for the proposed F-S wallpaper to effect improvements in SIR and to achieve improved radio channel
characteristics for MIMO systems is evaluated, while at the same time analyzing the singular values
for the channel transfer matrix.

2. Wallpaper Design

2.1. Frequency-Selective Surfaces

Numerous antenna systems for modern fixed and mobile communications services rely on F-S
surfaces (FSSs). FSSs effectively comprise array structures consisting of many thin conducting elements,
frequently supported by being printed on dielectric substrate. They act as passive electromagnetic
filters. Such arrays often act as periodic apertures within the conducting plane. If an FSS comprises a
conductor array, reflection occurs at the surface of incident waves for particular frequencies (stop band
or reflection band); at other frequencies the service allows these waves to pass through (pass-band or
transmission band). With conducting arrays, these resonances occur because of high-induced element
currents. This makes the surface act as a metallic sheet at certain resonances. If an aperture array is
employed, the majority of the FSS is reflective, exhibiting a pass-band as a resonance resulting from
strong fields within apertures [12,13].

2.2. Wallpaper with Low Transmission at 5 GHz

The wallpaper was designed using the software Periodic Boundary Finite-difference Time-domain
(PB-FDTD), centered on unit cell analysis techniques with a baseline numerical technique being the FDTD
methodology. This program employs periodic boundary conditions for the reduction of computational
volumes to single-unit cells. In the unit cell technique, the number of possible scan angles is a discrete
number, which is determined by the number of FDTD cells in the unit cell (it should be noted that the
FDTD mesh needs to be periodic). Such a number of possible scan angles increases with the number
of FDTD cells. Then, the elements of the array are excited with broadband Gaussian pulses with
appropriate time delays to scan the array in the desired direction. This way, the simulation continues
until the field at a test point of the FDTD volume has decreased within a specific factor. The main
goal of such wallpaper was to block or confine 5 GHz signals (for example IEEE 802.11a systems),
while simultaneously permitting wireless services on different frequencies (for example, cellular mobile
communication signals) access. For this purpose, we considered the FSS geometry illustrated in Figure 1.Symmetry 2020, 12, 695 3 of 23 
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It can be seen that there is a periodic and symmetric pattern of perfectly electric conducting 
(PEC) metallic hexagons with a representing periodicity on the x and y axes. Moreover, t is the 
distance between metallic hexagons, w is the width, and hi is the height. The FSS dimensions were 
selected using a parameter study that led to these optimal values: w = 0.4 mm, t = 1.3 mm, and a = 11.1 
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2.2.1. Wallpaper with Gypsum Wall 

In this case, for evaluation of the wallpaper’s performance, the simulations employed a structure 
that consisted of FSS attached to a gypsum wall, as shown in Figure 2. The assumed thickness of the 
wall was T = 51.5 mm with a relative conductivity of σ = 0.0084 Am−2 and a permittivity of εr = 5. 

 
Figure 2. Scheme of the wallpaper attached to the gypsum wall. 

This F-S wall’s transmission and reflection coefficients, as expressed in [14], are presented in 
Figures 3 and 4, respectively, in dB, being a function of frequency for a variety of incidence angles, as 
well as for both soft (horizontal) and hard (vertical) polarizations. It should be noted that, in this 
work, as indicated in [14], the so-called soft polarization is considered when the electric field is 
perpendicular to the plane of incidence (defined as the plane formed by a unit vector normal to the 
reflecting interface and the vector in the direction of incidence). This way, since the electric field is 
parallel to the interface, it is also known as horizontal. On the other hand, the so-called hard 
polarization is considered when the electric field is parallel to the plane of incidence. Since, in this 
case, a component of the electric field is perpendicular to the interface when the magnetic field is 
parallel to the interface, it is also known as vertical. The incidence angles shown in the plots (θ) 
correlate with the broadside (BS) direction shown in Figure 2. These plots also illustrate, for 
comparison purposes, an instance where BS incidence is assumed for the gypsum wall alone without 
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Figure 1. Hexagonal geometry of the considered frequency-selective surface (FSS).
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It can be seen that there is a periodic and symmetric pattern of perfectly electric conducting (PEC)
metallic hexagons with a representing periodicity on the x and y axes. Moreover, t is the distance
between metallic hexagons, w is the width, and hi is the height. The FSS dimensions were selected
using a parameter study that led to these optimal values: w = 0.4 mm, t = 1.3 mm, and a = 11.1 mm.

2.2.1. Wallpaper with Gypsum Wall

In this case, for evaluation of the wallpaper’s performance, the simulations employed a structure
that consisted of FSS attached to a gypsum wall, as shown in Figure 2. The assumed thickness of the
wall was T = 51.5 mm with a relative conductivity of σ = 0.0084 Am−2 and a permittivity of εr = 5.
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Figure 2. Scheme of the wallpaper attached to the gypsum wall.

This F-S wall’s transmission and reflection coefficients, as expressed in [14], are presented in
Figures 3 and 4, respectively, in dB, being a function of frequency for a variety of incidence angles, as
well as for both soft (horizontal) and hard (vertical) polarizations. It should be noted that, in this work,
as indicated in [14], the so-called soft polarization is considered when the electric field is perpendicular
to the plane of incidence (defined as the plane formed by a unit vector normal to the reflecting interface
and the vector in the direction of incidence). This way, since the electric field is parallel to the interface,
it is also known as horizontal. On the other hand, the so-called hard polarization is considered when
the electric field is parallel to the plane of incidence. Since, in this case, a component of the electric field
is perpendicular to the interface when the magnetic field is parallel to the interface, it is also known as
vertical. The incidence angles shown in the plots (θ) correlate with the broadside (BS) direction shown
in Figure 2. These plots also illustrate, for comparison purposes, an instance where BS incidence is
assumed for the gypsum wall alone without wallpaper.
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Figure 4. Reflection coefficient for the structure considered in Figure 2.

It may be seen that at 5 GHz an extra transmission attenuation of 20 dB appears for both
polarizations in comparison to the wall without wallpaper, as intended. Moreover, with angles of
incidence ranging from BS to 69.6◦, resonant frequencies vary only by 0.4 GHz. On the other hand, an
almost perfect reflection is observed at 5 GHz when considering the F-S wall.

The transmission and reflection coefficients of the gypsum wall with the wallpaper are given in
Figures 5 and 6, respectively, as a function of the angle of incidence θ specified in Figure 2, assuming a
frequency of 5 GHz, for both soft and hard polarizations. The curves were obtained by interpolating 12
different values corresponding to 12 different angles of incidence—equally spaced along the range
from 0◦ to 80◦—through cubic spline data interpolation performed with MATLAB. It can be noted how
the good transmission and reflection characteristics for the mentioned frequency remain valid for the
entire range of angles considered.
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2.2.2. Gypsum Wall Only

For comparison purposes, a similar analysis to that undertaken in the previous subsection for
the F-S wall is next performed considering the gypsum wall only (again, T = 51.5 mm, εr = 5, and
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Therefore, the corresponding transmission and reflection coefficients are depicted in Figures 8
and 9, respectively, as a function of frequency, for different angles of incidence, and both soft and
hard polarizations.
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In addition, the transmission and reflection coefficients are depicted as a function of the angle
of incidence, considering a frequency of 5 GHz, in Figures 10 and 11, respectively, for both soft and
hard polarizations.

It can be noted from Figures 8–11 that the transmission through a common gypsum wall is high at
5 GHz compared to the wallpaper case and, moreover, the attenuation in signal strength significantly
varies when different angles of incidence are considered.
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2.2.3. Wallpaper Attached onto Other Structures

Wallpaper with Gypsum–Wood Wall

In order to check the versatility of the designed wallpaper, simulations were performed considering
that the latter is covering a gypsum–wood wall, as can be seen in Figure 12. Parameters of εr = 5,
σ = 0 Am−2, and a thickness of T’ = 102.9 mm were assumed for the wood layer. Dimensions and
material properties for the gypsum layer remained the same as those considered in previous sections.
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Figure 12. Scheme of the wallpaper attached to a gypsum–wood wall.

The transmission and reflection coefficients for the described structure can be observed in
Figures 13 and 14, respectively, as a function of frequency, considering BS incidence.

It should be noted how the resonant frequencies are not shifted when considering the wallpaper
with a gypsum–wood structure and, furthermore, their difference in attenuation as compared to
the wallpaper–gypsum wall case is only 5 dB for soft polarization, therefore confirming that the
performance of the designed wallpaper remains efficient with a gypsum–wood structure. Specifically, a
transmission loss of around 45 dB can be found for both polarizations for the gypsum–wood structure
around 5 GHz. Furthermore, the −18 dB bandwidth at resonant frequencies is approximately 350 MHz,
which should be sufficient for band filtering purposes. On the other hand, the desired perfect reflection
at 5 GHz, which was achieved with the gypsum wall, is maintained at 5 GHz when considering a
gypsum–wood structure.
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Wallpaper with Gypsum–Air–Gypsum Wall

The same analysis described in the previous subsection was carried out considering the wallpaper
attached to a gypsum–air–gypsum wall, as shown in Figure 15.

Dimensions and material properties for the gypsum layers remained the same as those considered
in previous sections and a separation of 51.5 mm (air) was assumed between both boards.

Again, it can be seen in Figures 16 and 17 how the band-stop response of the newly considered
structure is still exhibiting the good properties seen in the wallpaper–gypsum wall case regarding the
blocking/confining of the signal. Specifically, a transmission loss of around 37 dB and 47 dB for soft
and hard polarizations, respectively, can be observed for the gypsum–wood structure around 5 GHz.
Moreover, the −18 dB bandwidth at resonant frequencies is approximately 400 MHz, which, again,
should be sufficient for band filtering purposes. On the other hand, as observed in the gypsum–wood
case, the desired perfect reflection at 5 GHz, which was achieved with the gypsum wall, is again kept
at 5 GHz when considering a gypsum–air–gypsum structure.
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3. Ray-Launching Method

To achieve the results shown in this paper, the simulations were performed employing a
ray-launching program centered on ray optics and the uniform theory of diffraction (UTD). With
ray-launching techniques, rays are shot at various discrete angles that undergo interaction with
any objects in situ during propagation. Thus, the rays that have been launched undergo reflection,
transmission, diffraction, and scattering across their environment. Random rays passing near the
location of the receiver are employed for predicting the true propagation pulse and thus we may
evaluate the total field registered by the receiver as being a coherent summation of every contribution
that impinges upon it.

The ray-launching tool employed in this research may be used for analyzing both MIMO and
SISO systems. With the MIMO system results, the assumption is made that there is an equal number of
receiving antennae (Nr) and transmitting antennae (Nt), meaning N = Nt = Nr. N × N simulations
were performed for every receiver position for obtaining the channel transfer matrix (GN×N). For each
simulation, a calculation is made of the coefficient G(n, m), being the coherent sum of every ray received
by the antenna m with transmissions only coming from the antenna n.

The received rays taken into consideration comprise: direct (E1), multiple reflected (E2), multiple
transmitted (E3), multiple diffracted (E4), multiple reflected/diffracted (E5), multiple transmitted/

diffracted (E6), and multiple transmitted/reflected (E7) rays. Thus, the matrix G for any specific receiver
position is found with [15]:

G(n, m) =
7∑

c=1
Ec(n, m) (1)

with direct, reflected, transmitted, diffracted, reflected/diffracted, transmitted/diffracted, and transmitted/

reflected components being ascertained with [15]:

E1(n, m) = Eo
r e− jkr (2)

E2(n, m) =
p∑

i=1
Ri

Eo
ri

e− jkri (3)

E3(n, m) =
p∑

i=1
Ti

Eo
ri

e− jkri (4)

E4(n, m) =
p∑

i=1

Eo
s′i

e− jks′i Di

√
s′i

si(si+s′i )
e− jksi (5)

E5(n, m) =
p∑

i=1

Eo
s′i

e− jks′i DiRi

√
s′i

si(si+s′i )
e− jksi (6)

E6(n, m) =
p∑

i=1

Eo
s′i

e− jks′i DiTi

√
s′i

si(si+s′i )
e− jksi (7)

E7(n, m) =
p∑

i=1
TiRi

Eo
ri

e− jkri (8)

where Eo represents emitted field strength, k the wave number, p the total number of contributions
considered, r and ri the propagation path lengths from source n to receiver m, s’ the path length from
source to the diffracting wedge, s the path length from diffracting wedge to receiver, Di the diffraction
coefficient for finitely conducting wedges shown in [16], Ti the transmission coefficient, and Ri the
reflection coefficient. For this instance, Ti and Ri are dependent on the incident wave polarization,
angle of incidence, conductivity, and permittivity.

For analytical purposes, the assumption is made that power is distributed equally for every
transmitter and that the transmitter has no prior channel knowledge [17].
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4. Results and Discussion

4.1. SISO Case

The deployment of the F-S wallpaper in an indoor scenario was undertaken employing the
aforementioned ray-launching software; the first experiment was undertaken using an SISO system in
a two-room environment, the top view of which is shown in Figure 18 (distances in meters).
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Figure 18. Geometry of rooms and transmitter locations (top view).

As may be observed, the floor comprises two 25 m2 rooms, each having two apertures
corresponding to squared windows of 1.6 m width; the experiment assumes that the rooms have a
height of 3 m. The T × 1 transmitter is located within Room 2, providing coverage in that location.
T × 2 is located within Room 1 so that when its signal enters Room 2, it becomes an interference.

As an example, in Figure 19, the signal-to-interference ratio (SIR), in dB, over every point at a
horizontal plane of 1 m height in Room 2 is depicted considering the two cases in which (a) regular
gypsum walls are considered and (b) wallpaper–gypsum walls are assumed. The following simulation
parameters were taken into account in the ray-launching code:

• Omnidirectional antennas
• Frequency: 5 GHz
• Soft Polarization
• T × 1 and T × 2 bearing a 1 m height
• Number of rays launched: 7200
• Number of considered reflections: 14
• Number of considered reflections of diffracted rays: 4
• Number of considered transmissions: 4
• Number of considered transmissions of diffracted rays: 2.

Figure 20 shows the cumulative distribution function (CDF) for the signal-to-interference ratio
(SIR) for every point of Room 2 for both instances of uncovered walls and walls covered with the
designed wallpaper. An assumption is made that the antennae are omnidirectional, the frequency
is 5 GHz, both transmitters are 1 m in height (the third coordinator that may be observed in the
positioning of the transmitters in Figure 18), and that the polarization is soft (horizontal).
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We can see that the F-S walls create an improvement of approximately 20 dB in the SIR. This
agrees with predicted values, as shown in Figure 3.

For evaluation of the power delay profile (PDP) from transmitter to receiver in Room 2 for both
papered and unpapered walls, we considered the scheme illustrated in Figure 21, containing transmitter
T × 1 and receiver R × 1.
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Figure 21. Geometry of rooms and transmitter/receiver locations (top view).

For this instance, the aforementioned PDP may be seen in Figure 22 for both papered and
unpapered walls. The simulation parameters considered in the ray-launching code were the following:

• Omnidirectional antennas
• Frequency: 5 GHz
• Hard Polarization
• T × 1 and T × 2 bearing a 1 m height
• Number of rays launched: 7200
• Number of considered reflections: 14
• Number of considered reflections of diffracted rays: 4
• Number of considered transmissions: 4
• Number of considered transmissions of diffracted rays: 2.

The curves show 20 realizations on average harvested at various frequencies between 4.9 and
5.1 GHz measured in 0.01 GHz increments. Additionally, low-pass filtering with 40 MHz was undertaken
within the frequency domain with a Blackman window for all realizations. An assumption is made that
the antennae are omnidirectional, the frequency is 5 GHz, and both transmitters are 1 m in height. It may
be seen that the PDP curve generated in the instance of the wall being papered with F-S wallpaper has a
slower decrease when the time delay increases. This means that a wide range of outstanding paths
come to the receiver, which increases the root-mean-square (r.m.s) delay spread. An r.m.s. delay spread
of 22 ns can be ascertained from the papered wall results (coherence bandwidth approximately 7 MHz),
in comparison to the unpapered wall, which has a value of 4 ns (coherence bandwidth of approximately
42 MHz).
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4.2. MIMO Case

A further analysis of the employment of F-S wallpaper in an indoor scenario, but this time using a
MIMO system, was undertaken. Figure 23 shows the layout in this instance, with Room 2 holding
the transmitter and receiver T × 1 and R × 1, respectively, comprising a quartet of omnidirectional
antennae spaced at λ/2.Symmetry 2020, 12, 695 16 of 23 
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Figure 23. Geometry of two rooms and multiple-input multiple-output (MIMO) transmitter/receiver
locations (top view).

Using this setup, Figure 24 shows the singular values (lambda 1 to 4) for the channel transfer
matrix G (square roots of the eigenvalues of GTG and GGT) as a function of frequency with both
unpapered and papered walls. The simulation parameters considered in this case in the ray-launching
code were the following:

• Omnidirectional antennas
• Hard Polarization
• 4 Tx and 4 Rx bearing a 1 m height
• Number of rays launched: 7200
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• Number of considered reflections: 9
• Number of considered reflections of diffracted rays: 4
• Number of considered transmissions: 4
• Number of considered transmissions of diffracted rays: 3.
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Figure 24. Singular values for the channel transfer matrix considering the geometry in Figure 23.

We can say that with unpapered walls there is a trio of main singular values (the fourth being
negligible for practical purposes). When the F-S paper covers every wall, there is an increase in the
magnitude of all four singular values, with the fourth value being emphasized, so that, in this instance,
we have four relevant subchannels rather than three. In this instance, an extra degree of freedom is
added in comparison to the unpapered walls, and thus the capacity of the radio channel is increased.

In order to further the previous study, the radiation diagrams calculated from the eigenvectors
of GGT and GTG, concerning the antenna arrays T × 1 and R × 1, can be observed in Figure 25 for a
frequency of 5 GHz and the two types of walls under study.
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Figure 25. Radiation diagrams from the eigenvectors of GGT and GTG applied to (a) the transmitter
T × 1 and (b) the receiver R × 1. Frequency = 5 GHz.
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As expected, the radiation diagrams located on the very left column—for both T × 1 and R ×
1—which were calculated from the first eigenvectors of GGT and GTG, present the lobes (at 120◦ in the
transmitter and −60◦ in the receiver), making reference to the line of sight (LoS) path.

We can obtain the channel capacity, where the transmitters and receivers are Nt and Nr and the
averaged signal-to-noise rate (SNR) is ρ at each receiving antenna, with the following equation [18]:

C = log2

(
det

(
INr +

ρ
Nt

HHH
))

bits/s/Hz (9)

where INr is the Nr × Nr identity matrix, ( )H is the Hermitian transposition, and H is the normalized
channel transfer matrix.

We normalize the channel transfer matrix, G, so that the path loss component is removed. Thus,
solely the relative variations for responses across all elements are revealed. This gives us an average
signal-to-noise ratio that remains constant and is not dependent on receiver position. The normalization
mentioned above can be undertaken using the Frobenius norm, thus [19]:

H = G√√√√ Nr∑
j=1

Nt∑
k=1

∣∣∣∣Gj,k

∣∣∣∣2
NtNr

(10)

With this method we calculated the CDF of capacity for Room 2, as shown in Figure 23, for both
types of walls being examined, taking the frequency variation analysis illustrated in Figure 24 into
account and using a variety of receiver/transmitter positions, as shown in Figure 26.
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Figure 26. Geometry of the two rooms and the MIMO transmitter and receiver locations (top view).

As shown, we assumed five unique transmitter positions, each 0.6λ apart (T × 1 to T × 5), and
each comprising an array of four omnidirectional antennae with λ/2 spacing. For each position, we
considered a pair of linear paths, evaluating 20 unique receiver positions with 0.6λ spacing (comprising
arrays of four omnidirectional antennas with λ/2 spacing). We assumed that both the transmitter and
receiver are at the same locations as shown in Figure 23. The simulation parameters considered in the
ray-launching code were the following:

• Omnidirectional antennas
• Frequency: 5 GHz
• Hard Polarization
• Transmitting and receiving antennas bearing a 1 m height
• Number of rays launched: 7200
• Number of considered reflections: 9
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• Number of considered reflections of diffracted rays: 4
• Number of considered transmissions: 4
• Number of considered transmissions of diffracted rays: 3.

Figure 27 shows the previously mentioned CDF of capacity for Room 2 with both papered and
un-papered walls with an SNR of 10 dB. The plot also incorporates the CDF of the capacity for an
independent and identically distributed (I.I.D) Rayleigh fading channel for comparison purposes.Symmetry 2020, 12, 695 19 of 23 
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Figure 27. CDF of capacity in Room 2 for regular gypsum and F-S wall cases.

We can see that employing the F-S wallpaper leads to improved MIMO capacity; in particular, the
capacity’s mean value, for unpapered walls, is 8.6 bits/s/Hz; when the wall is papered, this rises to
9.4 bit/s/Hz.

In Figures 28 and 29, the calculated singular values (lambda 1 to 4) for the different transmitter and
receiver positions are shown for the two types of walls under study. As can be observed, the additional
degree of freedom previously seen in Figure 24 in the wallpaper case with the study performed as
a function of frequency is also obtained for all the transmitter and receiver locations, which means
that the improvement in capacity due to the use of the designed wallpapers does not depend on the
position of the transmitter and receiver.

The above-mentioned advantage can also be noted in Table 1, where the mean and standard
deviation of the four singular values calculated for all considered positions are shown, for both regular
(common) gypsum and frequency selective wall cases.

Table 1. Mean and standard deviation of the singular values (lambda 1 to 4) obtained for all transmitter
and receiver positions of Figure 26.

Mean Standard Deviation

Lambda1 1.5254 0.50602
Regular Lambda2 0.63897 0.14742

Walls Lambda3 0.17615 0.064675
Lambda4 0.012362 0.0081471

Lambda1 2.9068 0.68067
Walls with Lambda2 1.5055 0.49311
Wallpaper Lambda3 0.53912 0.18192

Lambda4 0.19102 0.061508
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Figure 28. Singular values for the channel transfer matrix considering the geometry of Figure 26 (I).
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5. Conclusions

F-S wallpaper has been designed with the intention of being mounted on standard walls to allow
filtering of signals operating at 5 GHz while simultaneously permitting required radio communication
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services on other frequencies to be received. The outcomes of this experiment unequivocally demonstrated
that using this wallpaper in an indoor scenario reduces interference levels by an additional attenuation
of 20 dB in comparison to an unpapered wall. Additionally, with MIMO systems, radio channel
characteristics, such as capacity, are improved due to the increase in the magnitude of all singular
values of the channel transfer matrix compared to the unpapered wall case, thereby leading to the
existence of more relevant subchannels.
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