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Abstract: We propose a symmetric method of accurately estimating the number of metro passengers 
from an individual image. To this end, we developed a network for metro-passenger counting called 
MPCNet, which provides a data-driven and deep learning method of understanding highly 
congested scenes and accurately estimating crowds, as well as presenting high-quality density 
maps. The proposed MPCNet is composed of two major components: A deep convolutional neural 
network (CNN) as the front end, for deep feature extraction; and a multi-column atrous CNN as the 
back-end, with atrous spatial pyramid pooling (ASPP) to deliver multi-scale reception fields. 
Existing crowd-counting datasets do not adequately cover all the challenging situations considered 
in our work. Therefore, we collected specific subway passenger video to compile and label a large 
new dataset that includes 346 images with 3475 annotated heads. We conducted extensive 
experiments with this and other datasets to verify the effectiveness of the proposed model. Our 
results demonstrate the excellent performance of the proposed MPCNet. 

Keywords: passengers counting; deep learning; convolutional neural network 
 

1. Introduction 

As an important means for urban public transportation, subways are facing challenges with 
regard to rapid route expansions and safety-related problems owing to an increase in passenger flow. 
Consequently, there is an urgent demand for secure methods of forecasting passenger flow using 
video surveillance. Such methods use computer vision and artificial intelligence to analyze the 
content of video sequences, and to track and detect anomalous information. There is considerable 
research on passenger flow analysis [1−3]. In works [1,2], regions corresponding to moving objects 
are detected using a background difference method. In the work [3], a detection-based strategy is 
proposed based on the heads and shoulders of detection targets to detect subway passenger flow. 
This method performs well, but it cannot be used to count the number of passengers in a subway car. 
Most of the time, passengers in subway cars remain still, yet the background difference method is 
more suited to detecting moving targets because of the need to update the background. Sometimes 
subway cars are highly crowded, as shown in Figure 1. In such cases, the algorithm proposed in the 
work [3] encounters problems of misdetections and false detections. Single-image crowd counting is 
useful for traffic management, disaster prevention, and public management. Crowd-counting 
methods aim to estimate the number of humans in surveillance videos and photos. Current methods 
of crowd counting are developed from detection-based [4−8] approaches to convolutional neural 
network (CNN)-based approaches [9−15]. This reduces counting errors caused by occlusion, because 
CNN-based approaches only target the human head. Therefore, CNN-based crowd counting 
methods are suitable for the counting dense crowds on subways.  
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Figure 1. Representative images in our crowd dataset. 

To apply a CNN-based method to counting subway passengers, we developed a methodology 
and a dataset. We designed a novel multi-column atrous CNN that uses ResNet50 [16] pre-trained 
on the ImageNet [17] dataset as the backbone of the network to extract deep features. Previous works 
[10−12] arrange the convolution layers of different convolution kernels into multiple columns to 
extract large-scale information. By contrast, we focus on using atrous spatial pyramid pooling (ASPP) 
[18−20] to extract multi-scale features. Specifically, ASPP probes an incoming convolutional feature 
layer with filters at multiple sampling rates and effective fields of view. This module consists of atrous 
convolution with four different rates in parallel to capture objects and the context in images at 
multiple scales. Unlike methods based on arranging convolution layers into columns, our method 
uses filters with multiple sampling rates to extract information at a larger scale.  

We also developed a new dataset that contains 346 images with 3475 labeled passengers for 
metro passenger analysis. The data was collected from video of Zhengzhou Metro Transportation 
(MT) Line 2, in China. Thus, we refer to it as the Zhengzhou MT dataset. Figure 1 shows 
representative images of our dataset. Compared to existing crowd-counting datasets, our dataset 
offers distinct advantages. To our knowledge, the dataset is the first one designed for counting 
passengers inside a subway car. Furthermore, due to the narrow space in the car, there is considerable 
congestion in the images. 

The contributions of this work can be summarized as follows. First, for the first time, we use a 
CNN-based crowd counting algorithm to count passengers in subway cars. Second, we designed a 
novel multi-scale architecture that extracts deep features and captures multi-scale information in 
images by using a row of atrous convolutions with different atrous rates. Third, we developed a 
dataset comprised of images of the interior of subway cars. The dataset is representative, with realistic 
images of challenging settings and crowded scenes for analysis in the field of intelligent 
transportation. 

The reminder of the paper is organized as follows. Section 2 presents recent related works. 
Section 3 provides details of our proposed metro-passenger counting network (MPCNet). 
Experimental results are given and discussed in Section 4. Finally, Section 5 concludes the paper. 

2. Related Work 

A myriad of techniques in computer vision have been proposed to deal with task of crowd 
counting. They can be roughly categorized into traditional methods and CNN-based methods.  

2.1. Traditional Methods  

Most earlier research [4−8] focus on detection-based methods, which consider a crowd as a group 
of detected individual pedestrians with a simple detection and summing process. Unfortunately, 
these detection-based methods are limited by occlusions and background clutter in crowded scenes. 
Since detection-based methods cannot be adapted to highly congested scenes, other methods [21,22] 
employ regression to learn the relations among extracted features from cropped image patches, and 
then calculate the number of particular objects. Idrees et al. [23] designed a model that fuses features 
extracted with Fourier analysis, head detection, and scale-invariant feature transform (SIFT) [24] 



Symmetry 2020, 12, 682 3 of 16 

 

interest-points-based counting in local patches. When executing a regression-based solution; 
however, spatial information in images of crowds is ignored. This can lead to inaccurate results in 
local regions. In works [25,26], a solution to this problem is proposed, with linear mapping between 
the features and object density maps in a local region. 

2.2. CNN-Based Methods  

CNN-based methods exploit density maps, owing to their success at classification and 
recognition [17,27]. A comprehensive survey of CNN-based counting approaches is given in the work 
[28]. Wang et al. [9] modified AlexNet [17] to predict counts directly. In the work [10], a simple but 
effective multi-column convolutional neural network (MCNN) is proposed that tackles large-scale 
variation in crowded scenes. Similarly, Onoro and Sastre [11] proposed a multi-scale model, called 
Hydra CNN, to extract features at different scales. Cao et al. [12] proposed an encoder–decoder 
network, called SANet, which employs scaled aggregation modules in an encoder. Their method 
improves the representation ability and scale diversity of features. Sam et al. [13] proposed 
Switching-CNN, which utilizes VGG-16 [29] as a density-level classifier to assign different regressors 
for particular input patches. Li et al. [14] proposed CSRNet[16] by combining VGG-16[29] and dilated 
convolution layers to aggregate multi-scale contextual information. Recently, Wang [15] designed 
SFCN to encode spatial contextual information based on VGG-16 [29] or ResNet-101 [16].  

Based on the research above, we found that by combining deep learning, CNN-based solutions 
are better able to perform this task, and indeed outperform traditional methods. In particular, 
networks based on AlexNet, VGG, and ResNet show excellent performance. Thus, we propose a 
network with ResNet as the front end.  

3. Proposed Method 

The fundamental idea for the proposed method is to deploy a multi-column atrous CNN to 
capture high-level features with larger receptive fields, and to generate high-quality density maps. 
In this section, we first describe the ASPP module in detail and introduce the architecture of the 
proposed method. Then, we present the corresponding training details. Finally, we describe the 
method for generating the ground truth.  

3.1. ASPP Module 

One of the critical components of our design is the ASPP module. As can be shown in Figure 2, 
the ASPP consists of a 1 × 1 convolution and three 3 × 3 atrous convolutions, where the rate = (6,12,18). 
An atrous [30] convolution can be defined as follows: 

1 1
( , ) ( , ) ( , )

L w

i j
Y l w x l r i w r j f i j

= =

= + × + × . (1) 

where Y(l,w) is the output of the atrous convolution from input x(l,w) and a filter f(i,j), L and W denote 
the length and width, respectively, and r is the dilation rate. When r = 1, an atrous convolution 
becomes a normal convolution. The ASPP has been applied to segmentation tasks, demonstrating a 
significant improvement of accuracy [18−20], and it is effective at extracting multi-scale contextual 
information. Although multi-column CNNs [10−12] are widely used for extracting multi-scale 
contextual information, they also dramatically increase the number of parameters, owing to a larger 
convolution kernel. The ASPP can extract multi-scale contextual information with atrous 
convolution, adaptively modifying a filter’s field of view by changing the rate value. With atrous 
convolution, a small-sized kernel with a k × k filter is enlarged to k + (k − 1) (r − 1) with dilated value 
r. Thus, it can flexibly aggregate the multi-scale contextual information. This characteristic enlarges 
the receptive field without increasing the number of parameters or the amount of computation. (Note: 
expanding the convolution kernel size can indeed make larger receptive fields, but doing so 
introduces more operations). 
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Figure 2. Atrous spatial pyramid pooling (ASPP). Employing a high atrous rate enlarges the model’s 
field of view, enabling object encoding at multiple scales. The effective fields of view are shown in 
different colors. 

3.2. MPCNet Architecture 

Following the work [15], we selected ResNet50 as the front end of MPCNet as shown in Figure 
3, owing to its excellent high-resolution feature-extraction capability and its flexible architecture, 
which can easily concatenate the back end to generate density maps. However, atrous convolution 
requires a large number of high-resolution feature maps. Therefore, it is necessary to extract 
advanced features through ResNet before performing atrous convolution. To do so, we reserve the 
first three residual modules in ResNet50 and build the proposed MPCNet with multi-column atrous 
convolutional layers. In this front-end network, there are 1024 output channels. If we were to continue 
to stack more residual modules, then more output channels would be needed, increasing the required 
training time for the network. The size of feature maps is reduced by 8 times in ResNet50, and there 
is no down sampling in other processes. The parameter stride before the third residual module of 
ResNet50 has adopted the default value (the stride of 7 x 7 Conv and max pooling is 2, the stride of 
the first residual module is 1, the stride of the second residual module is 2). The size of feature maps 
has been reduced by 8 times. If they are reduced again, it will lead to a large amount of information 
loss. In order to extract more detailed information and obtain high-resolution feature maps, we 
changed the stride of the third residual module from 2 to 1. 

Density MapInput Image
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Figure 3. Structure of the proposed MPCNet for crowd density map estimation. 

The resulting features from all of the ASPP branches are then concatenated and passed through 
another 1 × 1 convolution with 128 channels, before the 1 × 1 convolution with one channel. Finally, 
bilinear interpolation is performed at a factor of 8 as the last layer of our MPCNet. This ensures that 
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the output shares the same resolution as the input image. Notably, our network uses a fully 
convolutional network. It can accept images of any size, without the risk of distortion. 

3.3. Training Details  

We trained the proposed MPCNet in an end-to-end manner. Weighted parameters for ResNet50 
pre-trained on ImageNet were used to initialize the feature-extraction CNN. The Adam optimizer 
[31] with a learning rate of 10−5 was used to train the model. The Euclidean distance was used to 
measure the difference between the ground truth and the estimated density map, similar to other 
works [10,11,14]. The loss function is defined as follows: 

2

2
1

1( )= ( ; )
2

N

i i
i

L F X F
N

θ θ
=

− . (2) 

where 𝜃 is a set of learnable parameters in the proposed MPCNet, N is the number of training 
imag,  𝑋  is the input image, 𝐹  is the ground-truth density map generated by MPCNet 
parameterized with 𝜃 for the sample 𝑋 , and 𝐿 is the loss between the ground-truth density map 
and the estimated density map. 

3.4. Ground-Truth Generation 

In this section, we describe the method of converting an image labeled with people’s heads to a 
density map. Supposing there is a head annotation at pixel 𝑥  in a labeled image of a crowd, we 
represent it as a delta function 𝛿(𝑥 − 𝑥 ) and describe its distribution with a Gaussian kernel [26] 𝐺 , 
such that the density map with N heads is derived as follows: 

1
( ) ( ) ( )

N

i
i

F x x x G xσδ
=

= − ∗ . (3) 

The above method is generally applicable to sparse scenes. Following the method of generating 
density maps in the work [10], we use geometry-adaptive kernels to tackle highly congested scenes. 
Thus, we generate a density map via geometry-adaptive kernels: 

1
( ) ( ) ( )

i

N

i
i

F x x x G xσδ
=

= − ∗ , 
i ldσ β= . (4) 

where 𝜎  depends on the average distance 𝑑  between the head and its nearest k neighbors. In the 
experiment, we followed the configuration in the work [10], where β = 0.3 and k = 3. The sum of all 
pixel values gives the crowd count of the input image. Here, C denotes the crowd count, defined as 
follows: 

,
1 1

L W

l w
l w

C Z
= =

=  . (5) 

where L and W are the length and width of the density map, respectively, and 𝑧 ,  is the pixel at (l,w) 
in the generated density map.  

4. Experiments and Results 

In this section, we introduce our dataset, and we describe two standard datasets for crowd 
counting. Then, the evaluation metrics are introduced. Finally, we presents the experiment results to 
answer our research problems. 

4.1. Datasets  

Existing crowd-counting datasets are not designed specifically for public transportation 
systems, even though crowd counting is important in the field of intelligent transportation. Therefore, 
we collected new data and compiled a new dataset, called Zhengzhou MT(Metro Transportation), 
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where the number of heads in an image varies between 1 and 20. We show crowd histograms of the 
images in our dataset in Figure 4. All images were taken from the Zhengzhou MT, in China. The size 
of each image is 576 × 704 pixels. The time span of the dataset is from 7:00 am to 9:00 pm, when 
congestion is variable. Therefore this dataset is similar to other datasets used in practical applications. 
Accordingly, the Zhengzhou MT dataset can be considered a valuable and representative dataset. For 
our evaluation, we used 288 images from the dataset for training and 58 images for testing. The details 
are listed in Table 1. 

The ShanghaiTech Part B dataset was introduced by Zhang et al. [10], and it contains 716 
annotated images of sparse scenes taken from the streets of Shanghai, comprising a total of 88,488 
people. These images were divided into training and test datasets, with 400 images in the training set 
and 316 images in the test set. With reference to the work [10], we fixed the size of the Gaussian kernel 
to 15, where σ = 3 , to generate density maps of this dataset. 

The SmartCity dataset [32] contains 50 images collected from ten city scenes, including office 
entrances, sidewalks, atriums, and shopping malls. The dataset has few pedestrians in the images 
and consists of both outdoor and indoor scenes. We used this dataset to test the generalizability of 
the proposed method for sparsely crowded scenes. With reference to the work [32], we used 
geometrically adaptive kernels to generate the density maps of the Smartcity dataset. 

Table 1. Statistics of the two crowd-counting datasets and the Zhengzhou MT dataset. 

Datasets Number of Images  
Average 

Resolution 

Count Statistics 

Total Min Ave Max 

SHHB [10] 716 768 × 1024 88,488 9 123 578 

Smartcity [32] 50 1920 × 1080 369 1 7 14 

Zhengzhou MT 346 576 × 704 3475 1 10 20 

 

Figure 4. Histograms of crowd counts of our new dataset. 

4.2. Evaluation Metrics 

In accordance with previous research [10,12,14], we used the mean absolute error (MAE) and 
the mean squared error (MSE) to evaluate the proposed method: 
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where N is the number of test images, �̂�  is the actual number of people in the i-th image, and 𝑧  is 
the estimated number of people in the i-th image. The MAE indicates the accuracy of the estimate, 
and the MSE indicates the robustness of the estimate. Because the MSE is sensitive to outliers, its 
value will be high if the model performs poorly on some samples. 

4.3. Experimental Results and Comparison 

The implementation of our method is based on the Pytorch[33] framework. Our experiments were 

performed on an NVIDIA RTX2080Ti GPU with a batch size of 1. Extensive experiments were 

performed on a variety of datasets to endorse the validity of results. 

4.3.1. Results on the Zhengzhou MT Dataset 

We compared our method to state-of-the-art methods. To effectively assess the performance of 
our method, we implemented two recent crowd-counting algorithms [10,14] capable of extracting 
multi-scale features. The MCNN[10] is a multi-column CNN that uses several CNN branches with 
different receptive fields to extract multi-scale features. CSRNet [14] deploys the first ten layers from 
VGG-16 as the front end and arranges single column atrous convolution layers as the back end to 
enlarge the receptive fields. Detailed results of the comparison are given in Table 2. The results 
indicate that the proposed MPCNet outperforms MCNN but not CSRNet. Specifically, the proposed 
method had an MAE of 0.1 higher and an MSE of 0.2 higher than CSRNet. Figure 5 shows the density 
map results obtained from the three methods. Rows 1 and 2 show test images and ground-truth 
images, respectively. Rows 3 to 5 show density maps generated from MPCNet, CSRNet, and MCNN, 
respectively. The proposed method was highly accurate when the subway cars were crowded. In 
addition, it produced density maps of higher quality than the other two methods. The distribution of 
passengers in a subway car can be accurately obtained from these high-quality density maps. 
Consequently, administrators can improve the service quality of the subway system. 

We also compared four levels of congestion. We designed an experiment to verify the robustness 
of the proposed algorithm, MCNN, and CSRNet under four congestion levels. Such an evaluation is 
of great significance to practical applications. Specifically, we selected some images from the test set 
of Zhengzhou MT and split them into four groups in ascending order according to the crowd counts 
to simulate scenes with four levels of congestion in a subway car. From the plots in Figure 6, we can 
see that the three algorithms performed well with the first two levels of congestion, owing to the 
small number of people. However, with an increase in the number of people, the subway became 
crowded, and occlusions between people were more serious. This compromised the accuracy of all 
three algorithms. In general; however, our algorithm performed comparably well relative to the two 
state-of-the-art algorithms. 

Table 2. Performance of different methods on the Zhengzhou Metro Transportation (MT) dataset. 

Method MAE   MSE 

MCNN [10] 1.9     2.3 

CSRNet [14] 1.6     2.0 

MPCNet (ours) 1.7     2.2 
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Figure 5. We display the density maps generated by MPCNet, CSRNet and MCNN on Zhengzhou 
MT. 
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Figure 6. Comparison of our method (MPCNet) to MCNN and CSRNet on the Zhengzhou MT dataset. 
We selected some samples from our test images and split them into four groups, based on the number 
of people. The absolute count in the vertical axis is the average crowd number in the images from 
each group. 

4.3.2. Results on the ShanghaiTech Part B Dataset 

We performed an ablation study on the ShanghaiTech Part B dataset. One of the important 
features of our method is the ASPP [18−20] module. Therefore, it is necessary to compare the 
performance of the method with and without the ASPP module. We removed the ASPP module from 
MPCNet and tested it on the ShanghaiTech part B, because it contains scenes with varying scales. In 
addition, we performed an ablation study to analyze the three configurations of ASPP. This 
evaluation was designed to demonstrate the necessity of using the ASPP module. By using the ASPP 
module, the performance on this dataset improved, with an MAE/MSE of 0.1/1.4 lower than without 
the ASPP module. However, the different atrous rates of the ASPP affected the performance. We 
show these four architectures and the evaluation results in Table 3. The architecture with the atrous 
convolution rate (1,6,12,18) was the most accurate. Therefore, we used this architecture for the 
proposed MPCNet.  

Table 3. Comparison of architectures on the ShanghaiTech Part B dataset. 

Architecture MAE     MSE 

Without ASPP model 11.3    20.8 

Atrous rate values (1,4,8,12) 11.2    19.4 

Atrous rate values (1,6,12,18) 9.7     16.0 

Atrous rate values (1,10,20,30) 11.2    20.1 

To visualize the ability of the ASPP model, we show density maps generated from the four 
different architectures in Figure 7. The first row shows test images, and the second row shows 
ground-truth images. Rows 3 to 6, respectively, show density maps generated from the four 
architectures in Table 3. As this figure shows, the architectures without the ASPP module tended to 
overestimate the count, owing to the interference of the background with the crowds. When the ASPP 
module was added, this interference was eliminated. These results demonstrate the need for the 
ASPP module. 

Next, we compared our MPCNet with existing state-of-the-art methods on the ShanghaiTech 
Part B. The results are shown in Table 4. Zhang et al. [9] first used a CNN for density map generation, 
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and their network outputs both density maps and counts. Based on MCNN[10], Sam et al. [13] added 
a switch classifier to assign a regressor to an image, improving the performance compared to the 
MCNN. Sindagi et al. [34] proposed a variation to the MCNN as a density map estimator, combining 
global and local contextual information with multi-scale features. Adversarial loss is utilized to 
generate high-quality density maps and significant improvements. In the work [35], multi-task 
learning is applied to combined features learned from different tasks. Their results on the 
ShanghaiTech Part B dataset are close to the results in the work [34]. Liu et al. [36] proposed a novel 
crowd-counting method that uses a large number of unlabeled crowd imagery in a learning-to-rank 
framework. The self-supervised task improved the results significantly compared to a network 
trained only on annotated data. Li et al. [14] arranged cascading dilated convolution layers as the 
back end of the CSRNet to enlarge the receptive fields. However, a single-column dilated convolution 
model does not work well with MPCNet, which uses a multi-column dilated convolution network. 
The MAE of the proposed MPCNet was 0.9 lower than the CSRNet on the ShanghaiTech Part B 
dataset. However, our method was not the best among the existing methods. In the work [12], an 
approach arranges general convolutions into multiple columns and it also incorporates multi-scale 
contextual information directly into an end-to-end trainable crowd-counting pipeline. Their 
algorithm outperformed state-of-the-art crowd-counting methods. Figure 8 shows the density map 
results obtained from the three methods. Rows 1 and 2 show test images and ground-truth images, 
respectively. Rows 3 to 5 show density maps generated from MPCNet, CSRNet, and MCNN, 
respectively. We can find that the accuracy of our method is higher and the density map generated 
is clearer. 

Table 4. Estimation errors on the ShanghaiTech dataset. 

Method MAE     MSE 

Zhang et al. [9] 32.0     49.8 

MCNN [10] 26.4     41.3 

Switching-CNN [13] 21.6     33.4 

CP-CNN [34] 20.1     30.1 

Cascaded-MTL [35] 20.0     31.1 

Liu et al. [36] 13.7     21.4 

CSRNet [14] 10.6     16.0 

MPCNet (ours) 9.7     16.0 

SANet [12] 8.4     13.6 
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Figure 7. We display the density maps generated by four different architectures of MPCNet on 
ShanghaiTech Part B. 
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Figure 8. We display the density maps generated by MPCNet, CSRNet, and MCNN on ShanghaiTech 
Part B. 

4.3.3. Results on the Smartcity Dataset 

To demonstrate that our method can perform counting tasks on extremely dense crowds 
alongside tasks on relative sparse scenes, we compared our MPCNet with previous state-of-the-art 
methods on the Smartcity dataset. We also tried to test CSRNet and MCNN on this dataset. For a fair 
comparison, we trained MPCNet, CSRNet, and MCNN on the ShanghaiTech Part B dataset and tested 
it on Smartcity. We compared our method to the other four methods, and the results are shown in 
Table 5. Our method achieved the lowest MAE (the highest accuracy) among the methods. 
Specifically, the MAE of the proposed method was 7% lower than that of SaCNN. Samples of the test 
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cases can be found in Figure 9 which shows the density map results obtained from the three methods. 
Rows 1 and 2 show test images and ground-truth images, respectively. Rows 3 to 5 show density 
maps generated from MPCNet, CSRNet, and MCNN, respectively. We can find that density maps 
generated by our method are more similar to the crowd distributions in the real images.  

GT 299 Ground-truth: 10 Ground-truth: 9Ground-truth: 4

Estimation: 3 Estimation: 5 Estimation: 4

Esitimation: 10 Estimation: 18 Estimation: 20

Esitimation: 5Esitimation: 4Esitimation: 5

 

Figure 9. We display the density maps generated by MPCNet, CSRNet, and MCNN on Smartcity. 
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Table 5. Estimation errors on the Smartcity dataset. 

Method MAE     MSE 

MCNN [10] 52.6     59.1 

Zhang et al. [9] 40.0     46.2 

Sam et al. [13] 23.4     25.2 

SaCNN(w/o cl) [32] 17.8     23.4 

CSRNet [14] 8.8     35.7 

SaCNN [32] 8.6     11.6 

MPCNet (ours) 4.3     4.9 

5. Conclusions 

In this paper, we proposed a method of counting metro passengers, called MPCNet. The 
proposed method automatically estimates density maps and the number of passengers in images of 
crowded scenes. We used multi-column atrous convolutional layers to aggregate the multi-scale 
contextual information in the congested scenes. By exploiting these layers, MPCNet expands the 
receptive field without losing resolution. To evaluate the effectiveness of the proposed method in the 
field of intelligent transportation, we collected and labeled a new dataset, called Zhengzhou MT, 
consisting of 346 images and 3475 annotated people. To our knowledge, this is the first dataset with 
annotated heads designed for counting metro passengers. Extensive experiments with the new 
dataset and standard crowd-counting datasets demonstrate the efficiency and effectiveness of the 
proposed method.  

Although our model can extract the multi-scale contextual information in the congested scenes, 
we hope our model can be more flexible to adapt to the changes of scene scale. Therefore, our future 
work will still focus on the multi-scale topic in crowd counting, and further explore how to extract 
more effective multi-scale features of adaptive scene scale changes. Moreover, in order to apply our 
method to practical engineering, we will also explore the relationship between the number of 
passengers in the car and the degree of passenger congestion. 
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