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Abstract: Lately, Magnetic Resonance scans have struggled with their own inherent limitations, such
as spatial resolution as well as long examination times. A novel, rapid compressively-sensed magnetic
resonance high-resolution image resolution algorithm is presented in this research paper. This technique
addresses these two key issues by employing a highly-sparse sampling scheme and super-resolution
reconstruction (SRR) method. Due to highly challenging requirements for the accuracy of diagnostic
images registration, the presented technique exploits image priors, deblurring, parallel imaging, and a
deformable human body motion analysis. Clinical trials as well as a phantom-based study have been
conducted. It has been proven that the proposed algorithm can enhance image spatial resolution and
reduce motion artefacts and scan times.

Keywords: super-resolution; MRI; compressed sensing; k-space; discrete dense displacement sampling;
deformable image registration; sparse sapling

1. Introduction

Brain nuclear imaging has, in the last few years, become one of the most critical techniques to
diagnose brain abnormalities. High-definition imaging with enough details has had its impact on
medical imaging. As a result of these applications, the requirement for high quality visualisation
is rapidly expanding. Yet, because of the constraints of inherent limitations of magnetic resonance
imaging (MRI) scanners or issues related to the bandwidth in the transmission process, obtaining
the high-definition head MR scans that meets the requirements for applications has been proving to
be difficult. Efforts made to resolve this predicament have led to the improvement of developing
studies in digital signal processing, especially in the field of image resolution enhancement. This
area of interest has been especially has been researched in the latest years. The algorithm shown in
this research paper enriches Iterative Back Projection (IBP) [1] and its improved version [2] in a few
directions. It utilises a deformable image registration.

The SRR (Super-Resolution Image Reconstruction) has proven its worth in the field of various
medical modalities [3–5]. Super Resolution Image Reconstruction is an example of an improperly
modelled problem because of too-few low-resolution images. Numerous regularisation algorithms
have been given to develop the inversion of this underdetermined problem. Freeman et al. [6] were the
first to suggest that machine training procedures could be used to enhance the resolution of the frames.

By using the Markov random field (MRF), the authors defined the connection between the High-
Resolution frame and the Low-Resolution frame. The preliminary estimate of the High-Resolution
frame was accomplished by using interpolating polynomials. The missing upper frequencies of the
High-Resolution frame were resolved using training technique and a preliminary estimate. Afterwards,
the High-Resolution frame was calculated. Sun [7] has improved this technology by enhancing image
features. The SR methods utilising the neural nets with convolution were proposed in the references [8,9].
This technique was employed in order to conduct single-multi-contrast SRR at the same time. It should
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be noted that the above-mentioned strategies rely on directories, which consist of large numbers
of High-Resolution and Low-Resolution patch pairs. These large patch pair numbers amplify the
complexity of computing. Moreover, fake high-frequency components exist, which are calculated by
training procedures using external dictionaries. Despite all the addressed problems in the field of
Super-Resolution, there are still shortcomings, and, in a certain sense, these problems are rather serious.
Tao and Sajjadi [10,11] have gone further in improving the regular video super-resolution flowchart by
using the previously estimated HR image to reconstruct the succeeding frame. The accuracy of these
algorithms depends on the estimation of the motion vectors, which is time-consuming. Jo [12] has
presented a curious slant on that matter. The point of his algorithm is to exploit an end-to-end deep
neural nets to create dynamic upsampling filters and to derive a residual image. These two steps are
calculated with respect to the local spatio-temporal knowledge obtained from neighbouring voxels.
These procedures avoid using explicit motion compensation procedures. It should be noted, that
deriving the temporal parameters exploiting 3D-kernels takes more time than in the case of 2D ones.
Lately, Dong [13] suggested nesting deep convolutional neural networks at the core of SRR framework.
Therefore, their report had also reflected the achievements made so far and highlighted the still-existing
deficits, as a legacy from its predecessor to the one presented by them. Kim went deeper into the
problem and applied [8,9,14] the residual network in order to improve network training procedures.
Furthermore, Kim [15], Zhang [16,17] suggested using a residual scaling to create a network. Inspiring
others to use the latest achievements in technology, the Deep Back-Projection Nets for SR implements
down/up sampling structural layers to iteratively calculate an error feedback mechanism for error
projection for all the stages of the algorithm.

A long examination phase is one of the key drawbacks of Magnetic Resonance Imaging. Despite
this reason, making MRI data acquiring faster has been in the crosshairs of numerous scientists.

One of the possible scenarios of what could be developed is the change of phase encoding intervals in
k-space filling. Unfortunately, weakened image quality can be a result. Yet, weakened image quality could
be surmounted by utilising the proposed k-space sampling pattern. The sampling scheme suggested
in this paper combines PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced
Reconstruction) sampling scheme [2] with Compressed Sensing and Partial Fourier, see Figure 1. The
Partial Fourier framework claims that the phase changes gradually within the scanned object. Despite
of the circumstances, numerous parallel imaging approaches such as SMASH (simultaneous acquisition
of spatial harmonics) or SENSE (sensitivity encoding technique) [18], exploiting receiver-coil sensitivity
prior knowledge is also useful in shortening the acquisition time [19]. The absent part of k-space could
be salvaged by utilising its conjugate symmetry [20–22].

Consecutively, Compressed Sensing (CS) techniques [23], recently presented, may deliver further
optimisation of sampling patterns. MRI revealed its relevance as the right place for applying CS frameworks.
These methods can potentially accelerate the process to a higher level than any PI (Parallel Imaging)
methods [23,24]. Numerous compressively-sensed methods have been brought into the limelight and
tested. Considering the differences between several k-space sampling schemes, numerous efforts have
been made to mutually utilise and associate unique, redundant knowledge achieved from various
k-space sampling schemes. The combining of parallel imaging procedures with the Compressed
Sensing methodology turns out to be more efficient in obtaining decreased image noise than with
both the technologies used separately. In this work, the author presents a new MRI-associated
method, which blends SR [2,3], deformable motion estimation with robust sampling trajectory pattern.
The experimental results are promising and reveal the method’s true value.

2. MRI Sparse Sampling Schemes

The compressed sensing (CS) methodology was proposed to break the limitations of conventional
sampling procedures [25,26]. The CS procedure exploits random undersampling and a sparsity-based
template model image [27,28]. Over the last decade, many efforts have been made to improve diagnostic
image reconstruction. Magnetic Resonance Imaging is a field of high priority because of its high
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examination charges. And, consequently, significant reduction of scanning times was a major reason
for transplanting the CS to the field of Magnetic Resonance Imaging. Several researches have argued
that the procedures such as k-t SPARSE, CS dynamic imaging [22] and k-t FOCUSS [29,30] images
are compressible under a well-chosen sparsyfying transform. One of most important technological
breakthroughs in medicine and healthcare was parallel imaging [22,31,32]. Currently, the majority of
clinical scanners are loaded with parallel imaging methodology, and this way is the standard arrangement
for numerous scanning schemes. It has been proven that scan time can be lowered by sampling a reduced
number of phase encoding lines in frequency domain. Most modern clinical scanners collect input
samples from several seperate receiver coil arrays [33].

Parallel imaging procedures utilise properties of these coil arrays to isolate aliased pixels in the
image domain or to estimate missing k-space data exploiting knowledge of neighbouring k-space
locations. Several approaches to the parallel imaging methods have been proposed [26,34]. The most
prominent examples include SENSE, GRAPPA, and SPIRiT. They were all successfully applied in clinical
practice. These procedures can be modified to consider irregular sampling schemes. Non-Cartesian
sampling schemes deliver several valuable properties, that is, the appearance of incoherent aliasing
artefacts. The latest improvements in concurrent multi-slice imaging are proposed, which utilise parallel
imaging to separate images of numerous slices that have been obtained at the same time. Parallel imaging
can also be applied to quicken three dimensional MRI, in which an adjacent volume is scanned rather
than sequential slices. Another category of phase-constrained parallel imaging procedure makes use of
both image magnitude and phase to improve reconstruction performance. Nevertheless, the robustness
of compressively sensed MRI scanning procedures is still technically challenging. Numerous authors
have noted that the pulse sequence is supposed to be wisely implemented to overcome any tendency
of inconsistency, such as image resolution, number of frames/slices, contrast-to-noise ratio (CNR), and
field of view. Meanwhile, other authors have proposed parallel imaging methods for handling dynamic
Magnetic Resonance. In this way the techniques and methods which show the most effectiveness with
certain types of procedures such as TSENSE and TGRAPPA [19] have been presented. They have proven
their usefulness to capture 3–4 slices per heartbeat with relevant temporal and spatial resolution for
diagnostic use, utilising commercially obtainable radiofrequency (RF) coil arrays. To enhance image
resolution as well as the field of view, more complex and intricate methods are needed to achieve higher
acceleration rates. Examples of this include procedures such as SENSE, GRAPPA and k-t-blast [35–37]
to ensure the precision of exploiting spatiotemporal correlations in the dynamic Magnetic Resonance
Imaging data either alone or in combination with coil sensitivity information. Such data sampling,
as expect, gives rise, to reducing data overlapping, which delivers high acceleration rates. The most
significant disadvantage is the need of dynamic learning data to set up an aliasing pattern in the
frequency domain, which minimises the resulting acceleration rate. In opposite to these techniques, the
CS framework relies on the assumption that a sparsely sampled frame in a known transform domain can
be calculated using randomly undersampled k-space data [38] and does not need any training data.
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Figure 1. Combining Compressed Sensing (CS) with exploiting the Hermitian symmetry property
produces effective sampling pattern. On the right: the two k-space locations marked in yellow colour
on the graph, mirror images across the origin of k-space, have identical amplitudes but opposite phases.

3. The Proposed Algorithm

Most SRR algorithms incline to produce similar results because of oversimplified motion trajectories
which do not display real biological behaviour. This is crucial in all instances of patient motion within
an image, such as respiratory, heart motion, circulation, and other potentially misregistration- causing
artefacts. A deformable, groupwise non-rigid image registration method for motion compensation is
utilised in the algorithm being presented in this paper [39,40].

Medical image processing has experienced a variety of difficulties in the past including distortion
removal, spatial resolution and examination times [41,42]. Mathematically speaking, all these aspects
lead to forming a cost function, which is crucial to get accurate and better predictions.This registration
algorithm had proven its competency in the Computed Tomography [43], PET/MRI as well as DW-MRI
fields. The proposed SRR algorithm concurrently uses High-Resolution sparsity priors, deformable
motion registration parameters as well as the MAP (maximum a posteriori) for blur estimation.
The proposed SRR algorithm minimises [39,40] the cost function consisting of the HR input image ΓH ,
motion fields {wi}, noise level {θi} as well blur kernel B. The algorithm gets started with using an
initial guess which yields convergence to a solution, see the pseudocode below and Figures 2 and 3.

Figure 2. An initial guess estimation yields convergence to a solution.

Input: set of Low-resolution input Magnetic Resonance Scans /each is reconstructed from a compressively sensed
k-space’s blade.

1. high-resolution estimate produced by→ the submethod, see Figure 2.
2. iterate until convergence |Γn

L − Γn,observed
L | < ε

a. Estimate noise θi =
α+Nq−1
β+Nq x̄

b. Calculated deformable image registration parameters and utilise them to align an image grid
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c. Estimate blur kernel Bx = arg min θ0
Bx

‖AMyBx − Γn
L‖+ ξ‖∇Bx‖

d. Enhance the high-resolution estimate Γn
H

e. Repeat steps a-d until convergence, see Figure 3

Output: high-resolution Magnetic Scan.

Figure 3. The proposed algorithm flowchart.

The procedure performs image upscaling regarding the motion fields to produce a current HR
image estimate. The proposed algorithm utilises a smooth kernel, which blurs the resulting image.
The image is subsampled and noised to form the set of observed low-resolution images. This iterative
technique is continued until the solution converges towards values that change by less than some
specified tolerance threshold between successive iterations [7]. The proposed SRR algorithm can be
expressed in the following way:

Γ̂n
H = arg min θ0

Γn
H

∥∥∥DBΓn
H − Γn,0

L

∥∥∥+ g
∥∥∥∇Γn

H

∥∥∥+ N

∑
i=−N,i 6=0

∥∥∥DBwiΓn
H − Γn,0

L

∥∥∥. (1)

Note that the Γn,0
L represents the estimated reference initial guess related to n-th set of “compressed”

PROPELLER blades, Γn,j
L is the i-th obtained LR frame with regard to degradation parameters, Γn

L
is HR estimate, ∇ is the gradient operator, Γ̂n

H is the n-th HR image estimate D, B, wi denote the
down-sampling, blur kernel, deformable image registration vectors, individually. To be able to employ
gradient optimisation we need to replace L1 norms with their differentiable approximations.

It should be noted that the deformable motion estimation is a prominent example of a highly non-
convex optimisation problem, which is associated with several conditions that must be satisfied [44].
Moreover, this process is highly ill-conditioned tending to sensitivity regarding measurements and
model errors. The motion estimation algorithm adopted in this paper is globally optimal deformable
registration. That algorithm avoids using continuous optimisation because it may be prone to local
minima. To overcome this advantage, discrete optimisation was applied. The frame grid is modelled as
a minimum spanning tree. Instead of using gradients to find a global optimum of the cost function, it
can be found rapidly using dynamic programming, which enforces the smoothness of the deformations.

The Markov Random Field (MRF) labelling is used to perform discrete optimisation, see Figure 4.
In the algorithm adopted in this paper a spanning tree with minimum total edge costs is derived.
The nodes i ∈ P refer to pixels (or group of pixels) and for each node, a collection of hidden, and
corresponding to the motion fields, labels are expressed as wl

i = { f l
i , gl

i , hl
i}. The algorithm, more

specifically, the energy function to be optimised consists of two terms: that is, the data cost S and the
pair-wise regularisation cost R(wl

i , wm
i ) for all the nodes l − s associated with the nodes m− s:

E(wi) = ∑
i∈P

S(wl
i) + κ ∑

l,m∈N
R(wl

i , wm
i ). (2)

The cost function shown above estimates the inter-pixel correlation of a pair of images being compared.
Specifically, this term does not depend on the displacements of its neighbours.
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The κ refers to a weighting parameter, which controls the influence of the regularisation term.
The first component in Equation (2) denotes the data term; the second one is the regularisation term.

Figure 4. The Magnetic Resonance image registration. This procedure is applied to the entire set of the
Low-Resolution images.

4. Results

In the experimental studies, all the raw data signals are appropriately compressed with the
sampling rates: 25%, 40% and 60% of the fully sampled k-spaces.

In order to measure the performance of the proposed algorithm, both laboratory phantom studies and
an in-vivo assessment were performed. The purpose of the experiment was to compare the effectiveness of
various ways of obtaining a compressively-sensed input. In a study of the effects of various compressed-
sensing ratio on test performance, the test performance of the proposed Super-Resolution Image
Reconstruction method was tested. Moreover, several MRI k-space sampling patterns have been
compared. Figures 5–22 show the achieved results. It must be emphasised that combining Compressed
Sensing with Hermitian symmetry property, as well as Partial Fourier allows the shortening of k-space
filling when compared to the different k-space sampling schemes, see Figure 1.

Figure 5. The phantom images based on experiment results. See from the upper row: the unprocessed
image corrupted by simulated shift and the reconstructed images with various sampling rates (varying
from 25% to 40% and 60% of samples of the ground truth).
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Figure 6. A brain imaging example. From left to right: A: Image reconstructed from partially
sampled PROPELLER blade, B:Cartesian sampling grid without image registration applied (with
no downsampling applied), C: B-spline Cubic interpolation, D: Non-Rigid Multi-Modal 3D Medical
Image Registration Based on Foveated Modality Independent Neighbourhood Descriptor [45], E:
Enhanced deep residual networks for single image super-resolution [14], F: Image super-resolution
using very deep residual channel attention networks [16], G: Residual dense network for image
super-resolution [15], H: super-resolution with proposed sampling scheme and motion compensation
(the proposed algorithm). Compression ratio is 50%. Please see Table 1 for the PSNR values at other
compression ratios.

Table 1. Stats of the Peak signal-to-noise ratio (PSNR) metrics for Figure 7. MAE abbreviation stands
for Mean Average Error.

Reconstruction Method N M MAE SD t p

down-sampled without image registration 100 21.16 20.04 0.01 1.094 0.276

down-sampled with image registration 100 24.52 19.34 0.01 −0.779 0.438

motion corrected regular sampling scheme
(without subsampling applied) 100 22.36 18.04 0.01 0.185 0.854

B-spline cubic interpolation /image registration applied/ 100 23.31 18.01 0.01 0.184 0.274

Non-Rigid Multi-Modal 3D Medical Image Registration
Based on Foveated Modality Independent Neighbourhood Descriptor 100 26.33 17.22 0.01 −0.321 0.432

Enhanced deep residual networks for single image super-resolution 100 29.14 16.55 0.01 −0.362 0,412

Image super-resolution using very deep residual channel
attention networks 100 28.75 15.51 0.01 −0.416 0.437

Residual dense network for image SR 100 29.88 14.63 0.01 −0.541 0.554

the proposed method 100 30.39 14.02 0.01 −0.588 0.558

Figure 7. The brain imaging results. From left to right: A: Image reconstructed from partially sampled
PROPELLER blade, B:Cartesian sampling grid without image registration applied (with no downsampling
applied), C: B-spline Cubic interpolation, D: Non-Rigid Multi-Modal 3D Medical Image Registration
Based on Foveated Modality Independent Neighbourhood Descriptor [45], E: Enhanced deep residual
networks for single image super-resolution [14], F: Image super-resolution using very deep residual
channel attention networks [16], G: Residual dense network for image super-resolution [15], H: super-
resolution with proposed sampling scheme and motion compensation (the proposed algorithm).
Compression ratio is 50%. Please see Table 2 for the PSNR values at other compression ratios.
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Table 2. Stats of the Image Enhancement Metric (IEM) metrics for Figure 7.

Reconstruction Method N M SD t p

down-sampled without image registration 100 1.76 0.01 1.222 0.225

down-sampled with image registration 100 1.99 0.01 0.505 0.615

motion corrected regular sampling scheme
(without subsampling applied) 100 2.67 0.01 1.848 0.068

B-spline cubic interpolation /image registration applied/ 100 2.01 0.01 0.184 0.273

Non-Rigid Multi-Modal 3D Medical Image Registration
Based on Foveated Modality Independent Neighbourhood Descriptor 100 2.33 0.01 −0.320 0.436

Enhanced deep residual networks for single image super-resolution 100 2.14 0.01 −0.361 0.411

Image super-resolution using very deep residual channel
attention networks 100 2.45 0.01 −0.411 0.431

Residual dense network for image SR 100 2.88 0.01 −0.543 0.552

the proposed method 100 3.99 0.00 −1.901 0.061

Figure 8. The abdominal image processing. From left to right: A: Image reconstructed from partially
sampled PROPELLER blade, B:Cartesian sampling grid without image registration applied (with no
downsampling applied), C: B-spline Cubic interpolation, D: Non-Rigid Multi-Modal 3D Medical Image
Registration Based on Foveated Modality Independent Neighbourhood Descriptor [45], E: Enhanced
deep residual networks for single image super-resolution [14], F: Image super-resolution using very deep
residual channel attention networks [16], G: Residual dense network for image super-resolution [15], H:
super-resolution with proposed sampling scheme and motion compensation (the proposed algorithm).
Compression ratio is 50%. Please see Table 3 for the PSNR values at other compression ratios.

Table 3. Stats of the PSNR metrics for Figure 17. M denotes mean of observed PSNRs. MAE abbreviation
stands for Mean Average Error.

Reconstruction Method N M MAE SD t p

Image reconstructed from partially sampled
PROPELLER blade 100 19.16 19.22 0.01 1.654 0.101

no motion corrected regular sampling scheme
(with no downsampling applied) 100 26.21 18.34 0.01 0.672 0.503

B-spline cubic interpolation /image registration applied/ 100 23.31 17.89 0.01 0.183 0.273

Non-Rigid Multi-Modal 3D Medical Image Registration
Based on Foveated Modality Independent Neighbourhood Descriptor 100 26,22 17.02 0.01 −0.354 0.431

Enhanced deep residual networks for single image super-resolution 100 29.65 16.44 0.01 −0.384 0,411

Image super-resolution using very deep residual channel
attention networks 100 28.66 16.01 0.01 −0.466 0.436

Residual dense network for image SR 100 29.00 15.55 0.01 −0.565 0.554

the proposed method 100 29.28 14.07 0.01 −1.002 0.554
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Figure 9. The Shepp-Logan phantom results comparison. From the left: the PROPELLER sampling
reconstruction output (PSNR = 29.84 dB, IEM = 2.04), the proposed algorithm result with enhanced
resolution (PSNR = 34.58 dB, IEM = 3.64). The lower row shows detailed images. Please see Table 4 for
the PSNR values at other compression ratios.

Table 4. Stats of the PSNR metrics for Table 5 at different CS ratio. M denotes mean of observed PSNRs.
MAE abbreviation stands for Mean Average Error.

CS Quality [%] N M MAE SD t(99) p

20 100 18.76 20.01 0.01 0.647 0.519

40 100 25.62 18.08 0.01 0.799 0.426

50 100 30.39 15.01 0.01 1.848 0.068

60 100 31.16 14.04 0.01 1.222 0.225

Table 5. Stats of the PSNR metrics for Figure 12. M denotes mean of observed PSNRs. MAE abbreviation
stands for Mean Average Error.

Reconstruction Method N M MAE SD t p

Image reconstructed from partially sampled
PROPELLER blade 100 18.23 20.01 0.01 −0.300 0.765

no motion corrected regular sampling scheme
(with no downsampling applied) 100 26.86 19.72 0.01 −1.554 0.121

B-spline cubic interpolation /image registration applied/ 100 23.30 18.91 0.01 0.181 0.275

Non-Rigid Multi-Modal 3D Medical Image Registration
Based on Foveated Modality Independent Neighbourhood Descriptor 100 26.31 1.23 0.01 −0.323 0.437

Enhanced deep residual networks for single image super-resolution 100 29.41 16.00 0.01 −0.367 0.411

Image super-resolution using very deep residual channel
attention networks 100 28.12 15.61 0.01 −0.412 0.432

Residual dense network for image SR 100 29.93 15.01 0.01 −0.542 0.558

the proposed method 100 36.22 14.32 0.01 1.347 0.181
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Figure 10. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the
PSNR scores for all the methods on each dataset from Figure 7.

Figure 11. The beeswarm* plots are one-dimensional scatter plots showing the “stripcharts” of the IEM
scores for all the methods on each dataset from Figure 7. *The so-called bee swarm plot gives a better
representation of the distribution of values, but it does not scale well to large numbers of observations.

Figure 12. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the
PSNR scores for all the methods on each dataset from Figure 7 (Table 4 illustrated).

Figure 13. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the IEM
scores for all the methods on each dataset from Figure 7 (Table 6 illustrated).

Table 6. Stats of the IEM metrics for Figure 7 at different CS ratio.

CS Quality [%] N IEM SD t(99) p

20 100 1.79 0.00 −1.421 0.158

40 100 1.88 0.01 1.654 0.101

50 100 3.99 0.01 −1.179 0.241

60 100 4.31 0.00 0.000 1.000
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Figure 14. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the
PSNR scores for all the methods on each dataset from Figure 12.

Figure 15. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the IEM
scores for all the methods on each dataset from Figure 12.

Figure 16. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the
PSNR scores for all the methods on each dataset from Figure 12.

Figure 17. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the IEM
scores for all the methods on each dataset from Figure 12.
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Figure 18. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the
PSNR scores for all the methods on each dataset from Figure 18.

Figure 19. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the IEM
scores for all the methods on each dataset from Figure 17.

Figure 20. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the
PSNR scores for all the methods on each dataset from Figure 17.

Figure 21. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the IEM
scores for all the methods on each dataset from Figure 17.

It must be emphasised that combining Compressed Sensing with Hermitian symmetry property,
as well as Partial Fourier allows the shortening of k-space filling when compared to the different
k-space sampling schemes. This paper focuses on fusing the super-resolution image reconstruction
with k-space sparse sampling of MRI scanners. Moreover, the phantom studies were concentrated
on the inverse problems of compressed sensing for MRI, see Figure 9. In this part of the experiment
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the Shepp-Logan phantom data Figures 6 and 22 were reconstructed from sets of sparse projections.
To model the sparsity, PROPELLER blades have been sensitively compressed with 30 and twelve radial
lines in frequency domain as well as reconstruction from reduced-angle projections, with a contracted
subset of 50 projections within a 90-degree aperture. The unmodified PROPELLER sampling scheme
has been compared with the proposed one, see Figure 23. Furthermore, the ground truth MR images
meshes were warped using nonrigid, deformable transformations. Lastly, Gaussian blur kernel and
noise and downsampling were applied to such processed images to simulate real MR images.

Figure 22. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the
PSNR scores for all the methods on each dataset from Figure 22.

Figure 23. The bee swarm plots are one-dimensional scatter plots showing the “stripcharts” of the IEM
scores for all the methods on each dataset from Figure 22.

5. Discussion

For over nearly two decades, SR procedures have effectively been exploited to enhance the
spatial resolution of diagnostic images after k-spaces data are collected, thus making the doctor’s
diagnosis easier. The variety of applications and methods has grown ever since, especially in the MRI
modality, exposing the interest of the community to such post- processing. MRI, CT, PET and hybrid
techniques are still suffering from insufficient spatial resolution, contrast issues, visual noise scattering
and blurring produced by motion artefacts. These underlying issues can lead to problems in identifying
abnormalities. Reducing scanning time is a serious challenge for many medical imaging techniques.
Compressed Sensing (CS) theory delivers an appealing framework to address this inconvenience
since it provides theoretical guarantees on the reconstruction of sparse signals by projection on a low
dimensional linear subspace. Numerous adjustments here are presented and proven to be efficient
for enhancing MRI spatial resolution while reducing acquisition lengths. The proposed technique
minimises artefacts produced by highly sparse data, even in the influence of misregistration artefacts.
In order to expedite the process of k-space filling and enhance spatial resolution, the algorithm combines
several sub-techniques, that is, compressive-sensing, Poisson Disc sampling and Partial Fourier with
SR technique. This combination allowed for improving both image definition and time consumption.
Furthermore, improved upper frequencies provides better edge delineation. The proposed algorithm
can be directly implemented to MR scanners without any hardware modifications. Moreover, it has been
proven that the implemented technique produces enhanced and sharper shapes. It really minimises the
risk of misdiagnosis. The financial aspects in healthcare must be addressed and sufficient value to all
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participants are supposed to justify their use. Apart from enhancing the spatial resolution, this technique
can be useful in addressing misregistration issues. Phantom-based studies as well in-vivo experiments
have proven to be successful in reducing examination time. The achieved results show an improvement
of definition and readability of the MR images, see Figures 5–23. The techniques used to identify
abnormalities that are claimed to be potentially malignant or pre-malignant expose a higher capability
to spot them due to the improved image quality parameters. Furthermore, the achievements have been
validated by PSNR and IEM metrics [45] that can measure medical image quality with great competence.
In more extended studies numerous scanning techniques were investigated. The proposed algorithm has
been compared with SENSE, GRAPPA as well as unmodified PROPELLER. Despite reasonable results
achieved using competitive algorithms, the proposed algorithms offered the shortest scanning time, see
Table 7. In order to get a quantitative assessment, the peak signal-to-noise ratio (PSNR) and the mean
absolute error (MAE) have been utilised. Both the smaller MAE or higher PSNR confirmed robustness
of the applied algorithm. All the most commonly applied image quality metrics, including the IEM,
confirmed the weight of the results. The proposed algorithm was compared with 4 state-of-the-art SRRs:
Non-Rigid Multi-Modal 3D Medical Image Registration Based on Foveated Modality Independent
Neighbourhood Descriptor [45], Residual dense network for image super-resolution [15], Enhanced
deep residual networks for single image super-resolution [14] and Image super-resolution using very
deep residual channel attention networks [16]. L1-cost regularisation is applied to learn the nets of the
following procedures—Enhanced deep residual networks for single image super-resolution, Residual
dense network for image super-resolution and Image super-resolution using very deep residual channel
attention networks. The compressively-sensed, Super-Resolution images have achieved the highest
IEM values [46]. it is obvious to see that the compression ratios highly affect the PSNR scores (see
Tables 1–18). It is worth being underlined that satisfying results occurred for halved sampling spaces.
The mean PSNR and IEM values are used to compare the results. Each simulation was run N = 100 times.
The signed rank test was applied to all the image quality metrics to verify if the null hypothesis that
the central tendency of the difference was zero at numerous acceleration rates. All the statistical
tests were performed using The R Project for Statistical Computing, see Figures 10–23. A separate
group t-student‘s test was conducted in order to compare the PSNR mean scores between 2 seperate
sets, with a paired t-test. The significance test, Student’s t-test was carried out on the PSNR and are
found that the probability validates the method’s performance. The results are exposed in Tables 1–19.
The achieved p-values have proven high statistical significance.Future research will be concentrated on
testing competitive solutions which operate using Discrete Shearlet Transform because of its ability to
be a good candidate for MRI sparse sampling. Presently, the algorithm is being validated via testing
using DW-MRI/PET scanners.

Table 7. Comparison of the scanning parameters

Scanning Pattern TR TE FOV Voxel (mm) Total Scan Duration (s) p

PROPELLER 1200 180 290 0.96/0.96/1.00 360 0.159
SENSE 1200 180 290 0.96/0.96/1.00 353 0.226

GRAPPA 1200 180 290 0.96/0.96/1.00 320 0.136
the proposed algorithm 1200 180 290 0.96/0.96/1.00 112 0.103

Table 8. The performance of the proposed algorithm at different CS ratio. MAE abbreviation stands for
Mean Average Error.

CS Ratio [%] PSNR [dB] MAE IEM

20 18.76 19.82 1.79

40 25.62 18.01 1.88

50 30.39 15.66 3.99

60 31.16 14.20 4.31
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Table 9. Stats of the IEM metrics for Figure 12. M denotes mean of observed IEMs

Reconstruction Method N M SD t p

Image reconstructed from partially sampled
PROPELLER blade 100 1.56 0.01 1.133 0.260

no motion corrected regular sampling scheme
(with no downsampling applied) 100 3.12 0.01 0.294 0.070

B-spline cubic interpolation /image registration applied/ 100 2.62 0.01 1.842 0.061

Non-Rigid Multi-Modal 3D Medical Image Registration
Based on Foveated Modality Independent Neighbourhood Descriptor 100 2.11 0.01 0.183 0.275

Enhanced deep residual networks for single image super-resolution 100 2.32 0.01 −0.327 0.436

Image super-resolution using very deep residual channel
attention networks 100 2.15 0.01 −0.366 0.412

Residual dense network for image SR 100 2.43 0.01 −0.412 0.432

the proposed method 100 2.82 0.01 −0.51 0.551

Image reconstructed from partially sampled
PROPELLER blade 100 3.89 0.01 −0.371 0.202

Table 10. The performance of the proposed algorithm at different CS ratio for Figure 12. MAE abbreviation
stands for Mean Average Error.

CS Ratio [%] PSNR [dB] MAE IEM

20 18.44 20.01 1.75

40 28.42 18.03 1.92

50 36.22 16.05 3.89

60 38.11 14.55 4.31

Table 11. Stats of the PSNR metrics for Figure 12. M denotes mean of observed PSNRs.

CS Quality [%] N M SD t(99) p

20 100 18.44 0.01 0.139 0.889

40 100 28.42 0.01 0.728 0.469

50 100 36.22 0.01 1.789 0.077

60 100 38.11 0.01 1.830 0.070

Table 12. Stats of the IEM metrics for Figure 12. M denotes mean of observed IEMs

CS Quality [%] N M SD t(99) p

20 100 1.75 0.01 1.000 0.329

40 100 1.92 0.01 −0.865 0.389

50 100 3.89 0.01 −0.672 0.503

60 100 4.31 0.01 0.961 0.339
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Table 13. Stats of the IEM metrics for Figure 17. M denotes mean of observed IEMs.

Reconstruction Method N M SD t p

Image reconstructed from partially sampled
PROPELLER blade 100 1.56 0.01 1.133 0.260

no motion corrected regular sampling scheme
(with no downsampling applied) 100 3.12 0.01 0.294 0.770

B-spline cubic interpolation /image registration applied/ 100 2.62 0.01 1.822 0.021

Non-Rigid Multi-Modal 3D Medical Image Registration
Based on Foveated Modality Independent Neighbourhood Descriptor 100 2.10 0.01 0.123 0.225

Enhanced deep residual networks for single image super-resolution 100 2.31 0.01 −0.317 0.426

Image super-resolution using very deep residual channel
attention networks 100 2.12 0.01 −0.346 0.442

Residual dense network for image SR 100 2.49 0.01 −0.462 0.412

the proposed method 100 2.80 0.01 −0.511 0.521

Image reconstructed from partially sampled
PROPELLER blade 100 3.89 0.01 −0.371 0.202

Table 14. The performance of the proposed algorithm at different CS ratio. MAE abbreviation stands
for Mean Average Error.

CS Ratio [%] PSNR [dB] MAE IEM

20 19.31 20.01 1.67

40 24.14 18.23 1.91

50 29.28 16.02 3.68

60 31.08 15.65 4.19

Table 15. Stats of the PSNR metrics for Figure 17. M denotes mean of observed PSNRs.

CS Quality [%] N M SD t(99) p

20 100 19.31 0.01 0.542 0.589

40 100 24.14 0.01 −0.713 0.478

50 100 29.28 0.01 −1.044 0.299

60 100 31.08 0.01 −1.021 0.310

Table 16. Stats of the IEM metrics for Figure 17. M denotes mean of observed IEMs.

CS Quality [%] N M SD t(99) p

20 100 1.67 0.01 −0.575 0.566

40 100 1.91 0.01 −0.134 0.894

50 100 3.68 0.01 0.542 0.589

60 100 4.19 0.01 0.588 0.558

Table 17. Stats of the PSNR metrics for Figure 22. M denotes mean of observed PSNRs. MAE abbreviation
stands for Mean Average Error.

Reconstruction/Sampling Algorithm N M MAE SD t(99) p

the PROPELLER sampling reconstruction 100 29.84 18.22 0.01 −1.881 0.063

the proposed algorithm 100 34.58 15..01 0.00 1.149 0.253
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Table 18. Stats of the IEM metrics for Figure 22. M denotes mean of observed IEMs

Reconstruction/Sampling Algorithm N M SD t(99) p

the PROPELLER sampling reconstruction 100 2.04 0.01 0.139 0.889

the proposed algorithm 100 3.64 0.00 −1.228 0.222

Table 19. The performance of the proposed algorithm at different CS ratio. MAE abbreviation stands
for Mean Average Error.

CS Ratio [%] PSNR [dB] MAE IEM

20 21.04 20.22 1.88

40 27.45 18.23 1.92

50 34.58 15.45 3.64

60 36.01 15.01 4.17
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