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Abstract: Symmetric in-plane compression of a pantographic lattice structure is modelled and
simulated, and the results are compared to previously available experimental data. Said experimental
results had shown a peculiar behaviour: depending on the fiber density, the deformed shape could
present either one or two swellings under compression. The present article is a preliminary modelling
attempt aiming at capturing that behaviour numerically.
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1. Introduction

1.1. Generalised Continua and Their Use to Model Pantographic Structures

Generalised continua have been studied for the past decades [1–5], and have been used more
recently to model the mechanical behaviour of pantographic structures [6,7]. They are indeed a typical
example of structures that may be modelled as discrete [8–12] or semi discrete [13] systems, which may
also be homogenised into second gradient continua [14–16]. Those modelling processes may involve
extensional and bending elements [17–20], generalised shells theory [21–23], surface elasticity [24,25],
or second gradient continua theory [26–28]. More specifically, second gradient models raised some
mathematical challenges [29,30], and their study needed the interaction between analytical parameters
identification [31,32] and numerical simulation [33–37], while taking into account the fibers constituting
the pantographic lattice [38–43].

1.2. Model-Driven Design and Synthesis of Pantographic Structures

Pantographic structures are an example of so-called metamaterials [44,45], i.e., they are the result
of a model-driven design: given a set of equations, pantographic structures were synthesised in
order to follow the very behaviour that is defined by those starting equations. Here, the considered
theoretical behaviour is that of an elastic material whose deformation energy may depend only on
strain gradient under certain conditions. In other words, pantographic structures are an answer to the
synthesis problem of a material that may be modeled as a second gradient continuum.

As a consequence of the peculiar origin of pantographic structures, their study needs a synergy
between: first, the starting theoretical model; second, the numerical modelling and simulation of that
theoretical model; and last, the manufacturing of, and experimental tests on, real specimen. Regarding
that last aspect, studies have been made to understand the influence of certain 3D-printing processes and
constitutive materials [46–49] on the mechanical behaviour of the resulting specimena [50]. Other studies
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focused on how the design of different mechanical elements inside the structure may affect their global
behaviour [51]. Those studies considered different scales, from micrometers [52] to millimetres [53],
as well as how the different behaviours at different scales may be linked [54,55]. Studying those various
scales involved new methodologies which have been developed for the (micro)mechanics of granular
media [56–58]. The experimental studies yielded interesting results, such as the ability of pantographic
structures to deform elastically for high deformations and how their qualitative behaviour does not
depend on their constitutive material [59]. New phenomena have also been observed, like a reversed
Poynting effect [60] which led to less known features of the model. There were also advances in the
damage mechanics of pantographic structures: their damaging was proven to be highly dependent
on their geometry and material properties [61], and their overall resistance to damage was studied
by enhanced elastic models [8]. Future prospects concerning the experimental study of pantographic
structures involve the promising use of digital image correlation (DIC) techniques as a way to improve
the synergy needed for model-driven design [62]. Regarding recent numerical results, pantographic
structures have been modelled using finite elements at macroscopic [12] and mesoscopic scales, by using
differently built meshes [45,63].

1.3. Out-of-Plane and In-Plane Compression of Pantographic Fabrics

In this article, we want to continue these lines of investigations, by attempting the modelling of
in-plane compression of thick polyamide pantographic fabrics. Previous litterature in pantographic
has extensively dealt with their tensile behaviour [9,38,39]. Further experimental evidence concerned
their compresssion behaviour, originating locally in shear tests [8,64]. In such cases, only two layers of
fibers were employed and the thickness of the pantographic fabrics was not predominant with respect
to other total specimen dimensions. In those cases, cross-section of fibers constituting pantographic
fabrics had a very small out-of-plane bending rigidity with respect to the in-plane one. This was due to
their low (out-of-plane) thickness. Therefore, pure in-plane compression could not be observed.

By increasing the out-of-plane thickness of the constituting fibers, we avoid out-of-plane buckling,
and are able to perform for the first time a purely in-plane compression test. Those experimental results
are described in the present work, and a preliminary numerical investigation is reported.

1.4. Plan of the Present Work

The plan of the paper is the following. In Section 2, the main features of the used strain gradient
continuum model are recalled, as well as its numerical modelling using finite elements. More specifically,
a linear model for small perturbations is presented and adpated to higher deformations, by introducing
several parameters whose values are to be determined by a numerical-experimental comparison.

In Section 3, the available experimental specimena are presented along the data that are considered
to fit the theoretical model.

In Section 4, the different steps of the model fitting are described. Using force-displacement graphs
and boundary shapes to quantitatively and qualitatively compare the numerical and experimental
results, the model parameters are identified and the final model is discussed.

Section 5 summarises the work and gathers the relevant results, before ending with future
propspects on how to further the presented work.

2. Mathematical and Numerical Modelling of Pantographic Structures

In this section the general theoretical framework that will be used to model the studied pantographic
structures is presented. The elastic behaviour of the studied pantographic sheet is modeled as a strain
gradient continuum. This model does not describe each fiber separately, but considers the global
homogenised behaviour instead. We first recall the key features of that model, before presenting its
numerical modelling by the finite elements method.
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2.1. Geometrically Non Linear Second Gradient Elasticity Model

The reference configuration of the studied system is represented by an open domain B0 ⊂ R2,
its boundary ∂B0 (edges) and the boudary of its boundary ∂∂B0 (wedges). More specifically, B0 is
a rectangle, due to the considered geometry (see Section 3). We consider an orthonormal basis

(
e1, e2

)
of B0. Any generic element of B0 will be noted X = (X1, X2) (only tensor notations are used, but they
may also represent the associated vector, linear map or matrix in the basis

(
e1, e2

)
).

2.1.1. Kinematics

For all t ∈ ]0, T], we define the placement χ as:

χ( · ; t) : B0 → R2

X 7→ χ(X; t)

and the respective current configurations Bt = χ(B0; t). We also define the displacement u(X; t) =
χ(X; t) −X. The placement is assumed to be of class C1 and locally affine. Its gradient will be noted

F( · ; t) = ∇χ( · ; t), so that the Green–Lagrange strain tensor may be expressed as G = 1
2

(
Ft
·F− I

)
.

For the sake of notation simplicity and unless specified otherwise, we will now fix a time parameter
t ∈]0, T] and will no longer write it explicitly.

2.1.2. Potential Energy

We define a potential energy functional E taking the displacement field u as its argument.
It accounts for both internal and external effects; formally:

E(u) = Eint(G,∇G) −Wext(u,∇u)

External Work

Wext is the external work. Introducing the surface body force bext, the linear contact force text and
double force τext, and the vertex forces f ext

i
, the external work may be rewritten as:

Wext(u,∇u) =
∫
B0

(
bext
·u

)
dS +

∫
∂B0

(
text
·u + τext

·(∇u)·n
)

dl +
∑

i

(
f ext

i
·u

)
Strain Energy—Linear Elasticity

Eint is the elastic deformation energy. It depends on the strain tensor G and its gradient ∇G.
We define its density U as follows:

Eint(G,∇G) =

∫
B0

U(G,∇G)dS

The studied pantographic structure is made of two families of beams. It is thus orthotropic,
the two privileged directions being those of each family. Moreover, the peculiar geometry of the model
makes it invariant for a π/2 rotation, as well as for a mirror reflection. That is to say, it is invariant for
the D4 symmetry group.

Under orthotropy and D4 symmetry hypotheses, [65] gives the following expression for the
linearised strain gradient deformation energy (here, [·] denotes square matrices, 〈·〉 row matrices and
{·} column matrices):

U(G,∇G) = Û(ε, η) =
1
2

〈
εT

〉
[C]{ε}+

1
2

〈
ηT

〉
[A]

{
η
}



Symmetry 2020, 12, 693 4 of 17

where the row matrix
〈
εT

〉
gathers the values of the linearised strain tensor ε = εi j

(
ei ⊗ e j

)
:〈

εT
〉
=

〈
ε11, ε22,

√

2 ε12
〉〈

ηT
〉
=

〈
ε11,1, ε22,1,

√

2 ε12,2, ε22,2, ε11,2,
√

2 ε12,1
〉

and the matrices are defined as:

[C] =


c11 c12 0
c12 c11 0
0 0 c33

, [A] =

[
[A3×3] [0]
[0] [A3×3]

]

where [A3×3] =


a11 a12 a13

a12 a22 a23

a13 a23 a33


For the linearised case, Placidi et al. [32] derived the values of the [C] and [A] matrices using

analytical solutions. They obtained the form:

[C] = clin


1 0 0
0 1 0
0 0 0

, [A3×3] = alin


0 0 0
0 1 −

√
2

0 −
√

2 2


where alin and clin (“lin” for “linear case”) depend on the geometry and stiffness of the fibers, as well as
the density of the fabric (see [32] for the complete derivation):

clin = EmAm
dm

, alin = EmIm
dm

Em being the constitutive material’s Young modulus, Am the cross-section area, Im the second moment
of area of the cross-section, and dm the distance between two adjacent fibers of the same family.

Strain Energy—Higher Deformations

Although the previous results were derived for the linear case, the same form for the energy will
be assumed in the present work. Therefore, the deformation energy to be considered is expressed as:

U(G,∇G) = Û(ε, η) =
1
2

〈
εT

〉
[C]{ε}+

1
2

〈
ηT

〉
[A]

{
η
}

where, this time, the strain terms in 〈ε〉 and
〈
η
〉

are not linearised:〈
εT

〉
=

〈
G11, G22,

√

2 G12
〉〈

ηT
〉
=

〈
G11,1, G22,1,

√

2 G12,2, G22,2, G11,2,
√

2 G12,1
〉

and the coefficients clin, alin are substituted with parameters cnum, anum whose values should be
determined numerically, in order to fit the model with experimental results. Furthermore, the pivots are
not considered perfect, and their torsional deformation energy is taken into account by an additional
parameter c33:

[C] =


cnum 0 0

0 cnum 0
0 0 c33

, [A3×3] = anum


0 0 0
0 1 −

√
2

0 −
√

2 2


Thus, the aim is to build an elastic model for large displacements, starting from a small

perturbations model and identifying the defined parameters by fitting them from experimental data.
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2.1.3. Variational Approach

The problem to solve is derived using a variational approach. The previously defined potential
energy E(u) is assumed to be minimised for the equilibrium displacement field u. Thus, the weak form
is obtained as the stationarity condition of the potential energy.

The boundary conditions are:

• prescribed null displacement at the lower edge: u
|lower = 0

• no applied load on either side: ∂nu
|sides = 0

• prescribed displacement u0 on the upper edge: u
|upper = u0

2.2. Finite Elements Numerical Model

Function Space

Since the energy to be minimised involves the second gradient of displacement, the function space
should be in H2(B0). Thus, the chosen element type is cubic Hermite functions, in order to have C1

approximations. Moreover, the boundary conditions are taken into account as constraints rather than
in the function space.

Modelling with Software

The software Comsol is used for the numerical modelling. A rectangular geometry is defined
and meshed (see Section 4). The compresion test is then modelled as a parametric study on the
imposed displacement u0. The equilibrium is computed for each value of u0 from the results of the its
previous value.

The values of cnum, anum and c33 and their fitting is presented in Section 4, and come from the
comparison with actual compression experiments presented in Section 3.

3. Experimental Specimen

3.1. Studied Class of Pantographic Structure

The class of pantographic structures under study is a lattice made of two families of fibers.
Every fiber is parallel to the other fibers of the same family, but orthogonal to those of the other family.
Each family is planar, and the two considered families are parallel but not in the same plane, so that
there is no actual intersection between the two families. However, each family is connected to the other
one by what may be called pivots, located wherever the distance between two fibers from different
families is minimal. Furthermore, the density of fibers is constant, so that the distance between two
adjacent fibers of the same family is constant.

3.2. Modelled Specimen: Production and Characterisation

Some key elements are summarised, regarding the experimental specimen to be modelled.
The machines and procedures involved are mostly similar to those presented in [51], to which the
reader may refer for more details.

The specimen were printed using Powder Bed Fusion technology, more specifically Selective
Laser Sintering. A Formiga P100 printer by EOS was used from Warsaw University of Technology,
with EOS PA2200 polyamide powder. Every specimen was printed in horizontal configuration,
i.e., the pantographic sheets were printed parallel to the support. Each layer was 0.1 mm thick.

The fibers constituting the two printed structures had the following nominal dimensions:

• Width of beam: 0.9 mm
• Height of beam: 4 mm
• Width of pivot: 0.9 mm
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• Height of pivot: 1 mm

and the uncertainty for the actual specimen was 0.05 mm for the width and height of beams, and 0.1
mm for the height and width of pivots.

The values that are numerically implemented will be presented in the next section (Section 4).

3.3. Experimental Procedure

The compression tests were carried out using an MTS Bionix machine in Warsaw University of
Technology. One side of the specimen was fixed while the other one’s displacement was imposed with
a speed of 4 mm/min. The length of the specimen being 21 cm, the speed is around 2% of the length
per minute. The measurement sensitivities are 1 N for the force and 0.1 mm for the displacement.

Before the compression tests themselves, each specimen underwent 200 cycles alternating between
elongation and compression, in order to eliminate the powder remaining after printing. Those cycles
were made with a 1 Hz frequency and 20 mm amplitude.

The presented specimen are visible in Figure 1 in their initial state, and in Figure 2
under compression.
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Figure 1. First specimen: initial state.

3.4. Outputs of the Experiments

The experimental results were used to fit the theoretical model, each specimen having
a different purpose.

Specimen 1 was used for quantitative comparison. During its compression, the reaction force was
measured. Thus, the outputs of the first experiment were the evolution of the reaction and the imposed
displacement. Those results were then exploited to fit the numerical parameters presented in Section 2.

Specimen 2 was used for qualitative comparison. More specifically, it showed a peculiar shape
under compression (see Figure 2b), presenting two swellings, while Specimen 1 only had one swelling.
Thus, the objective of the second experiment was to verify whether the fitted theoretical model was
able to catch the shape of the specimen.

Measurement Uncertainty

Force measurement sensitivity is ∆F = 1 N. Assuming a uniform probability distribution, the type
B uncertainty is evaluated as the standard deviation σF = 1/

√
3 N.
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Thus, for a measured value Fm, the force lies in [Fm − ∆F, Fm + ∆F], and has 58% probability to be
in [Fm − σF, Fm + σF].
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4. Model Fitting and Numerical Validation

The model presented in Section 2 is now implemented using the software Comsol. We recall that
the aim of this preliminary work is to verify whether the presented model can actually be adapated to
high deformations. Thus, the following study is rather qualitative, as a more precise quantitative study
will be carried out in future works.

4.1. Numerical Parameters

4.1.1. Fixed Parameters

The numerical compression tests involved two lattices made of the same fibers having the same
geometry and made from the same constitutive material (polyamide). The common dimensions and
material properties are gathered in Table 1. Both resulting pantographic sheets had 21 cm length and
7 cm width.

Table 1. Geometry and material properties of the fibers constituting both tested structures.

Young Modulus Size of Cross-Section Cross-Section Area Second Moment of Area
Em (Pa) lm (m) Am (m2) Im (m4)

2.5× 107 1.5× 10−3 2.3× 10−6 4.2× 10−13

The only difference between those two structures was the distance between adjacent fibers of the
same family. Thus, only the density of fibers characterized each specimen.

4.1.2. Parameters to Be Fitted

The theoretical model involves three parameters cnum, anum and c33 in need of identification in
order to fit the model to the experimental results. This identification follows several steps, and uses the
compression results of the first experimental specimen:
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• begin with the linear case values: cnum = clin; anum = alin and c33 = 0
• fit c33 to experimental results (force-displacement graph)

Furthermore, once the identification is done, a qualitative comparison is made with the second
specimen’s compression, in order to verify if the right boundary shape can be rendered by the model.

4.2. First Experiment—Single Swelling

We first perform the parameter identification, using the compression of Specimen 1 (Figure 1a).

4.2.1. Without Torsional Energy

We begin with cnum and anum only, leaving a null torsional energy parameter c33.

Parameter Values

Those coefficients are derived analytically in the linear case [32]:

cnum = clin = EmAm
dm

, anum = alin = EmIm
dm

Em being the constitutive material’s Young modulus, Am the cross-section area, Im the second moment
of area of the cross-section, and dm the distance between two adjacent fibers of the same family (values
gathered in Tables 1 and 2).

Table 2. Distance dm between two adjacent fibers of the same family.

Specimen 1 2

dm (m) 7.1× 10−3 3.5× 10−3

Force-Displacement Graph Comparison

The graph resulting from the simulation is plotted in Figure 3, as well as the
experimental measurements. Measured force error-type is represented by the grey area around
the experimental graph.
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c33 = 140 N/m
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of the fibers was also defined in the numerical model, and can be seen in Figure 7.
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It is clear that the considered parameter values are not enough to predict the experimental results.
The next step is to verify whether changing the value of the torsional parameter c33 may suffice to fit
the model.

One may also notice an apparent softening phenomenon in the numerical model, around
an imposed displacement of u0 = 50 mm. This softening is also to be investigated in the next step.

4.2.2. Fitting the Torsional Parameter

Several values for c33 between 0 and 200 N/m were tested (Figure 4). The value for which the
numerical force-displacement graph seemed to be the closest to experimental data was

c33 = 140N/m

with the corresponding graph in Figure 5. The geometry and mesh of the numerical model is depicted
in Figure 6, in the initial state and for an imposed displacement of u0 = 7 cm. A graphical representation
of the fibers was also defined in the numerical model, and can be seen in Figure 7.
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The resulting model seems to agree with the experimental results until an imposed displacement
of 5 cm, that is to say a 24% deformation. At that point, there is once again an apparent softening,
beyond which the theoretical model is clearly non valid.

The actual shape of the experimental specimen at the apparent softening was investigated
to see whether a contact between fibers may have caused a difference between experimental and
numerical behaviours. However, no such contact was seen on the experimental specimen, for any
value of prescribed displacement. The numerical model was also verified for the same displacement
(Figure 8), and no such contact was seen either. Thus, the origin of this apparent softening must still be
investigated.

Now that the model is fitted, the next step is to verify whether the presence of two swellings
instead of a single one may be predicted by the model.
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The resulting model seems to agree with the experimental results until an imposed displacement
of 5 cm, that is to say a 24% deformation. At that point, there is once again an apparent softening,
beyond which the theoretical model is clearly non valid.

The actual shape of the experimental specimen at the apparent softening was investigated
to see whether a contact between fibers may have caused a difference between experimental and
numerical behaviours. However, no such contact was seen on the experimental specimen, for any
value of prescribed displacement. The numerical model was also verified for the same displacement
(Figure 8), and no such contact was seen either. Thus, the origin of this apparent softening must still
be investigated.

Now that the model is fitted, the next step is to verify whether the presence of two swellings
instead of a single one may be predicted by the model.

Symmetry 2020, xx, 5 12 of 18

Figure 8. u0 = 5 cm—Specimen 1, fitted.

4.3. Second Experiment—Two Swellings

The specimen to be modelled is depicted in Figure 1b, and its numerical counterpart in Figure 9
(with a representation of the fibers). The mesh remains the same as previously.

Figure 9. Fibers, initial state—Specimen 2, fitted.
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Parameter Values

Since the distance dm between fibers is the only quantity differing Specimen 1 and Specimen 2,
cnum and anum are recalculated with the right value of dm (see Table 2), while c33 remains the same.

Qualitative Comparison

The numerical resulting shape is depicted in Figure 10, for an imposed displacement u0 = 7 cm.
Only one swelling is visible, while the experimental results showed two of them (Figure 2b). Thus, for the
considered parameter identification, the model does not predict the right boundary shape.
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5. Conclusion and Possible Future Work

5.1. Work Done

The elastic response of a pantographic sheet to a compressive load was modelled. This behaviour
was then numerically simulated, and the parameters of the model were fitted to experimental data.

A continuous strain gradient elasticity model was used in the presented work, assuming a
quasi-static regime and a bidimensional geometry presenting a D4 dihedral symmetry. It was derived
through a variational approach, by assuming that the equilibrium point minimises the total potential
energy. This model has already been used in previous works, more specifically from [32], in a small
displacement and deformation framework. It was here adapted to higher deformation cases. Indeed,
the deformation energy was supposed to keep the same form for high deformation as for small
perturbations. It was then parametrised by coefficients to be fitted numerically to experimental
compression results.

Said fitting first involved finite elements modelling: using cubic Hermite elements to keep C1

functions, the stationary condition of the potential energy was discretised using the software Comsol.
The considered boundary conditions were imposed displacements, which were applied as constraints.
This numerical model was then simulated, the outputs being the evolution of the reaction force against
the imposed displacement, as well as the geometric shape of the boundary.

Regarding the experimental data, compression tests of two specimen were considered. Both were
3D-printed polyamide pantographic sheets, differing only by the density of fibers. Available results
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Consequently, while the model is able to render both single and double swellings, the parameter
identification still needs to be improved. This discrepancy may be due to the hypotheses on which the
parameter values were derived in [32]. More specifically, each fiber is assumed to behave as an Euler
beam; this assumption should be investigated to determine whether it may be too restritive to model
the compression of the studied lattice structure.

5. Conclusion and Possible Future Work

5.1. Work Done

The elastic response of a pantographic sheet to a compressive load was modelled. This behaviour
was then numerically simulated, and the parameters of the model were fitted to experimental data.

A continuous strain gradient elasticity model was used in the presented work, assuming
a quasi-static regime and a bidimensional geometry presenting a D4 dihedral symmetry. It was
derived through a variational approach, by assuming that the equilibrium point minimises the total
potential energy. This model has already been used in previous works, more specifically from [32],
in a small displacement and deformation framework. It was here adapted to higher deformation cases.
Indeed, the deformation energy was supposed to keep the same form for high deformation as for
small perturbations. It was then parametrised by coefficients to be fitted numerically to experimental
compression results.

Said fitting first involved finite elements modelling: using cubic Hermite elements to keep C1

functions, the stationary condition of the potential energy was discretised using the software Comsol.
The considered boundary conditions were imposed displacements, which were applied as constraints.
This numerical model was then simulated, the outputs being the evolution of the reaction force against
the imposed displacement, as well as the geometric shape of the boundary.

Regarding the experimental data, compression tests of two specimen were considered. Both were
3D-printed polyamide pantographic sheets, differing only by the density of fibers. Available results were,
quantitatively, the evolution of the measured reaction force and imposed displacement, and qualitatively
the evolution of the general shape of each specimen.

The experimental and numerical results were then compared in order to identify the parameters
of the theoretical model.

5.2. Results

First, quantitative comparisons between the numerical and experimental force-displacement
graphs led to the identification of the model’s parameters. The two parameters c and a which were
derived in [32] kept the values they had for small perturbations. The last parameter c33 was adjusted to
fit the numerical and experimental reaction force. The resulting model agrees with the experimental data
up to an imposed displacement of 5 cm, i.e., a 24% deformation. An apparent softening phenomenon is
then observed in the theoretical model, but does not correspond to any experimental data. In particular,
there was no contact between fibers during the compression tests at that displacement. This discrepancy
may be due to the hypotheses of the theoretical model. More specifically, the analytically-derived
parameters a and c were calculated by considering each fiber to behave as an Euler beam, which may
be too restrictive an assumption to properly model the lattice.

However, since this is a preliminary work, we recall that the interest of the previous results lies
not in the values themselves, but rather in the possibility of applying the presented method to adapt
a linear model to high deformation cases.

Second, a qualitative comparison of the boundary shape revealed a varying number of swellings
depending on the considered specimen or parameter values. Indeed, the denser experimental
specimen developped two swellings during its compression, while the other only had one. However,
the corresponding models showed only one swelling. Nonetheless, the theoretical model does capture
the double-swelling phenomenon for other, arbitrary parameter values. It means that, while the
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parameter identification should be investigated in order to model properly the experimental specimen,
the model itself is still able to predict the double-swelling phenomenon.

5.3. Possible Future Work

This preliminary work should be followed by more precise studies with respect to both the
experimental and numerical values.

Regarding the model, it may be interesting first to look for an analytical explanation of the varying
number of swellings, as well as why a softening appears. Second, and as said above, the parameters’
identification was made on an Euler beam hypothesis. Studying more specifically the influence of this
assumption may reveal more clearly its limits, and enable an exploration of other modelling possibilities.

Concerning the experimental aspect, the accuracy of the data may be improved by other
measurement methods, for example by using digital image correlation techniques [62]. Moreover,
a better quantification of measurement uncertainty may improve the precision of the experimental
data, thus yielding more relevant results for the numerical-experimental comparison.
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