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Abstract: Aggregating data is the main line of any discipline dealing with fusion of information
from the knowledge-based systems to decision-making. The purpose of aggregation methods is
to convert a list of objects, all belonging to a given set, into a single representative object of the
same set usually by an n-ary function, so-called aggregation operator. As the useful aggregation
functions for modeling real-life problems are limited, the basic problem is to construct a proper
aggregation operator, usually a symmetric one, for each situation. During the last decades, a number
of construction methods for aggregation functions have been developed to build new classes based
on the existing well-known operators. There are three main construction methods in common use:
transformation, composition, and convex combination. This paper compares these methods with
respect to the type of aggregating problems that can be handled by each of them.

Keywords: aggregation operators; composite aggregation operators; weighted aggregation operators;
transformation; duality; group decision-making

1. Introduction

The importance of aggregating in fusion of information, specially in decision-making problems,
is, in fact, to get an overview of data for taking the final action. However, there are diverse strategies
to reach the aggregated value: aggregation functions are one of the most effective and simple methods
in this area. Aggregation functions are a mathematical way to summarize an n-tuple of information
into a single output by means of non-decreasing functions where the output should remain in the
same set as the input one. In literature, the non-decreasing function A :

⋃
n∈N[0, 1]n → [0, 1] is usually

considered as the standard definition of aggregation functions where the non-decreasing property of A
shows increasing values of inputs increases the aggregated value. Moreover, the aggregation function
A fulfills the boundary conditions A(0, · · · , 0) = 0 and A(1, · · · , 1) = 1 that guaranty the aggregating
of minimal and maximal inputs are respectively minimal and maximal output.

Group decision-making problems that refer to as multi-person or multi-observer decision
situations, are one of the main application fields of aggregation functions theory. Such problems
usually contain two key phases known as consensus and selection (c.f. [1,2]) where the main
objective of consensus is to obtain the consent over different judgments, not necessarily the full
agreement of individuals participating in a decision-making problem, whereas selection phase
contributes to find the optimum solution (c.f. [3]). According to the final goal in different decision
situations, over the past decades a number of methods have been applied to reach consensus in
group decision-making problems. The statistical tools and mathematical concepts, such as mean
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value, median, minimum, maximum, triangular norms [4], and fuzzy integrals [5,6] are widely used
to aggregating data. On the other hand, dealing with linguistic information and non-numerical
variables to express decision-makers’ judgments in real-world decision-making problems highlights
the use of fuzzy set theory [7] and soft set theory [8] in this area. As a result, most of the aggregating
techniques have been adapted to these concepts. For instance, the ordered weighted average (OWA)
operator [9] and the ordered weighted geometric (OWG) operator [10] have been developed to
intuitionistic fuzzy operators [11,12], interval-valued intuitionistic fuzzy ordered weighted geometric
(IVIFOWG) operator [13], intuitionistic trapezoidal fuzzy ordered weighted averaging (ITFOWA)
operator [14], intuitionistic fuzzy-induced geometric (IFIGOWA) operators [15], intuionistic fuzzy
generalized aggregation operators [16], fuzzy-induced generalized ordered weighted averaging
(FI-GOWA) and fuzzy-induced quasi-arithmetic OWA (Quasi-FI-OWA) operators [17], induced
generalized intuitionistic fuzzy ordered weighted averaging (I-GIFOWA) operator [18], interval-valued
pythagorean trapezoidal fuzzy ordered weighted averaging (IVPTFOWA) operator [19], and m-polar
fuzzy soft OWA operator [20] by different researchers.

However, the list of aggregation functions is not limited to these single or hybrid operators.
In fact, the class of aggregation functions is huge and choosing the right one for a given problem
is the main task of decision-makers in any consensus process. For example, averaging aggregation
functions are used widely in real-life situations. To find the overall score of a student based on his/her
final academic report, we usually use the arithmetic mean value AM. However, if different courses
have different importance weights, the weighted arithmetic mean WAM, rather than AM, should be
applied to get the correct result. However, this formula can give rise to misleading result if we want to
consider the effect of final exams schedule on the student’s performance, where the courses’ weights
are computed based on the exams timetable rather than how much that course/exam is difficult.
Since then, a survey on aggregation functions can give an insight to the experts to enhance their
performance for choosing the right one. Xu and Da [21] fulfilled the first overview of the aggregation
operators in 2003 by reviewing the existing main aggregation operators. The authors of [22–24] focused
on properties and classification of aggregation functions. Grabisch et al. [25] made a review only
on averaging aggregation operators. Recently, Rosanisah Mohd and Lazim Abdullah [26] provided
an overview of different types of aggregation functions used in decision-making from year to year.
However, these works did not focus on the type of consensus problem that may handled by different
construction methods of aggregation operators.

Finding a proper aggregation operator for the situation with a complex consensus scenario and
based on the existing formulas is not always straightforward. We usually need to develop the class of
aggregation functions by constructing new ones based on the existing operators. There are a number of
techniques to construct different classes of aggregation operators with different properties [23,27–34]
where they start from given aggregation functions and continue by constructing new ones. A review
paper over such techniques allows us to have an insight of not only the problems that can be solved
by them, but also situations that cannot be handled by these methods. To this end, we compare three
analytical approaches namely transformation, composition and convex combination, that are used to
generate new aggregation functions based on existing ones, to address the following research questions.

1. Which consensus problems can be handled by each of these aggregating techniques?
2. What are the limitations of each technique?

This paper aims to provide an overview of three key construction methods of aggregation
functions, namely, transformation, composition, and convex combination, to compare them with
respect to type of aggregating problems that can be handled by each of them. This can help
researchers gain a more comprehensive understanding of advantages as well as limitations of each
constructing method of aggregation functions. We focus on consensus problems that may be solved
by these construction techniques of aggregation operators and present a summary of some recent
as well as older results. To this end, in Section 2, basic definitions and properties of aggregation
functions are recalled. Sections 3–5 are, respectively, devoted to review of construction methods
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for aggregation functions including transformation of aggregation operator, composite aggregations,
and weighted rule of aggregation operators based on convex combination approach. In Section 6,
we compare these constructing methods by some numerical example. Finally, a summary is given in
the conclusion section.

2. Basic Definitions and Properties

In this section, we recall some basic concepts about aggregation functions. Not that, throughout
this paper, we use the following notations; I ⊂ R is the closed unit interval [0, 1] and In = {x(n) =
(x1, · · · , xn) : xi ∈ I, i = 1, · · · , n} denotes the set of all real n-dimensional vectors x(n) whose
components are in the interval I. Moreover, we say x(n) = (x1, · · · , xn) ≤ y(n) = (y1, · · · , yn) if and
only if xi ≤ yi, for all i.

Definition 1.

• An aggregation function of dimension n ∈ N is an n-ary function A(n) : [0, 1]n → [0, 1] satisfying

A1. A(x) = x, for n = 1 and any x ∈ [0, 1];
A2. A(n)(x1, · · · , xn) ≤ A(n)(y1, · · · , yn) if (x1, · · · , xn) ≤ (y1, · · · , yn);
A3. A(n)(0, 0, · · · , 0) = 0 and A(n)(1, 1, · · · , 1) = 1.

• An extended aggregation function is the function A :
⋃

n∈N[0, 1]n → [0, 1] whose restriction A|In := A(n)

to In is the n-ary aggregation function A(n) for any n ∈ N.

Example 1. The operators

1. median Med defined by Med(x1, · · · , xn) = x n+1
2

if n is odd and Med(x1, · · · , xn) =
1
2 [x n

2
+ x n

2 +1] if
n is even where x1 ≤ x2 ≤ · · · ≤ xn;

2. arithmetic mean AM(x(n)) =
1
n ∑n

i=1 xi;
3. weighted arithmetic mean WAM(x(n)) = ∑n

i=1 wixi where wi ∈ [0, 1] and ∑n
i=1 wi = 1;

4. geometric mean GM(x(n)) = (∏n
i=1 xi)

1
n ;

5. harmonic mean HM(x(n)) =
n

∑n
i=1

1
xi

;

6. minimum Min(x(n)) = minn
i=1 xi and maximum Max(x(n)) = maxn

i=1 xi;
7. product function Π(x(n)) = ∏n

i=1 xi;
8. projection function to the kth coordinate Pk(x(n)) = xk

are several well-known examples of extended aggregation functions.

Remark 1. Note that, we have the weakest aggregation operator Aw and the strongest aggregation operator As

defined by

Aw =

{
1 if x1 = x2 = · · · = xn = 1

0 else,
As =

{
0 if x1 = x2 = · · · = xn = 0

1 else,

where for any aggregation operator A

Aw ≤ A ≤ As

Definition 2. The aggregation function A : [0, 1]n → [0, 1]

• has a neutral element e ∈ [0, 1] if

A(x1, · · · , xi−1, e, xi+1, · · · , xn) = A(x1, · · · , xi−1, xi+1, · · · , xn)

• has an annihilator element (absorbing element or zero element) a ∈ [0, 1] if

A(x1, · · · , xi−1, a, xi+1, · · · , xn) = a
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• has no zero divisors if it has the zero element a, and

A(x1, · · · , xn) = a =⇒ ∃1≤s≤ns : xs = a

Therefore, if an aggregation function has a neutral element e, it can be omitted from the initial list
of objects without any influence on the final aggregated value. Thus, in a decision-making problem,
existence of the neutral element e means that the rest of arguments except e fulfill the aggregation
process. If an aggregation function has the annihilator element a, then adding it to the list of arguments
means that only the argument a fulfills the aggregation stage. In fact, the annihilator element a acts as
a veto or qualifying score.

Example 2. The product function Π and the minimum function Min have the neutral element 1, whereas 0
is the neutral element of the maximum function Max. Obviously, 1 is the annihilator for Max and 0 is the
annihilator element of Π, Min, and GM where the latter has no neutral element. Operators Aw and As are
without neutral element, whereas Aw has an annihilator a = 0 and As has an annihilator a = 1. The operators
AM and Pk are examples of aggregation functions without neutral and annihilator elements.

Example 3. Operator Ac :
⋃

n∈N[0, 1]n → [0, 1] defined by

Ac = (x1, · · · , xn) = max

(
0, min

(
1, c +

n

∑
i=1

(xi − c)
))

where c ∈ [0, 1] is an aggregation function that has neutral element e = c and without annihilator.

2.1. Classification of Aggregation Functions

There are four main classes of aggregation functions, including conjunctive, disjunctive, averaging,
and remaining aggregation functions, defined by their relationship to Min and Max functions and
proposed in [35] for the first time.

Definition 3. The aggregation function A : [0, 1]n → [0, 1] is called

• Conjunctive if for every x(n) ∈ In, A(x(n)) is bounded by the minimum function:

A(x(n)) ≤ Min(x(n)) = min(x1, · · · , xn)

• Disjunctive if for every x(n) ∈ In, A(x(n)) is bounded by the maximum function:

A(x(n)) ≥ Max(x(n)) = max(x1, · · · , xn)

• Average whenever for all x(n) ∈ In we have:

Min(x(n)) ≤ A(x(n)) ≤ Max(x(n))

According to [36], ifA is the collection of all aggregation functions, C shows the class of conjunctive
functions, D is the class of disjunctive functions, P shows the pure averaging functions, and R =

A/(C ∪ D ∪ P) is all remaining aggregation functions, then (C,D,P ,R) forms a partition on A.

Example 4. Operators Π, Aw, and Min are examples of conjunctive aggregation functions, whereas the
operators PS(x1, x2) = x1 + x2 − x1 · x2, As and Max are disjunctive aggregation functions.

Remark 2. Note that if the conjunctive and disjunctive aggregation functions have neutral elements, they are,
respectively, e = 1 and e = 0.
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From monotonic property of A, it is easy to check that the property of averaging is equivalent
to the idempotency of aggregation function A where the aggregation function A : [0, 1]n → [0, 1],
for n ∈ N, is called idempotent if A(x, · · · , x) = x for all x ∈ [0, 1].

If an aggregation operator A has the neutral element e, then A is idempotent at e. Similarly, if A
has the annihilator a, then A is idempotent at a. Thus, 0 and 1 are idempotent elements for each
aggregation operator, called trivial idempotent elements.

Example 5. The arithmetic mean AM, the geometric mean GM, the operator Min, the operator Max, and the
projection operator Pk are average (idempotent) aggregation functions. Ac is not an average (idempotent)
aggregation operator, but has the idempotent elements 0, 1, c where c ∈ [0, 1].

Remark 3. In multi-criteria decision-making problems, idempotency (averaging) means if all criteria
(or decision-makers) are satisfied at the same degree like x, then the global score should be x.

Triangular Norms and Conorms

Triangular norms and conorms, or t-norms and t-conorms in brief, are well-known examples
of conjunctive and disjunctive aggregation operators with the neutral elements e = 1 and e = 0,
respectively, that are associative and commutative.

Definition 4. ([4]) A binary operation T : [0, 1]2 → [0, 1] is called a triangular norm or t-norm if it is
symmetric, associative, non-decreasing function and satisfies the boundary condition T(x, 1) = x, ∀x ∈ [0, 1].
A binary operation S : [0, 1]2 → [0, 1] is called a triangular conorm or t-conorm if it is symmetric, associative,
non-decreasing function and satisfies the boundary condition S(x, 0) = x, ∀x ∈ [0, 1].

Example 6. TD(x1, x2) = x1 or x2 if x2 = 1 or x1 = 1 and otherwise is zero, TM(x1, x2) = min(x1, x2),
TP(x1, x2) = x1x2 and TL(x1, x2) = max(x1 + x2 − 1, 0) are some examples for t-norms where

TD ≤ TL ≤ TP ≤ TM

On the other hand, operators SD(x1, x2) = x1 or x2 if x2 = 0 or x1 = 0 and otherwise is one, SM(x1, x2) =

max(x1, x2), SP(x1, x2) = x1 + x2 − x1x2 and SL(x1, x2) = min(x1 + x2, 1) are t-conorms such that

SM ≤ SP ≤ SL ≤ SD

2.2. Properties of Aggregation Functions

The algebraic and analytic properties of an arbitrary n-ary real functions, such as continuity and
associativity can be naturally defined for the aggregation function A : [0, 1]n → [0, 1].

Definition 5. The aggregation function A : [0, 1]n → [0, 1], for n ∈ N, is called

1. Additive if A(x(n) + y(n)) = A(x(n)) + A(y(n)) for all x(n), y(n) ∈ In such that x(n) + y(n) ∈ In;
2. Idempotent if A(x, · · · , x) = x for all x ∈ [0, 1];
3. Symmetric if A(x1, · · · , xn) = A(xσ(1), · · · , xσ(n)) for all x(n) = (x1, · · · , xn) ∈ In where σ is any

permutation of {1, · · · , n};
4. Bisymmetric if for all xij ∈ [0, 1] where i, j ∈ {1, · · · , n} we have

A(A(x11, · · · , x1n), · · · , A(xn1, · · · , xnn)) = A(A(x11, · · · , xn1), · · · , A(x1n, · · · , xnn));
5. Strongly bisymmetric if A(x(n)) = x(n) for all x(n) ∈ In and

A(A(x11, · · · , x1n), · · · , A(xm1, · · · , xmn)) = A(A(x11, · · · , xm1), · · · , A(x1n, · · · , xmn)) for
any m, n ∈ N;

6. Associative if for all (x1, x2, x3) ∈ I3 we have A(A(x1, x2), x3) = A(x1, A(x2, x3));
7. Continuous if for any x(n) ∈ In and (xij)j∈N ∈ IN where i ∈ {1, · · · , n}, if limj→∞ xij = xi then

limj→∞ A(x1j , · · · , xnj) = A(x1, · · · , xn) or equivalently ∀ε > 0, ∃δ > 0 : if | xi − yi |< δ where
i ∈ {1, · · · , n} then | A(x1, · · · , xn)− A(y1, · · · , yn) |< ε;
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8. c-Lipschitz with respect to the norm ‖.‖ : R → [0,+∞), if for some constant c ∈ (0,+∞) we have:
| A(x(n))− A(y(n)) |≤ c‖x(n) − y(n)‖ for all x(n), y(n) ∈ In.

Example 7. It is evident that the arithmetic mean AM is an example of an additive function. Operator Π is
not idempotent. Operators AM, ∏, Min, Max, Pk, and Ac are continuous aggregation operators, which all also
fulfill the 1-Lipschitz property. Operator AM is the only aggregation function that is 1

n -Lipschitz for all n ∈ N:

1 =| AM(1, · · · , 1)− AM(0, · · · , 0) |= 1
n

n

∑
i=1
| 1− 0 |

whereas GM is an example of a continuous aggregation operator which is not Lipschitz. Aw and As are examples
of non-continuous operators.

Remark 4. Note that the symmetric property of an aggregation function reflects the same importance of single
criteria in a multi-criteria decision-making problem, i.e., knowledge of the order of input score is irrelevant.
Moreover, the bisymmetry property of an aggregation operator allows us to obtain an overall score of each
candidate according to n judges from different decision-makers based on m criteria by any two following ways.
We can first aggregate the numerical scores of each candidate over all criteria given by each decision-maker and
then aggregate these values, or we may first aggregate the scores of the candidate on the basis of each criteria and
then merge them over all decision-makers.

Example 8. AM, GM, ∏, Med, Min, Max, OWA and OWG are examples of symmetric aggregation
functions, whereas Pk and WAM are non-symmetric aggregation functions.

Remark 5. The associativity property of an aggregation function allows us to start with aggregation procedure
before knowing all inputs to be aggregated. Then, additional input can be simply aggregated with the output of
the previous aggregating step.

Example 9. Aggregation operators Aw, As, Min, Max, ∏, and Pk are examples of associative functions.
Operators Ac and GM are non-associative aggregation operators.

2.3. Construction Methods of Aggregation Functions

In aggregation operators theory, construction methods are one of the important issues that should
be addressed. There exist a large number of aggregation operators, some simple and straightforward
and some very complex, with different properties. However, finding a proper one for a specific
situation may be difficult. Sometimes the traditional operators are not suitable and experts try to
develop new aggregation functions from the existing ones. In this case, the generic problem that
should be solved is below.

Problem I. Constructing an aggregation function A ∈ A, possibly with some additional properties,
to find the best output.

To cope with Problem I, several construction methods have been discussed in literature to create
new aggregation functions. In the following sections, we review three commonly used construction
methods of aggregation functions, namely transformation, composition, and convex combination,
which answer Problem I. We also compare the type of consensus problems that can be solved by each
of them.

3. Transformation of Aggregation Functions

The idea of transformation of functions can be used to construct new aggregation functions that
inherit the algebraic and topological properties of the original aggregation functions.
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Proposition 1. Let A : In → I be an n-ary aggregation function and φ : J→ I be a monotone bijection where
I, J are real intervals. Then, Aφ : Jn → J given by

Aφ(x1, · · · , xn) = φ−1(A(φ(x1), · · · , φ(xn))) (1)

is an n-ary aggregation function on Jn.

However, the analytical properties of A such as Lipschitz property, additivity or linearity are not
be inherited by Aφ.

Observe that the transformation formula can be successfully applied to change the scale from
example In into the Jn by means of a monotone bijection φ : J→ I where J is any real interval.

If A has the neutral element e, then by applying transformation formula on scales [0, e] and
[e, 1] we can get two new aggregation operators based on A and with the neutral elements 1 and 0,
respectively. For example, let A :

⋃
n∈N[0, 1]n → [0, 1] be an aggregation function defined by

A(x1, · · · , xn) =
∏n

i=1 xi

∏n
i=1 xi + ∏n

i=1(1− xi)

with 0
0 = 0, that is an associative and symmetric aggregation function with neutral element e = 0.5.

Then, by assumption φ0 : [0, 1]→ [0, 0.5] where φ0(x) = 1
2 x we can define A[0] :

⋃
n∈N[0, 1]n → [0, 1] by

A[0](x1, · · · , xn) =
2 ∏n

i=1 xi

∏n
i=1 xi + ∏n

i=1(2− xi)

that is an associative and symmetric aggregation function with neutral element e = 1. Moreover, if we
put φ1 : [0, 1]→ [0.5, 1] where φ1(x) = x+1

2 we can define A[1] :
⋃

n∈N[0, 1]n → [0, 1] by

A[1](x1, · · · , xn) =
2 ∏n

i=1(xi + 1)
∏n

i=1(xi + 1) + ∏n
i=1(1− xi)

− 1

that is an associative and symmetric aggregation function with neutral element e = 0. Similarly, if A
has the annihilator a, then by applying transformation formula on scales [0, a] and [a, 1], we can get
two aggregation operators with annihilators 1 and 0, respectively.

3.1. Duality of Aggregation Functions

One of the most applied transformations is the duality transformation where φ(x) = 1 − x.
Applying this transformation to any aggregation operator A, the dual aggregation function Ad of A is
obtained. Indeed, duality is one of the simplest methods to develop an aggregation function on the
basis of a given one.

For any (extended) aggregation function A, the mapping Ad :
⋃

n∈N[0, 1]n → [0, 1] defined by

Ad(x1, · · · , xn) = 1− A(1− x1, · · · , 1− xn) (2)

is called the dual aggregation function of A.
Clearly, the minimum and the maximum functions are dual of each other. The operators Aw and

As are also dual of each other. Moreover, if the product function Π(x(n)) = ∏n
i=1 xi is given, then its

dual, i.e., the probabilistic sum PS(x(n)) = 1−∏n
i=1(1− xi), is also an aggregation function.

Remark 6. The aggregation operators A and Ad have the same analytical and algebraic properties, e.g., if A is
continuous or symmetric then Ad is also continuous or symmetric.

As the operators Min, Max are dual of each other, we clearly have the following result.
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Proposition 2. Let A :
⋃

n∈N[0, 1]n → [0, 1] be an aggregation operator and Ad be its dual.

• If A is average (or alternatively idempotent), then Ad is also average (idempotent).
• If A is conjunctive (disjunctive), then Ad is disjunctive (conjunctive).

Remark 7. If A has the neutral element e, then 1− e is the neutral element of Ad. Moreover, if a is the
annihilator of A, then Ad has the annihilator element 1− a.

The aggregation operator A is called self-dual (or symmetric sum) if and only if Ad = A or
equivalently for any x(n) ∈ In: A(1− x(n)) = 1− A(x(n)). The arithmetic mean AM is a well-known

example for self-dual aggregation functions, as AMd(x1, · · · , xn) = 1− n−∑n
i=1 xi
n = ∑n

i=1 xi
n . The median

operator Med and the weighted arithmetic mean WAM are also self-dual aggregation functions.
However, in general case, the most aggregation functions are not self-dual. However, there is

a technique (c.f. [28], Propositions 6 and 8) to make a self-dual function by using the average of
aggregation function A and its dual, i.e., Ad.

Proposition 3. ([28]) An aggregation operator A :
⋃

n∈N[0, 1]n → [0, 1] is self-dual if and only if there exists
an aggregation operator B such that A = B̂ where

B̂(x1, · · · , xn) =
B(x1, · · · , xn) + Bd(x1, · · · , xn)

2
(3)

and it is called the core of aggregation operator B.

According to Proposition 3, by having an aggregation function B, we can generate a self-dual
aggregation function A. For example, the arithmetic mean of Min and Max, i.e.,

A(x(n)) =
min(x(n)) + max(x(n))

2

or the arithmetic mean of product function and probabilistic sum, i.e.,

A(x(n)) =
1 + ∏n

i=1 xi −∏n
i=1(1− xi)

2

where the latter is mean value for n = 2, are two new aggregation operators that are self-dual functions.

Remark 8. Triangular norms and their dual, i.e., the class of triangular conorms, are the most important and
useful examples for the concept of duality in aggregation theory. Furthermore, as t-norms and t-conorms are
dual to each other, by condition T(x1, x2) = 1− S(1− x1, 1− x2) it will be sufficient to deal with t-norms only
and accordingly the properties of t-conorms are obtained.

3.2. Quasi-Arithmetic Means

One of the most important classes of aggregation functions generated by the transformation
formula is the quasi-arithmetic means as the transformation of AM [29]. If the arithmetic mean AM
defined by AM(x1, · · · , xn) =

1
n ∑n

i=1 xi is given and f : [0, 1]→ R is a continuous strictly monotone
function, then by (1) we can get the aggregation function AM f :

⋃
n∈N[0, 1]n → [0, 1] defined by

AM f (x1, · · · , xn) = f−1
(

AM( f (x1), · · · , f (xn))
)
= f−1

( 1
n

n

∑
i=1

f (xi)
)

(4)

that is called quasi–arithmetic mean. The function f defined in (4) is called a generator of AM f .
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The quasi–arithmetic means are averaging aggregation functions that can be considered as the
modern definition of mean value in the sense of Cauchy [37]. Therefore, they may be viewed as the
solution for the following problem.

Problem II. Constructing an averaging aggregation function A ∈ A such that Min ≤ A ≤ Max.
Clearly, the class of quasi-arithmetic means includes the most commonly useful averaging

aggregation functions, i.e., the arithmetic mean and the geometric mean. The below example provides
some well-known instances of quasi-arithmetic means generated by means of different formulas for f .

Example 10. In Equation (4),

1. if f (x) = x then AM f (x(n)) = AM(x(n)) =
1
n ∑n

i=1 xi (arithmetic mean),
2. if f (x) = x2 then AM f (x(n)) = QM(x(n)) = ( 1

n ∑n
i=1 xi

2)1/2 (quadratic mean mean),
3. if f (x) = log x then AM f (x(n)) = GM(x(n)) = (∏n

i=1 xi)
1/n (geometric mean),

4. if f (x) = 1
x then AM f (x(n)) = HM(x(n)) =

1
1
n ∑n

i=1
1
xi

(harmonic mean),

5. if f (x) = eαx where 0 6= α ∈ R then AM f (x(n)) = EMα(x(n)) = 1
α ln( 1

n ∑n
i=1 eαxi )

(exponential mean).

The following result shows the relation between quasi-arithmetic means generated by two
functions f and g.

Theorem 1. ([29]) Let f , g : [0, 1] → R be continuous and strictly monotonic functions where g is also
increasing. Then,

1. AM f ≤ AMg if and only if g ◦ f−1 is convex.
2. AM f = AMg if and only if g ◦ f−1 is linear, i.e., g(x) = a f (x) + b where a, b ∈ R and a 6= 0.

Moreover, the next theorem talks about an axiomatization of quasi-arithmetic mean as an n-ary
aggregation function.

Theorem 2. ([25]) The function F : [0, 1]n → R is symmetric, continuous, strictly increasing, idempotent,
and bisymmetric if and only if there is a continuous and strictly monotonic function f : [0, 1]→ R such that
F := AM f is the quasi-arithmetic mean generated by f .

4. Composite Aggregation Functions

Another class of constructing methods to aggregation operators is composition over some given
aggregation functions. The main objective for applying the composition technique to aggregation
functions is to give an alternative aggregating approach when we face multi-source data. Therefore,
such technique can be addressed the following problem.

Problem III. Constructing an aggregation function A ∈ A to combine the input data that have
been merged by different techniques.

Proposition 4. ([23]) Let B : [0, 1]m → [0, 1] and Ai : [0, 1]n → [0, 1] for i ∈ {1, · · · , m} are some
aggregation functions where m, n ∈ N/{1}. Then, the composite function CB;A1,··· ,Am : [0, 1]n → [0, 1]
defined by

CB;A1,··· ,Am(x1, · · · , xn) = B(A1(x1, · · · , xn), · · · , Am(x1, · · · , xn)) (5)

is an aggregation function if and only if B is an idempotent (averaging) aggregation operator.

Note that in Equation (5), each xi is aggregated by each of the inner aggregation functions Ai,
so totally m-times.
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Remark 9. In reality, Equation (5) can be seen as a decision-making situation involving m decision-makers
where each Ai correspond to the ith expert and operator B to the head or mentor of the group.

For example, if we take B in (5) as the weighted arithmetic mean WAM with weighting
vector w(m) = (w1, · · · , wm), then the function CB;A1,··· ,Am := ∑m

i=1 wi Ai is the convex combination
of aggregation functions A1, · · · , Am. As another simple example if B := max or B := min,
then CB;A1,··· ,Am := max(A1, · · · , Am) and CB;A1,··· ,Am := min(A1, · · · , Am), respectively.

4.1. Composition over Different Source of Data

To aggregate a list of data coming from two or more different sources into a single output by
using different aggregation functions that are defined according to the type of each source of input
data, an alternative construction method is proposed in [27] to solve the following problem.

Problem IV. Constructing an aggregation function A ∈ A to combine two different types of
input data.

Proposition 5. ([27]) Let B : [0, 1]2 → [0, 1], A1 : [0, 1]n → [0, 1] and A2 : [0, 1]m → [0, 1] be some
aggregation functions where m, n ∈ N/{1}. Then, the composite function DB;A1,A2 : [0, 1]n+m → [0, 1]
given by

DB;A1,A2(x1, · · · , xn+m) = B(A1(x1, · · · , xn), A2(xn+1, · · · , xn+m)) (6)

is an aggregation operator that is called double aggregation function.

For example, in Proposition 5, let B be the median operator Med. Then, the function DB;A1,A2

given by (6) is the average value of aggregation functions A1 and A2, i.e., DB;A1,A2 := A1+A2
2 is the

arithmetic mean of functions A1 and A2.

Remark 10. The main difference between aggregation functions given in (5) and (6) is in the domains of inner
aggregation functions. In (6), each input xj from the initial list of data is aggregated by only one of the inner
aggregation functions Ai. However, in (5), each input xj is aggregated by each of the inner aggregation functions
Ai. Thus, Proposition 5 allows us to aggregate a list of data coming from two or more different sources into a
single output based on different aggregation functions that are defined according to each source of data.

The Proposition 5 can be generalized for aggregation of m lists of inputs x1, · · · , xm by
an aggregation function DB;A1,··· ,Am : [0, 1]n → [0, 1] given by DB;A1,··· ,Am(x1, · · · , xm) =

B(A1(x1), · · · , Am(xm)) where for each i ∈ {1, · · · , m}: xi ∈ [0, 1]ni , ∑m
i=1 ni = n and the outer

and inner aggregation functions are defined by mappings B : [0, 1]m → [0, 1] and Ai : [0, 1]ni → [0, 1].

4.2. Composition over Sub-Groups of Data

An interesting composition method of aggregation functions was recently proposed in [38].
This method can help handle the problem of partial agreement (not necessarily the full agreement)
when α number of total n criteria or decision-makers are sufficient to reach consensus. The aim of this
method is to overcome the following difficulty.

Problem V. Constructing an alternative aggregating approach in multi-criteria decision-making
problems with n arguments where any possible list of α ≤ n arguments (not necessarily all n arguments)
can affect the final decision at the consensus level α.

Before giving the explanation of this method, first, let X = {x1, · · · , xn} be the universal set of
n elements and Cn,α stands for α-combination operator of n where Ci

n,α{x1, · · · , xn} represents the
ith α-combination from the set X. We apply the operator Cn,α for the index set I = {1, · · · , n} to
cut-off I into the different subsets Ii ⊆ I with cardinality | Ii |= α such that Cn,α(I) = {I1, · · · , Ik},
where for i = 1, · · · , k: Ii shows the ith α-combination of I. By using the permutation operator
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σ∗ : {1, · · · , k} → {1, · · · , k}, we rearrange the collection Cn,α(I) to provide a lexicographical order
on Cn,α(I).

For any extended aggregation functions A, B we can define an aggregation function Fα;B,A :⋃
n∈N[0, 1]n → [0, 1] by the following theorem.

Theorem 3. ([38]) Let A, B :
⋃

n∈N[0, 1]n → [0, 1] be two (extended) aggregation functions. The function
Fα;B,A :

⋃
n∈N[0, 1]n → [0, 1] given by

F(n)
α;B,A(x1, · · · , xn) = B(k)

(
A(α)(Cσ∗(1)

n,α {x1, · · · , xn}), · · · , A(α)(Cσ∗(k)
n,α {x1, · · · , xn})

)
: n ∈ N (7)

is an (extended) aggregation operator called combination operator-based aggregation function of degree α where
α ∈ {1, 2, · · · , n} and k = n!

α!(n−α)! is the binomial coefficient.

In Theorem 3, for any 1 ≤ i ≤ k we have the sequence Cσ∗(i)
n,α {x1, · · · , xn} = (xιi,σ(1) , · · · , xιi,σ(α))

that traverses the ith α-combination of the set {x1, · · · , xn} in the lexicographical order of Cn,α(I) such
that for any j, ιi,σ(j) is strictly smaller than ιi,σ(j+1).

Thus, we first apply the operator A for aggregating any α-element selection of the set {x1, · · · , xn},
and then use the operator B to combine these obtained values into an unique output.

Example 11. Take the aggregation functions B := max and A := min. If n = 4 and α = 3, then the
aggregation operator F(4)

3;max,min : [0, 1]4 → [0, 1], defined by

F(4)
3;max,min(x1, x2, x3, x4) = max

(
min(x1, x2, x3), min(x1, x2, x4), min(x1, x3, x4), min(x2, x3, x4)

)
first combines pessimistically any 3-member selection over the alternatives x1, x2, x3 and x4 and then merges
them optimistically to get the overall result.

By changing the aggregation operators A, B, we can get different classes of aggregation operator
F(n)

α;B,A. For example, let n = 3 and α = 2. If B := max and A := min, then

F(3)
2;max,min(x1, x2, x3) = max

(
min(x1, x2), min(x1, x3), min(x2, x3)

)
= Med(x1, x2, x3)

If A = B := AM, then

F(3)
2;AM,AM(x1, x2, x3) =

1
3
(

x1 + x2

2
+

x1 + x3

2
+

x2 + x3

2
) =

∑3
i=1 xi

3
= AM(x1, x2, x3)

If A = B := Π, then

F(3)
2;Π,Π(x1, x2, x3) = (x1x2) · (x1x2) · (x2x3) = Π3

i=1x2
i

That are not, of course, new operators.

5. Aggregating of Weighted Input

An important factor to handle aggregating problem of input data with different importance is
weights. Indeed, the correspondence weighting vector w(n) = (w1, · · · , wn) to such input values
x1, · · · , xn can be understood as the vector of cardinality of each input xi where wi > 0 for i = 1, · · · , n.
If ∑n

i=1 wi = 1, then w(n) is called the normal weighting vector.
Thus, the aggregation function over weighted data contributes to solve the following problem.
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Problem VI. Constructing an aggregation operators Aw ∈ A that permit to consider different
weights of the sources or data where in fact,

Aw(x1, · · · , xn) = A(x1, · · · , x1︸ ︷︷ ︸
w1

, · · · , xn, · · · , xn︸ ︷︷ ︸
wn

)

To aggregate a list of weighted input values, there are two main methods: (1) using the weighted
aggregation operators defined naturally based on the weighting vector, such as weighted arithmetic
mean, or (2) applying some techniques like weighted quasi-arithmetic means and weighted rule
proposed based on a convex combination in [39] to produce a weighted aggregation operator based on
unweighted one.

However, in both methodologies the identification of weights is an interesting topic. In practice,
there is no unique strategy to find the associated weighting vector w(n). Sometimes, these weights
are given by the decision-makers or mentors involved in the decision-making problem based on their
knowledge, information, and past experiences. The weighting vector can be also determined by a
fuzzy linguistic quantifier function Q : [0, 1]→ [0, 1] based on the formulation wi = Q( i

n )−Q( i−1
n ) for

all i = 1, · · · , n, where the definition of Q may be changed from one case to another one [9,10,40–43].
For example, the case “Q:=most”, where “most” is interpreted as 60% of all data, may be defined by

Qmost(z) =


0 if z ≤ 0.2
z−0.2

0.4 if 0.2 < z < 0.6
1 if z ≥ 0.6

(8)

that means if at least 60% of some elements satisfy a property, then most of them certainly (to degree 1)
satisfy it, when less than 20% of them satisfy it, then most of them certainly do not satisfy it (satisfy
to degree 0). If between 20% and 60% of them satisfy it, more of them satisfy it, computed by the
given formula.

5.1. Weighted Aggregation Functions

The weighted arithmetic mean defined by

WAM(x1, · · · , xn) =
n

∑
i=1

wixi

and weighted geometric mean defined by

WGM(x1, · · · , xn) =
n

∏
i=1

xi
wi

are the most commonly used operators to compute the aggregating of weighted input such that the
weighting vector w(n) = (w1, · · · , wn), where wi ≥ 0 and ∑n

i=1 wi = 1, shows the importance degrees
of xis.

Ordered weighted average (OWA) operator [9,33], which is calculated based on the arithmetic
mean, and ordered weighted geometric (OWG) operator [10], which is formulated based on the
geometric mean, are other two important aggregation operators for weighted input where the
position/order of input has the weight rather than their sources.

The ordered weighted average (OWA) operator is defined by

OWA(x1, · · · , xn) =
n

∑
i=1

wixσ(i)
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where σ is a permutation on {1, · · · , n} and xσ(i) is the ith largest element among x1, · · · , xn. Indeed,
OWA opeartor is a revised version of WAM operator, where the reordering step of the OWA operator
is carried out to assign the weight wi to the ith place/location not ith value. Similarly the ordered
weighted geometric (OWG) operator is defined by

OWG(x1, · · · , xn) =
n

∏
i=1

xσ(i)
wi

Remark 11. Note that

• If w1 = 1 and wi = 0 else, then OWA := Max and OWG := Max;
• If wn = 1 and wi = 0 else, then OWA := Min and OWG := Min;
• If wi =

1
n , then OWA := AM and OWG := GM;

• If n is odd, w n+1
2

= 1 and wi = 0 else, then OWA := Med and OWG := Med;

• If n is even, w n
2
= w n

2 +1 = 1
2 , and wi = 0 else, then OWA := Med.

According to Remark 11, the ordered weighted averaging (OWA) operator is a useful aggregation
technique, which provides a family of aggregation operators including the maximum, the minimum,
the median, and the mean value. Especially, the role of OWA weights is very important to determine
the type of aggregation to be performed. This has been motivated researchers to extend the OWA
operator for a wide range of applications. For instance, Sang and Liu [44] considered the parametric
form of a new type of OWA operator, called most preferred ordered weighted average (MP-OWA)
operator, to deal with the uncertainty preference information where the weighting vector is determined
based on the preferences information between arguments. Liu et al. [45] presented the probabilistic
ordered weighted continuous extension of OWA operator. Recently, in [46], Yager proposed a solution
to the problem of finding weights when we have a probability distribution over the argument values.

However, the main disadvantage of OWA and OWG operators is ignoring the importance of given
arguments x1, · · · , xn for calculating the aggregated value. That is why they were extended into the
induced OWA (or IOWA) operator in [41], and induced OWG (or IOWG) operator in [21], respectively.
The IOWA operator, introduced by Yager and Filev [41], and the IOWG operator, given by Xu and
Da [21], are two important extensions of operators OWA and OWG, respectively, to bridge the gap of
weighted input arguments that is not mentioned in OWA and OWG.

The IOWA operator is defined by

IOWA(〈u1, x1〉, · · · , 〈un, xn〉) =
n

∑
j=1

wjyj (9)

and IOWG operator is defined by

IOWG(〈u1, x1〉, · · · , 〈un, xn〉) =
n

∏
j=1

yj
wj (10)

where yj is the value of xi that has the jth largest ui, and ui in 〈ui, xi〉 is referred to as the weight
of variable xi. The weights w1, · · · , wn such that ∑n

i=1 wi = 1 are the associated weights to the
IOWA and IOWG operators. Here, the reordering step of xis is carried out by the variable ui rather
than the value of xi, using in OWA and OWG. Therefore, the collection x1, · · · , xn is reordered as
〈max{ui}, y1〉 ≥ · · · ≥ 〈min{ui}, yn〉.

However, these extensions have the inherent limitations from OWA operator and OWG operator,
concerning the determination of associated weighting vector w(n) for IOWA and IOWG operators.

More extensions of operators OWA, OWG, IOWA, and IOWG have been discussed to aggregating
data with fuzzy and vague information (c.f. [11,12,15,16,18,20]).
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The weighted minimum and the weighted maximum are also commonly used classes of
aggregation operators, discussed first in [47], dealing with objects having non-negative weights
w1, · · · , wn such that maxn

i=1 wi = 1. Using the concept of possibility and necessity of fuzzy events,
Dubois and Prade [47] proposed the following operators, the so-called the weighted disjunction and
weighted conjunction, to interpretation the weighted maximum and weighted minimum,

WMax(x1, · · · , xn) =
n

max
i=1

min(wi, xi) (11)

and

WMin(x1, · · · , xn) =
n

min
i=1

min(1− wi, xi) (12)

where maxn
i=1 wi = 1.

5.2. Weighted Quasi–Arithmetic Means

By taking the weighted arithmetic mean WAM = ∑n
i=1 wixi, where wi ∈ [0, 1] and ∑n

i=1 wi = 1,
in Equation (4) we get the weighted quasi-arithmetic mean as below.

WAM f ,w(x1, · · · , xn) = f−1
( n

∑
i=1

wi f (xi)
)

(13)

Obviously, if f (x) = x or f (x) = log x, then we have the weighted arithmetic mean WAM and the
weighted geometric mean WGM, respectively.

Theorem 4. ([25]) The function F : [0, 1]n → R is symmetric, continuous, strictly increasing, idempotent,
and bisymmetric if and only if there is a continuous and strictly monotonic function f : [0, 1] → R and real
numbers w1, · · · , wn ∈ [0, 1] where ∑n

i=1 wi = 1 such that F := WAM f ,w is the weighted quasi-arithmetic
mean generated by f .

If p : [0, 1] → R+ is a positive-valued function, then the n-ary function M : [0, 1]n → [0, 1]
defined by

M(x1, · · · , xn) =
∑n

i=1 p(xi)xi

∑n
i=1 p(xi)

(14)

is an averaging aggregation function, called mixture operator, that is a generalization of WAM [48,49].
However, the monotonicity of mixture operators are not clear. There are some sufficient conditions
ensuring the monotonicity of such operators discussed in [48]. If p : I → R+ is a non–decreasing
differentiable function, then the next two conditions,

1. p(x) ≥ p′(x) · l(I) for all x ∈ I where l(I) is the length of the interval I;
2. p(x) ≥ p′(x) · (x− inf I) for all x ∈ I.

For example, if p : [0, 1] → R+ is given by p(x) = x + 3/4. Then, the function M : [0, 1]2 → [0, 1]
defined by (14) is an idempotent aggregation function.

By using (13), the quasi-mixture operator generated by f with weight function p is the aggregation
function M f ,p : [0, 1]n → [0, 1] defined by

M f ,p(x1, · · · , xn) = f−1
(∑n

i=1 p(xi) f (xi)

∑n
i=1 p(xi)

)
. (15)

We can also consider the weighted version of given method in Theorem 3 by using weighted
quasi-arithmetic mean formula in (13) as the following.
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Definition 6. Let for any n ∈ N, w(n) = (w1, · · · , wn) ∈ [0, 1]n be an n-dimensional weighting vector for a
list of n arguments x1 · · · , xn, such that ∑n

i=1 wi = 1.
To determine the relevant weights for all k possible α-combinations of {x1 · · · , xn}, where k = (n

α), the k× α

weighting matrix Uα is constructed, where for each i ∈ {1, · · · , k}, the row vector ui = (ui,1, · · · , ui,α) ∈
[0, 1]α from the matrix Uα is defined by

ui :=
wi

∑α
j=1 wιi,σ(j)

(16)

if ∑α
j=1 wιi,σ(j) 6= 0 and else ui = 0 such that wi = (wιi,σ(1) , · · · , wιi,σ(α)) ∈ [0, 1]α is a subsequence of

w(n) = (w1, · · · , wn) corresponding to the ith α-combination of x1, · · · , xn.

The next theorem provides a new class of the weighted quasi-arithmetic mean approach so-called
w-weighted quasi-arithmetic mean combination operator-based aggregation functions.

Theorem 5. ([38]) Suppose that w(n) = (w1, · · · , wn) ∈ In be an n-dimensional rational weighting vector.
Let A, B :

⋃
n∈N In → I be (extended) aggregation functions, where B is idempotent and continuous and

A := WAM f by means of a continuous monotone function f : [0, 1] → [−∞,+∞]. If Uα is the weighting
matrix, then function WFα;B, f :

⋃
n∈N In → I given by

WF(n)
α;B, f 〈(x1, · · · , xn), w(n)〉 = B(k)

(
WAM f 〈C

σ∗(1)
n,α {x1, · · · , xn}, u1〉, · · · ,

WAM f 〈C
σ∗(k)
n,α {x1, · · · , xn}, uk〉

)
; n ∈ N (17)

is an idempotent continuous n-array function that is called w-weighted quasi arithmetic mean combination
operator-based aggregation function.

Example 12. Let B :
⋃

n∈N[0, 1]n → [0, 1] be the arithmetic mean AM.
If f := x then

WFα;AM, f 〈(x1, · · · , xn), w(n)〉 =
1
k

k

∑
i=1

α

∑
j=1

ui,j · xιi,σ(j)

If f := log x then

WFα;AM, f 〈(x1, · · · , xn), w(n)〉 =
1
k

k

∑
i=1

α

∏
j=1

xιi,σ(j)
ui,j

where for each i = 1, · · · , k: ui,j =
wιi,σ(j)

∑α
j=1 wιi,σ(j)

and ∑α
j=1 wιi,σ(j) 6= 0.

5.3. Weighted Rule Based on a Convex Combination

How to modify an unweighted scoring rule to apply for arguments with different importance
degrees motivated authors in [39] to present a technique for extending an n-ary rule to its weighted
version where the proposed method answers the following question.

Problem VII. Constructing aggregation operators Aw ∈ A based on a convex combination of
unweighted aggregation operators.
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Theorem 6. ([39]) For every unweighted rule, f there exists a weighted rule that is based on f , compatible,
and locally linear. If σ is a permutation that orders the weights as follows, wσ(1) ≥ · · · ≥ wσ(n) and
wn+1 = 0, then

fw(x1, · · · , xn) =
n

∑
i=1

i · (wσ(i) − wσ(i+1)) · f (xσ(1), · · · , xσ(i)) (18)

is a weighted rule based on f .

Then, they proved that if an unweighted rule f is continuous (or monotonic, strictly monotonic,
idempotent), then the corresponding weighted rule fw is continuous (monotonic, strictly monotonic,
and idempotent) as well. They also showed that ∑n

i=1 i · (wσ(i) − wσ(i+1)) = ∑n
i=1 wi = 1 where

wσ(1) ≥ · · · ≥ wσ(n) and wn+1 = 0.

Corollary 1. Corresponding to any aggregation function A, there exists a weighted aggregation function Aw

based on the weights w1, · · · , wn defined by

Aw(x1, · · · , xn) =
n

∑
i=1

i · (wσ(i) − wσ(i+1)) · A(xσ(1), · · · , xσ(i)) (19)

where wσ(1) ≥ · · · ≥ wσ(n) and wn+1 = 0.

For example, if A := min or A := max then the weighted minimum and the weighted maximum
can be defined as below, respectively.

minw(x1, · · · , xn) =
n

∑
i=1

i · (wσ(i) − wσ(i+1)) ·min(xσ(1), · · · , xσ(i)) (20)

and

maxw(x1, · · · , xn) =
n

∑
i=1

i · (wσ(i) − wσ(i+1)) ·max(xσ(1), · · · , xσ(i)) (21)

Remark 12. Using discussed constructing methods in previous sections as the underlying formula, we can
provide some more new classes of aggregation operators based on the given technique in (18).
For example, combining formulas given by Equations (7) and (20), we can get a weighted version of Example 11
as below.

F(n)
α;max,minw

(x1, · · · , xn) =
k

max
i=1

{ α

∑
kj=1

j · (uσ(j) − uσ(j+1)) ·min(xσ(1), · · · , xσ(j))
}

(22)

Example 13. Reconsider Example 11 where B := max and A := minw. Take the weighting vector w(4) =

(w1, w2, w3, w4) such that wi ∈ [0, 1], ∑4
i=1 wi = 1, w1 ≥ w2 ≥ w3 ≥ w4 and w5 = 0. Then, using (22),

the aggregation operator F(4)
3;max,minw

: [0, 1]4 → [0, 1] can be defined as below.
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F(4)
3;max,minw

(x1, x2, x3, x4) = max
(
(

w1

∑3
i=1 wi

− w2

∑3
i=1 wi

)x1 + 2(
w2

∑3
i=1 wi

− w3

∑3
i=1 wi

)min{x1, x2}

+ 3
w3

∑3
i=1 wi

min{x1, x2, x3}, (
w1

∑4
i=1,i 6=3 wi

− w2

∑4
i=1,i 6=3 wi

)x1 + 2(
w2

∑4
i=1,i 6=3 wi

− w4

∑4
i=1,i 6=3 wi

)min{x1, x2}

+ 3
w4

∑4
i=1,i 6=3 wi

min{x1, x2, x4}, (
w1

∑4
i=1,i 6=2 wi

− w3

∑4
i=1,i 6=2 wi

)x1 + 2(
w3

∑4
i=1,i 6=2 wi

− w4

∑4
i=1,i 6=2 wi

)min{x1, x3}

+ 3
w4

∑4
i=1,i 6=2 wi

min{x1, x3, x4}, (
w2

∑4
i=2 wi

− w3

∑4
i=2 wi

)x2 + 2(
w3

∑4
i=2 wi

− w4

∑4
i=2 wi

)min{x2, x3}

+ 3
w4

∑4
i=2 wi

min{x2, x3, x4}
)

6. Discussion

This study presents an overview of three constructing methods to aggregation functions,
namely, transformation, composition, and convex combination, and their applications in group
decision-making problems.

The following example compares the effect of choosing different aggregation methods on final
result of aggregating data in a decision-making problem.

Example 14. (Student evaluation based on the academic report) To evaluate the students’ academic performance
based on their final courses’ marks where all courses have the same importance degree the mean value operator
AM can be applied simply.

Let us suppose that four students are evaluated based on their final marks, that are calculated from 0 to 10,
in three different courses as shown in Table 1 where their marks are divided by 10.

Table 1. Evaluation of students by AM.

Course 1 Course 2 Course 3 AM

Student 1 0.9 0.5 0.7 0.7
Student 2 0.7 0.7 0.7 0.7
Student 3 0.5 0.6 0.4 0.5
Student 4 0.85 0.7 0.5 0.68

According to Table 1, Student 1 and Student 2 have the best performance among all 4 students. As AM is
a self-dual aggregation function, to find out the degree of failure of each student we only need to compute the
1− AM. This means that student 3 by the highest failure degree 0.5 has the worst performance.

Now let these courses have different weights as w(3) = (0.3, 0.5, 0.2). Therefore to compare the achievement
of students we must use the WAM operator rather that AM.

By Table 2, it is easy to see that in this case Student 4 has better performance.

Table 2. Evaluation of students by WAM.

Course 1 Course 2 Course 3 WAM0.3 0.5 0.2

Student 1 0.9 0.5 0.7 0.66
Student 2 0.7 0.7 0.7 0.7
Student 3 0.5 0.6 0.4 0.53
Student 4 0.85 0.7 0.5 0.705

In the next step, suppose that the correlation between students’ achievement and examination timetable is
being studied where the weighting vector w(3) = (0.3, 0.5, 0.2) has been devoted based on the courses’ exam
date in the examination schedule.
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As shown in Table 3, in this case, Student 1 has the best performance during the examination week based
on aggregating operator IOWA.

Table 3. Evaluation of students by IOWA.

Course 1 Course 2 Course 3
IOWAFirst Exam Third Exam Second Exam

0.3 0.2 0.5

Student 1 0.9 0.5 0.7 0.72
Student 2 0.7 0.7 0.7 0.7
Student 3 0.5 0.6 0.4 0.47
Student 4 0.85 0.7 0.5 0.645

Let us now consider more challenging case where only 2 courses of these three courses are enough to evaluate
the performance of students. In this case, we use the hybrid operator F(3)

2;Max,WAM to find the overall score of
each student.

Thus according to Table 4, Student 1 has the best record during the examination week.

Table 4. Evaluation of students by F(3)
2;Max,WAM.

Course 1 Course 2 Course 3
F(3)

2;Max,WAM0.3 0.5 0.2

Student 1 0.9 0.5 0.7 0.82
Student 2 0.7 0.7 0.7 0.7
Student 3 0.5 0.6 0.4 0.56
Student 4 0.85 0.7 0.5 0.75

7. Conclusions

In decision situations, aggregating for reaching to consensus is one of the most important steps
before taking the final action. This means that the used aggregating method affects the final solution.
Different aggregating techniques have been discussed in literature; however, the most useful one is
aggregation functions. In this paper, we have recalled properties and classification of aggregation
functions. Some construction methods to generate new aggregation operators based on the existing
ones have been also reviewed. Based on their characteristics, these techniques are classified into
the following three groups; (1) transformation (which can produce linear transformation and dual
of aggregation functions), (2) composition (that can cope with the problem of multi-source data),
and (3) weighted rule of aggregation operators based on their convex combination (which permits data
with different importance degrees). Especially, we have focused on the applications and consensus
problems that may be handled by each of these methods. We also briefly discussed the differences
between them by a comparative example.

Moreover, to develop new aggregation operators in future research, this overview gives an insight
to the researchers. However, it is observed that, to date, many efforts have been made to develop
aggregation functions theory, there are some gaps that need to be discussed by researchers in the
future. For instance, there exist situations with multi-source data where some of the input information
is dynamic or not complete that means the aggregating progress over each source can be dynamic
or partial (such as negotiation process in management level). Composition of aggregation functions
over different sub-groups of data where there are some incomplete/missing information may be the
solution that can be discussed in another paper.
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