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Abstract: Non-local time evolution of material stress/strain is often referred to as material
hereditariness. In this paper, the widely used non-linear approach to single integral time non-local
mechanics named quasi-linear approach is proposed in the context of fractional differential calculus.
The non-linear model of the springpot is defined in terms of a single integral with separable kernel
endowed with a non-linear transform of the state variable that allows for the use of Boltzmann
superposition. The model represents a self-similar hierarchy that allows for a time-invariance as the
result of the application of the conservation laws at any resolution scale. It is shown that the non-linear
springpot possess an equivalent mechanical hierarchy in terms of a functionally-graded elastic column
resting on viscous dashpots with power-law decay of the material properties. Some numerical
applications are reported to show the capabilities of the proposed model.

Keywords: fractional calculus; non-linear springpot; mechanical hierarchy

1. Introduction

Time-dependent behavior of several complex materials is a crucial issue for a reliable mechanical
description as well as virtual simulation. Indeed, a recent approach to the mechanics of several
materials with “in-silico” simulations takes into account the non-local time behavior of materials
in terms of material’s memory with respect to past strain/stress histories up to current time.
This feature of materials, very often encountered in classical engineering materials such as concrete
and wood, as well as in more advanced materials such as biomaterials and biological tissues, is called
material hereditariness.

Material hereditariness has been initially formulated in terms of linear models that, taking full
advantage of Boltzmann superposition, yield a time-dependent evolution ruled by convolution
integrals involving the creep function J(t) or relaxation function G(t) [1,2].

In more details, creep is known as the the time-dependent strain evolution under constant stress;
the relaxation is, instead, the stress decay under uniform strain [1,2].

The main assumption related to use of Boltzmann superposition is the linear dependence of creep
(relaxation) on the real level of the strain (stress). Indeed, the creep function J(t) is defined as the strain
evolution ε(t) under unitary stress σ(t) = 1, whereas stress relaxation σ(t) is the evolution under
constant unitary strain ε(t) = 1. In such circumstances, a widely used mathematical representation
of creep and relaxation of polymers and rubbers is the power-law with real exponent as G (t) =

G0

Γ(1− β)

(
t
τ

)−β

and J(t) =
1

G0Γ(1 + β)

(
t
τ

)β

with β ∈ [0, 1], Γ(·) the Euler-Gamma function,

[G0] = F/L2 the elastic modulus of the material, and [τ0] = T a material characteristic time [3,4].
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The use of power-laws for creep and relaxation allow introducing constitutive stress–strain
relations in terms of time non-local convolution integrals with power-law kernels yielding constitutive
equations in terms of fractional differential calculus [5–8]. Among them, mechanical hierarchy has
been introduced to capture the power-law evolution [9–11] and provide a mechanical description
of real-order integro-differential operators [8]. Fractional-order operators are nowadays recognized
as an interesting mathematical tool to model non-local problems in spatial coordinates [12–17] as
well as in time parameter [18–21]. Fractional-order operators involve linear convolution of the
state variables with power-law kernels and few contributions have been provided to deal with
non-linear problems, mainly due to non-linear measures of stress and strains [22]. Time non-local
formulations in presence of material non-linearity have been faced in the scientific literature since
the middle of the last century based on the principle of fading memory allowing, after some
manipulations, to express the constitutive equations as a sum of multiple integrals involving several
material functions [23]. Neglecting multiple integrals with respect to the single integral term leads
to the widely used Quasi-Linear Viscoelasticity (QLV) [24–26]. A comprehensive review of linear
and non-linear material hereditariness has been reported in some studies [27–34]. QLV has not,
however, been used in the context of fractional-order calculus to take full advantages of fractional-order
formalism. Indeed, the formulation of QLV is usually presented in terms of material relaxation that is
not readily obtained from experimental data for the inertia of loading equipment. Creep functions are,
instead, more easily obtained but no closed-form relations among creep and relaxations for the QLV
have been reported so far in the scientific literature to the best of the authors’ knowledge. Moreover, no
mechanical justification for the use of QLV models have been introduced, providing a severe limitation
in the use of the quasi-linear formulations.

Fractional-order QLV theory for measures and estimates of material parameters have been recently
reported in the scientific literature for tendons of the knee with a specific experimental protocol [35,36].

Non-linear models involving fractional-order operators have been discussed in the context
of non-linear dynamics [37] as well as in the context of large vibrations of plane structures with
fractional-order damping [38].

In this paper, the authors aim to show that the Nutting non-linear relation [39] corresponds to
a Fractional-order description of QLV, dubbed Quasi-Fractional Hereditary Material (Q-FHM) models.
The main advantages of such approach relies in a closed-form relations among creep and relaxation
parameters. The Q-FHM mechanical element is shown to be exactly equivalent to a mechanical
hierarchy completely analogous to the well-established hierarchy for fractional hereditary materials.
The proposed mechanical model constitutes a self-similar hierarchy that, as a result of the proper scaling
of material coefficients and fulfilling conservation of linear momentum, yields a time-invariance at any
resolution scale. Some numerical applications are reported in the paper to show the equivalence among
the power-laws modeling and the results of the application of the proposed non-linear hierarchy.

2. Linear (LV) and Quasi-Linear (QLV) Viscoelasticity of Materials

Material viscoelasticity (often referred hereditariness) is experienced each time a long-standing
controlled load (controlled displacement) experimental test shows time evolution of the measured
displacements (measured load). In this section, we assume a 1D load–displacement relation and
we switch to engineering measure of stress, namely σ (t), and of strain, namely ε (t), without loss
of generality. Under these circumstances, the constitutive behavior involves material function for
strain evolution, namely φc (σ, t), which provides the strain evolution under constant stress, as well
as a different material function yielding the stress decay under constant strain, namely φr (ε, t). In
passing, we observe that the material functions φc and φr depend, in general, on the applied stress and
strain, respectively.

In the framework of linear hereditariness, the creep function satisfies the linearity conditions:

φc (λσ, t) = λφc (σ, t) ∀λ ∈ R ; φc (σ1 + σ2, t) = φc (σ1, t) + φc (σ2, t) (1)
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A similar consideration holds true for the relaxation function that satisfies the linearity conditions in
Equation (1):

φr (λε, t) = λφr (ε, t) ∀λ ∈ R ; φr (ε1 + ε2, t) = φr (ε1, t) + φr (ε2, t) (2)

The linearity assumptions for the creep and relaxation functions allow introducing material
hereditariness for unitary value of applied stress and strain, namely σ = 1 and ε = 1, resulting in
stress and strain independent material hereditary functions as φc (1, t) = σJ (t) = 1J (t) and
φr (1, t) = εG (t) = 1G (t), respectively. Time-varying functions [G (t)] = F/L2 and [J (t)] = L2/F are
the well-known relaxation and creep functions, respectively.

In the following, the linearity conditions are extensively used to introduce the linear mathematical
description of material hereditariness as well as to provide a rheological description of the experimental
linear behavior observed for several conventional materials.

2.1. Mathematical Modeling of LV

The knowledge of the material functions J (t) and G (t), creep and relaxation functions,
respectively, allows for the use of Boltzmann superposition principle [40], yielding the stress and strain
at a generic time instant t due to an arbitrary stress σ(τ) or strain ε(τ) history as:

ε (t) =
∫ t

0
J (t− τ) σ̇ (τ) dτ (3a)

σ (t) =
∫ t

0
G (t− τ) ε̇ (τ) dτ (3b)

The equalities in Equation (3) are the well-known integral constitutive relations in 1D linear
hereditariness and it is well-known, after some straightforward manipulations, that creep and

relaxation functions must satisfy the fundamental equation of linear hereditariness Ĝ (s) Ĵ (s) =
1
s2 ,

with [s] =
1
T

the Laplace parameter and ˆ[•] the Laplace transform.
The specific functional class of creep and relaxation functions reported in Equation (3) may be

guessed from experimental data collected in the course of experimental campaigns and they are
very often expressed as single or linear combinations of exponential functions by means of Prony
representation theorem [41] as:

J (t) =
M

∑
r=1

Jr

1− exp

− t

τ
(c)
j

 (4a)

G (t) =
N

∑
r=1

Gr exp

− t

τ
(r)
j

 (4b)

where the coefficients of the expansions have physical measures [Gr] =
F
L2 and [Jr] =

L2

F
and the

material characteristic times in creep and relaxations, namely τ
(c)
j and τ

(r)
j , are additional material

parameters that may be estimated by best fitting procedures together with the expansion coefficients.
The integer numbers in the expansions, namely M and N, are the order of the Prony series used for
creep and relaxation, respectively.

The expressions for creep and relaxation functions reported in Equation (4) cannot, however,
satisfy the fundamental relation of linear hereditariness, and, henceforth, they must be used separately
in stress- and strain-based constitutive relations reported in Equation (3). Some attempts to introduce
analogous formulations joint in creep and relaxation led to unphysical negative values of the material
relaxation times in the Prony expansion [41].
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The functional stress–strain relations reported in Equation (4) possess an equivalent differential
formulation in terms of elastic (Hookean) and viscous (Newtonian) elements. In more detail, we report
in Figure 1a the differential formulation, named rheological representation of the Prony series
expansion of the creep function J (t). Similarly, the mechanical arrangements springs and dashpots
reported in Figure 1b correspond to the rheological representation of the relaxation function G (t)
reported in Equation (4b).

Figure 1. (a) Rheological model for exponential relaxation; and (b) rheological model for
exponential creep.

Direct comparisons of Figure 1a,b show that the mechanics beyond the creep and relaxation
functions described by Prony series expansion is quite different, as shown by the series and parallel
arrangements of springs and dashpots that correspond to the prescribed analytical expression in
Equation (3). Such a consideration is a direct consequence on the lack of mathematical consistency of
creep and relaxation functions expressed in terms of Prony series expansions.

In passing, we observe that, as long as N = M = 1, the well-known Maxwell elements
representing relaxation and Kelvin–Voigt element for creep are obtained. Indeed, as M = 1,
the governing equation of the rheological model for the relaxation function reads:

τrĠ (t) + G (t) = η1 ε̇ (t) = η1δ (t) (5a)

G (0) = E1 (5b)

where the relaxation time is defined as τr = η1/E1; E1 and η1 are the elastic modulus of the Hookean
and Newtonian elements, respectively; and δ (•) is the Dirac’s delta function.

Solving the differential problem in Equation (5) yields the non-dimensional relaxation Ḡ (t) in
the form:

G (t) = E1 exp
(
− t

τr

)
(6)

that correspond to the exponential form often used in linear hereditariness.
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In a similar fashion, as N = 1, the rheological model for the creep function J (t) is ruled by the
differential equation:

τc J̇ (t) + J (t) =
σ (t)
E1

=
H (t)

E1
(7a)

J (0) =
1

E1
(7b)

with τc = τr =
η1

E1
, H (t) the Heaveside function yielding the solution as:

J (t) =
[

1− exp
(
− t

τc

)]
(8)

2.2. Mathematical Modeling of QLV

Linear model introduced in previous studies does not account for the non-proportional evolution
of creep as well as of relaxation often observed in polymeric and rubberlike materials.

This aspect, often observed at the beginning of the 1990s, has been modeled by means of
a multiplicative decomposition of the material functions as:

φr (ε, t) = sn (t) G (t) ; φc (σ, t) = en (σ) J (t) (9)

with [sn (ε)] = [en (σ)] non-dimensional, non-linear functions of strain and stress level at time instant t,
respectively. Functions G (t) and J (t) are, instead, relaxation and creep functions observed in linear
viscoelasticity reported in Equations (4a) and (4b). Under this condition, the assumption of effect
superposition yields:

ε (t) =
∫ t

0
J (t− τ) dsn (τ) =

∫ t

0
J (t− τ) ṡn (τ) dτ (10a)

σ (t) =
∫ t

0
G (t− τ) den (τ) =

∫ t

0
G (t− τ) ėn (τ) dτ (10b)

The choice for sn (ε) = ∂ψH/∂ε and en (σ) = ∂ψG/∂σ, with ψH (ε) and ψG (sn) being the Helmoltz
and the Gibbs free energy function of hyperelastic materials, yields the QL model of non-linear
hereditariness as:

ε (t) =
∫ t

0
J (t− τ)

˙(
∂ψH
∂ε

)
dτ =

∫ t

0
J (t− τ)

∂2ψH (ε)

∂ε2 ε̇ (τ) dτ (11a)

σ (t) =
∫ t

0
G (t− τ)

∂ψG
∂σ

σ̇dτ =
∫ t

0
G (t− τ)

∂2ψG (σ)

∂σ2 σ̇ (τ) dτ (11b)

The conventionally used functional class of time-varying functions J (•) and G (•) corresponds
to the exponential combination expressed in Equations (4a) and (4b), respectively, for relaxation and
creep. However, the mechanical models corresponding to Prony series expansion does not allow
representing a rheological model similar to the linear case and, in this scenario, any attempt appears to
be fundamentally flawed.

Moreover, the use of QL models do not allow for an estimate of the creep function J (t) for
measured relaxation and vice versa. Indeed, as long as the separable form of the material relaxation
function is factorized in separable as φr (ε, t) = φe (ε) G (t), the corresponding creep material function
is φc (σ, t) 6= φe (σ) J (t) [42].

In the following section, we show that a different scenario is involved as we consider a power-law
for creep and relaxation evolution as well-as a power-law for the stress (strain) dependence of the
creep (relaxation) φc (φr) material functions.
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3. Fractional Hereditary Materials (FHM) and Quasi-Fractional Hereditary Materials (Q-FHM)

In this section, we aim to show that power-laws expressed in terms of real powers of time for the
material creep tβc and relaxation functions t−βr may be used for a consistent mathematical description
of linear and non-linear models of material hereditariness.

Fractional-order operators have been shown to be very useful for describing the mechanical
behavior of several engineering materials such as concrete [9,43], composites, polymers, and
rubbers [2,44,45] under some restrictions.

Fractional-order calculus has also been applied in other fields of applied mechanics, such as heat
transfer modeling [46], diffusive flow [47,48], wave propagation [49], and non-local elasticity [50–53].
For a comprehensive review, the readers may refer to [43]. Some stability mechanics problems involving
non-conventional description of material external restraints have also been represented by means of
fractional calculus [54,55].

3.1. Mathematical Modeling of FHM

In this section, we aim to provide a mathematical framework for the power-law time dependence
of creep and relaxation functions. In such circumstances, the creep J (t) and relaxation G (t) are
expressed as:

J (t) =
Jβ

Γ (1 + β)
tβ =

1
GβΓ (1 + β)

tβ =
1

G0Γ (1 + β)

(
t

τ0

)β

(12a)

G (t) =
Gβ

Γ (1− β)
t−β =

G0

Γ (1− β)

(
t

τ0

)−β

(12b)

where the anomalous terms
[
Gβ

]
=

FTβ

L2 ≥ 0,
[

Jβ

]
=

L2

FTβ
≥ 0 are material dependent coefficients,

the exponent 0 ≤ β ≤ 1 is a material dependent decaying order, and Γ (•) is the Euler-Gamma
function. The physical dimensions of the material coefficients allows representing the creep and
relaxation functions introducing a two-term factorization Gβ = G0τ

β
0 with τ0 a material dependent

characteristic time and G0 the conventional elastic modulus of the material observed in monotone
tensile test.

Straightforward manipulations show that Equation (12) satisfies the fundamental relations of
linear hereditariness and, by substituting it into Equation (2), the stress–strain constitutive equations
of linear hereditariness read:

σ (t) =
G0 (τ0)

β

Γ (1− β)

∫ t

0
(t− τ)−β ε̇ (τ) dτ = G0 (τ0)

β
(

Dβ
0 ε
)
(t) (13a)

ε (t) =
1

G0 (τ0)
β Γ (β)

∫ t

0
(t− τ)β−1 σ (τ) dτ =

1

G0 (τ0)
β

(
Iβ
0 σ
)
(t) (13b)

Notations introduced in the last equality at the right hand side of Equation (13), namely
(

Dβ
0 f
)
(t) and(

Iβ
0 f
)
(t) denote, respectively, the Caputo fractional derivative and the Riemann–Liouville fractional

integral of order β of the generic function f (t). Details about fractional-order operators are out of the
aims of the paper and the reader may refer to more complete readings about the topic (e.g., [1,5]).

Close observation of Equation (12) reveals that the insurgence of fractional-order operators of
Caputo-type is due to the specific choice of the time-decaying functions in terms of power-law types
as tβ or t−β, respectively. This choice probably depends on the specific functional class of experimental
data to be fit by the creep or relaxation functions. If alternative functional classes of the material
functions are better suited to describe experimental data, e.g., a class of non-singular kernels as
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exponential-type functions, then alternative fractional-order operators are obtained in Equation (13)
involving the so-called Caputo–Fabrizio fractional differential operator [56,57].
In the following, for simplicity, we refer to non-dimensional stress s (t) = σ (t) /G0, yielding the
constitutive equations for fractional-order non-linear hereditariness as:

s (t) = (τ0)
β
(

Dβ
0 ε
)
(t) (14a)

ε (t) = (τ0)
−β
(

Iβ
0 s
)
(t) (14b)

The linear model of fractional-order material hereditariness possesses a rheological element with
intermediate behavior among spring and dashpot, dubbed springpot after [6], and it is modeled as
a two-parameter element, namely the characteristic time τ0 and the order of the power-law β, as
depicted in Figure 2.

Figure 2. Springpot representation.

3.2. Mathematical Modeling of Q-FHM

The presence of material non-linearity has often been observed in creep and relaxation material
tests as coefficients of the power-law, i.e. the material characteristic time τ0 shows a strong dependence
on the level of the applied stress or strain [36]. Under such circumstances, data analysis shows that
material functions for constant stress, namely φc (σ, t), and for uniform strain, namely φr (ε, t), may be
expressed in a generalized, separable form as:

φc (σ, t) = Je (σ) J (t) =
σn

G0Γ (1− βc)

(
t

τ0

)βc

(15a)

φr (ε, t) = Ge (ε) G (t) =
G0εn

Γ (βr)

(
t

τ0

)−βr

(15b)

where the specific functional class of Ge (•) and Je (•) as well as the time-dependence expressed by the
functions G (t) and J (t) may be estimated from experimental data, and they may be represented
with power-law of time with averaged order β̄c and β̄r, respectively, for creep and relaxation.
Close observation of Equations (15a) and (15b) reveals that the separable form of the material function
is assumed as the basis of QLV [26] where the non-linear auxiliary state variables are expressed in
terms of the Helmoltz free energy Ψ (ε) assumed to represent the elastic behavior in monotone tensile

tests as σn = Ge (ε) =
dΨ (ε)

dε
and εn = Je (σ) =

dΨ(−1) (σ)

dσ
.

The use of the auxiliary variables allows introducing Boltzmann superposition principle,
yielding, for non-dimensional variables s (t) = (G0)

−1 σ (t) and sn (t) = (G0)
−1 σn (t):

s (t) =
(τr)

βr

Γ (1 + βr)

∫ t

0
(t− τ)−βr ε̇n (τ) dτ = (τr)

βr
(

Dβ̄r
0 εn

)
(t) (16a)

ε (t) =
(τc)

−β̄c

Γ
(
1− β̄c

) ∫ t

0
(t− τ)β̄c−1 ṡn (τ) dτ = (τc)

−β̄c
(

I β̄c
0 sn

)
(t) (16b)
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In the following, we assume that the non-linear functional class of the auxiliary variables are assumed
as power-laws εn (t) = (ε)αr and sn (t) = (s)αc , yielding with the formalism of fractional-order calculus:

s (t) = (τr)
βr
(

Dβr
0+
[
ε (t)αr

])
(t) (17a)

ε (t) =

[
1

τ
βr
r

(
Iβr
0+ s
)
(t)

]1/αr

(17b)

or involving the knowledge of the creep functions:

ε (t) = (τc)
−βc

(
Iβc
0+
[
s (t)αc

])
(t) (18a)

s (t) =
[
(τc)

βc
(

Dβc
0+ ε
)
(t)
]1/αc

(18b)

Observation of Equations (16a) and (16b) shows three main features:
(i) The constitutive equations for the non-dimensional stress involves a non-linear transform of

the strain ε (t)→ εn (t), a relaxation time τr, and the time-decay order βr.
(ii) The constitutive equation for the strain evolution involves the non-linear transform of the

stress s (t)→ sn (t), a creep characteristic time τc, and an evolution order βc, with βc 6= βr.
(iii) Some specific relations among creep (αc, βc, τc) and relaxation (αr, βr, τr) parameters have

been recently obtained as αc = 1/αr, βc = αcβr, βr = αrβc, and

τr = τc

Γ (βr)

1
αrβc Γ (βc + 1)

1
βc

 (19)

(iv) The proposed formulation for the constitutive models in terms of creep and relaxation
functions may be framed in the context of thermodynamics of linear viscoelasticity [58,59],
introducing the non-linear mapping in Equation (15) for the auxiliary state variables sn (t) and εn (t). In
this context, the existent formulations for the free energy and the mechanical dissipation [60] associated
with auxiliary strain and stress histories may be used for the formulation of the stress–strain relations.

It must be remarked that a similar formulation holds true also with other kinds of fractional-order
operators with non-singular kernels that have recently been reported in the scientific literature [56].

In the next section, we aim to show that the quasi-linear model of fractional-order material
hereditariness is exactly modeled by a rheological assembly of internal linear springs and internal
linear dashpots depending on the level of the external agency.

4. Exact Mechanical Description of Fractional-Order Quasi-Linear Hereditariness

In this section, we aim to show that the proposed approach to fractional model of QLV possess
an equivalent rheological model totally analogous to a mechanical hierarchy that has been proposed
for the linear fractional-order viscoelasticity.

4.1. The Rheological Model of Fractional-Order Quasi-Linear Hereditary Materials (FQHM)

Rheological description of the non-linear dependence of the power-law in previous section may
be captured as we introduce an unbounded linearly elastic bar that is externally restrained by a bed of
viscous element along the column length, as shown in Figure 3.
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Figure 3. Linear elastic bar externally restrained by viscous elements and equilibrium representation
of the single element.

The equilibrium of the generic element reads:

Ne(z + ∆z)− Ne(z) = −Nv (20)

where Nv is the overall force of the dashpots along the column and it reads:

Nv(z) = −C (z, F0)∆z
∂u
∂t

(z, t) (21)

and the elastic axial stress along the column reads:

Ne (z) = K(z, F0) [u (z, t)− u (z− ∆z, t)] (22a)

Ne (z + ∆z) = K(z + ∆z, F0) [u (z + ∆z, t)− u (z, t)] (22b)

and with u(z, t) the axial displacement along the column. Substitutions of Equations (21), (22a)
and (22b) into Equation (20) yields the equilibrium equation in terms of the kinematic field u(z, t)
along the column:

K(z + ∆z, F0)∆u (z + ∆z, t)− K(z, F0)∆u (z, t) = C (z, F0)∆z
∂u
∂t

(z, t) (23)

which, after some algebraic manipulation, may be written as:

∆
∆z

[K (z, F0)∆u] = C (z, F0)
∂u
∂t

(24)

and introducing the relation K (z, F0) =
Ka(z, F0)

∆z
with [Ka] = F and letting ∆z → 0, Equation (24)

reads:
∂

∂z

[
Ka (z, F0)

∂u
∂z

]
= C (z, F0)

∂u
∂t

(25)

with the relevant boundary conditions:

lim
z→∞

u (z, t) = 0; lim
z→0

Ka (z, t)
∂u
∂z

= F0 ∀t (26)
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and for the initial condition u(z, 0) = 0 ∀z. The mechanical hierarchy that corresponds to the non-linear
creep function in Equation (25) is obtained assuming that the applied force F0 is constant, as in standard
creep test. In the following, we assume that the axial stiffness and axial damping are expressed by the
relation:

Ka (z, F0) = Kαc

F0z
−δ

Γ (1− αc)
= K0

F(1−αc)
0 z

−δ

Γ (1− δ)
(27)

with [K0] = LδF(2+αc) and Γ(·) is the Euler-Gamma function and δ ∈ [−1, 1]. The non-linear damping
coefficient reads:

C (z, F0) = C0
F(1−αc)

0 z
−δ

Γ (1− δ)
(28)

with [C0] = F(2+αc)TLδ. Substituting Equations (27) and (28) into Equation (25) yields:

∂

∂z

[
K0z−δ ∂u

∂z

]
= C0z−δ ∂u

∂t
(29)

that has the same mathematical structures as the governing equation of the linear hereditary
hierarchy described in [9,10]. Laplace transformation L[u] = û(s) of Equation (29) yields, after some
straightforward manipulations:

d
dz

[
z−δ dû

dz

]
= sτ0z−δû (30)

with relaxation time τ0 =
C0

K0
. The solution of Equation (30) may be obtained in terms of the first and

second modified Bessel functions, Yβc(z
√

τ0s) and Kβc(z
√

τ0s), with βc(δ + 1)/2 as:

û (z, s) = zβc
[
B1Yβc (z

√
τ0s) + B2Kβc (z

√
τ0s)

]
(31)

yielding, after substitution into Equation (26), the condition B1 = 0. The integration constant B2 is
obtained by the boundary condition in Equation (26), yielding:

B2 lim
z→0

[
z(2βc−1) F(1−αc)

0 K0

Γ (1− δ)

d
dz

zβ
c Kβc (z

√
τ0s)

]
=

F0

s
(32)

The constant B2 is derived as:

B2 =
Fαc

0 (sτ0)
−βc/2

Γ (2βc)K022βc−1 (33)

The the axial displacement of the hierarchy at z→ 0, namely u0 (t), corresponds to the material creep
functions as:

u0 (t) = L−1

[
Fαc

0 (sτ0)
−βc/2

Γ (2βc)K022βc−αc
lim
z→0

zβc Kβc (z
√

τ0s)

]
=

=
Fαc

0 τ
−βc
0

K0Γ (2βc) Γ (βc)K022βc
tβc =

Fαc
0

KaΓβc

(
t
τ̄c

)βc
(34)

where we denote:
τc = τ

βc
0 Γ (2βc) Γ (β)Ka2βc (35)

that is completely equivalent to the non-linear creep function introduced to capture the non-linear
behavior of the tendons observed in the mechanical tests. In passing, we observe that the expression of
the creep function in Equation (35) does not allow for the use of time-superposition principle so that
no convolution integrals may be defined for non-linear hereditariness provided by Equations (16a)
and (16b) unless the non-linear transform Fe (t)→ F (t)αc is introduced. Under these circumstances,
the effect superposition may be used and the fractional-order operators may be readily defined.
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In the next section, some numerical applications are provided to show the reliability of the
proposed formulation.

4.2. Numerical Analysis

In this section, the hierarchic mechanical model presented in the previous section is used to
reproduce experimental results presented in Section 2. To find the response of the hierarchic model to
a constant applied stress, we recast the equilibrium equations of the elements of the discretized model
(Equation (24)) in matrix form as follows:

F1−αc
0 (pVBu̇ + qVAu) = vF0 (36)

where v is an influence vector and

pV =
C0∆z1−δ

Γ(1 + δ)
(37a)

qV =
K0∆z−1−δ

Γ(1− δ)
(37b)

A =



1−δ −1−δ 0 · · · 0
−1−δ 1−δ + 2−δ −2−δ · · · 0

0 −2−δ 2−δ + 3−δ · · · 0
· · · · ·
· · · · ·
· · · · −(N − 1)−δ

0 0 0 · · · (N − 1)δ + N−δ


(38a)

B =



1−δ 0 0 · · · 0
0 2−δ 0 · · · 0
0 0 3−δ · · · 0
· · · · ·
· · · · ·
· · · · ·
0 0 0 · · · N−δ


(38b)

and N is the number of laminae in which the hierarchical model has been discretized. To evaluate
the solution set of ordinary differential equations in Equation (36), we premultiply the system by
B−1/2 and introduce the coordinates transformation as x = B1/2u; as a consequence, we can write
Equation (36) as

pV ẋ + qVDx = ṽFαc
0 (39)

being D = B−1/2AB−1/2 and ṽ = B−1/2v. Moreover, in Equation (39), the load terms are simplified
and the load appears only on the right-hand side of the system; as a consequence, for constant applied
load history, the system is linear. For this reason, the matrix D can be easily diagonalized by the
standard method of modal analysis [10]. To this purpose, let Φ be the modal matrix whose columns
are the eigenvectors of the matrix D. Then,

ΦTDΦ = Λ ΦTΦ = I (40)

being I the identity matrix and Λ a diagonal matrix containing the eigenvectors of D. By introducing
the modal coordinates in Equation (39) as

x(t) = Φy(t) y(t) = ΦTx(t) (41)
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the following system of uncoupled linear differential equations is obtained

pV ẏ + qVΛx = v̄Fαc
0 (42)

The generic jth equation reads

δjẏj + yj =
φ1,j

qVλj
Fαc

0 (43)

where δj = pV/qVλj > 0 and φ1,j is the first component of the jth eigenvector. Equation (43) represents
the governing equation of the well-known viscoelastic Kelvin–Voigt model with unitary stiffness
coefficient and damping coefficient equal to δj. Since the applied force on the right-hand side of
Equation (43) is constant, the solution is the creep function of the Kelvin–Voigt model amplified by the
value of the force in the y domain, that is

yj(t) =
φ1,j

qVλj
Fαc

0
[
1− exp(−t/δj)

]
(44)

The solution in the original domain related to the upper lamina, the one we are interested
in, can easily be obtained by the following

u1(t) = vTB−1/2Φy(t) (45)

Equation (45) can reproduce the nonlinear creep behavior described by the Nutting law. To this
purpose, Figure 4 shows the creep function obtained with the aid of Equation (45) for different values
of the applied force F0. It is evident that, as the applied force increases, the creep curves do not scale
linearly.

0 20 40 60 80 100
0.0

0.5

1.0

1.5

t s

t

s=1 MPa

s=4 MPa

s=8 MPa

s=2 MPa

Figure 4. Plot of the creep curve related to the displacement of the upper lamina for different values of
the applied force. Parameter values: αc = 1.4, βc = 0.3, ∆z = 0.01, N = 2000, and τc = 1.

5. Conclusions

In this paper, the authors discuss in detail the non-linear hereditariness of materials, described
by time non-local models, with a single-integral approach. As long as time-varying power-law is
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considered as integral kernel, a fractional-order single integral non-linear model is obtained with
a three parameters generalized springpot: (i) non-linear exponent αc; (ii) decaying exponent βc; and
(iii) the characteristic time τc. The model is completely equivalent to the Nutting relations observed for
rubbers and polymers. The single integral model allows for the use of effect superposition of auxiliary
state variables, in terms of stress and strain, that account for the position of some equivalence relations
among creep and relaxations parameters: (i) non-linear exponent αr; (ii) decaying exponent βr; and (iii)
characteristic time τr. They were observed and verified with a large experimental campaign on several
materials. The generalized springpot possesses an equivalent mechanical hierarchy, totally analogous
to the well-known mechanical hierarchy already established for the linear springpot, with non-linear
internal springs and dashpots. Some numerical examples reporting the behavior of the non-linear
hierarchy are reported in the paper.
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