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Abstract: We outline the basic properties of regular black holes, their remnants and self-gravitating
solitons G-lumps with the de Sitter and phantom interiors, which can be considered as heavy dark
matter (DM) candidates generically related to a dark energy (DE). They are specified by the condition
Tt

t = Tr
r and described by regular solutions of the Kerr-Shild class. Solutions for spinning objects can

be obtained from spherical solutions by the Newman-Janis algorithm. Basic feature of all spinning
objects is the existence of the equatorial de Sitter vacuum disk in their deep interiors. Energy
conditions distinguish two types of their interiors, preserving or violating the weak energy condition
dependently on violation or satisfaction of the energy dominance condition for original spherical
solutions. For the 2-nd type the weak energy condition is violated and the interior contains the
phantom energy confined by an additional de Sitter vacuum surface. For spinning solitons G-lumps a
phantom energy is not screened by horizons and influences their observational signatures, providing
a source of information about the scale and properties of a phantom energy. Regular BH remnants and
G-lumps can form graviatoms binding electrically charged particles. Their observational signature
is the electromagnetic radiation with the frequencies depending on the energy scale of the interior
de Sitter vacuum within the range available for observations. A nontrivial observational signature
of all DM candidates with de Sitter interiors predicted by analysis of dynamical equations is the
induced proton decay in an underground detector like IceCUBE, due to non-conservation of baryon
and lepton numbers in their GUT scale false vacuum interiors.

Keywords: dark matter; dark energy; de Sitter vacuum; phantom energy

1. Introduction

Regular spherical black holes with the de Sitter interiors and self-gravitating solitons replacing
naked singularities are described by the Einstein equations with source terms specified by [1,2]

Tt
t = Tr

r (pr = −ρ) (1)

and satisfying the weak energy condition (WEC) which requires non-negativity of density for any
observer on a time-like curve.

The early hypotheses concerning replacement of a singularity with a de Sitter core related
appearance of the de Sitter vacuum with the self-regulation of geometry due to vacuum polarization
effects [3], with the existence of the limiting curvature [4], and with the symmetry restoration at
the GUT scale in the final stage of the gravitational collapse [1,5]. Appearance of a de Sitter core
instead of the Schwarzschild singularity was found in the frame of a loop quantum gravity [6,7],
of renormalization group improving [8], and of a noncommutative geometry approach [9].
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Dark energy is defined by the equation of state p = wρ with w < −1/3 responsible for
accelerated expansion ä ∼ −a(ρ + 3p). The best fit, w = −1.06± 0.06 at 68% CL [10], distinguishes
the cosmological constant λ related to the vacuum density ρvac as λ = 8πGρvac.

The Einstein cosmological term λδ
µ
ν = 0 associated with the maximally symmetric de Sitter

vacuum Tµ
ν = ρvacδ

µ
ν can power the inflationary dynamics in the early Universe and at present but

cannot provide a description of a λ evolution because of ρvac = const by virtue of the Einstein equations.
Alternative models propose a dark energy of a non-vacuum origin (for a review see Reference [11]).

A time-dependent and spatially inhomogeneous vacuum dark energy is suggested by the algebraic
classification for the stress-energy tensors as defined by the algebraic structure of its stress-energy
tensor [1,12], in which the maximal symmetry Tµ

ν = ρvacδ
µ
ν is reduced to a partial symmetry Tt

t = Tα
α

with the vacuum equation of state pα = −ρ in not more than two spatial directions. Introduced
in this way vacuum dark fluid [13] can be both evolving and clustering. Solutions to the Einstein
equations present, dependently on coordinate mapping, regular cosmological models with variable
λ(ρvac) including initial, final and intermediate (if necessary) de Sitter stages [14–16] (for a review, see
Reference [17]), and regular black holes (RBHs) and self-gravitating solitons G-lumps (particlelike
structures without horizons replacing naked singularities) with the de Sitter interiors [13,18] (for a
review, see Reference [19]). Mass M of an object is related to spacetime symmetry breaking from the
de Sitter group at the origin [2]. It can be presented as M = (4π/3)ρΛr2

Λrg = (4π/3)ρΛr3
ss where

rg = 2GM, ρΛ = ρ(r → 0), and rΛ = (3/(8πGρΛ))
1/2. The length scale rss = (r2

Λrg)1/3 is intrinsic
for de Sitter-Schwarzschild geometry matching the Schwarzschild exterior to the de Sitter interior
directly [3] or continuously [1].

Black hole remnants, the end-products of the Hawking evaporation, have been discussed as a
reliable source of dark matter for above forty years [20–22] (for a recent review see Reference [23]).
In the case of a singular black hole there is no symmetry or quantum number which would prevent
a black hole from a complete evaporation [24,25], while the complete evaporation would inevitably
produce a crucial change in the spacetime structure [26] as well as would lead to a fundamental open
question—how to evaporate a singularity? [27]. Quantum evaporation of a regular black hole involves
a 2-nd order phase transition followed by quantum cooling and resulting in thermodynamically stable
double-horizon remnant [28–30] (for a review see Reference [31]) free of the existential problems.

Primordial RBHs, their remnants and G-lumps can be considered as heavy dark matter candidates
generically related to a vacuum dark energy via their de Sitter interiors [18,32]. In their GUT scale
false vacuum interiors baryon and lepton numbers are not conserved, as a result they can induce
proton decay in an underground detector like IceCUBE, which would present their observational
signature in heavy dark matter searches [32]. They can form graviatoms with electrically charged
particles [33]. Electromagnetic radiation of graviatoms which provides their observational signature,
depends essentially on the energy density of the interior de Sitter vacuum and fits within the range
available for observations [33].

Spherical solutions specified by Equation (1) belong to the Kerr-Shild class [34]. General approach
for obtaining axially symmetric solutions from spherical solutions of this class was developed by
Gürses and Gürsey [35]. It includes the Newman-Janis algorithm and allows to transform spherical
solutions to the axially symmetric solutions which describe regular rotating black holes and spinning
G-lumps replacing naked singularities [36–38] (for a review see Reference [39]). The de Sitter center is
transformed to the equatorial de Sitter vacuum disk which is the generic property of all axial solutions
obtained with the Newman-Janis algorithm [36,39].

Energy conditions distinguish two types of interiors. The 1-st type interior satisfies WEC and
reduces to the de Sitter vacuum disk. The 2-nd type interior includes an additional two-dimensional
closed S-surface of the de Sitter vacuum which contains the de Sitter disk as a bridge. WEC is violated
in the internal cavities between the S-surface and the disk, which are thus filled with a phantom
energy [38,39] specified by the equation of state p < −ρ (w < −1 in p = wρ) [40] (for a review see
Reference [41]). For solutions of the the Kerr-Schild class pr = −ρ; p⊥ + ρ < 0.
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Geometry of rotating objects includes ergoregions where processes of extraction of rotational
energy can occur (see, e.g., a topical review in Reference [42]). Spinning G-lump can have two
ergospheres and ergoregion between them, or one ergosphere and ergoregion beyond it [38].

For a G-lump with 2-nd kind interior a phantom energy is not screened by the horizon. This would
make possible extraction of a phantom energy and lead to additional observational signatures for
spinning G-lumps and graviatoms as heavy dark matter (DM) candidates providing a source of
information about the scale and properties of a phantom energy.

In Section 2 we outline the basic features of spherically symmetric objects, and their observational
signatures as heavy DM candidates. Section 3 is devoted to spinning compact objects with de Sitter
interiors and additional opportunities following from existence of two types of their interiors with
different dark energy (DE) contents. Section 4 contains summary and discussion.

2. Spherical Objects with de Sitter Vacuum Interiors

The Einstein equations admit the class of regular spherically symmetric solutions with the de
Sitter centers due to the algebraic structure of their source terms Equation (1) satisfying WEC which
ensures non-negativity of density [1,2,12,43]. They are described by the metrics [1,12]

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2; g(r) = 1−

Rg(r)
r

; Rg(r) = 2GM(r); M(r) = 4π
∫ r

0
ρ(x)x2dx. (2)

Regularity at the origin is guaranteed by the de Sitter asymptotic as r → 0 where the metric
function g(r) tends to the de Sitter metric g(r) = 1− r2/r2

0 with the de Sitter radius r0 related to the
central density ρ0 as r2

0 = 3/(8πGρ0); a source term Equation (1) responsible for a metric Equation (2)
takes the de Sitter value Tµ

ν = ρ0δ
µ
ν , and the spacetime symmetry restores to the de Sitter group [2].

It can be confirmed by direct calculation of the Kretschmann curvature invariant K2 = RiklmRiklm

where Riklm is the Riemann curvature tensor (see, e.g., Reference [44]). For the geometries with the
metrics Equation (2) it reduces to

K2 = 4(R0101R0101 + R0202R0202 + R0303R0303 + R1212R1212 + R1313R1313 + R2323R2323) (3)

where

R0101 =
Rg

r3 −
R′g
r2 +

R′′g
2r

; R0202 = −
(r−Rg)

2

(
Rg

r2 −
R′g
r

)
; R0303 = R0202 sin2 θ; (4)

R1212 =
r2

2(r−Rg)

(
Rg

r2 −
R′g
r

)
; R1313 = R1212 sin2 θ; R2323 = −rRg sin2 θ. (5)

The Kretschmann curvature invariant tends to the de Sitter value K2 = 24/r4
0 as r → 0.

The number of spacetime horizons is directly related to the number of the de Sitter vacuum scales,
Nhorizons ≤ (2Nvacuum scales − 1) [16]. In the case of two vacuum scales, at the origin and at infinity,
a stress-energy tensor evolves between two de Sitter vacua, and the metric function g(r) tends to the
Schwarzschild-de Sitter metric g(r)Schw−deS = 1− 2GM/r− λr2/3.

Spacetime with 2 vacuum scales can have not more than 3 horizons and admits 5 possible
configurations shown in Figure 1: regular cosmological black hole with mass constrained by Mcr1 <

M < Mcr2 and confined by the event horizon rb and the internal horizon ra in the universe with
the cosmological horizon rc (Figure 1 Left); two double-horizon states, ra = rb(M = Mcr1) and
rb = rc(M = Mcr2), and two one-horizon states (Figure 1 Right) [45]
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Figure 1. Typical behavior of the metric function g(r) for the case of two vacuum scales.

De Sitter-Schwarzschild spacetime with one vacuum scale—at the de Sitter center—has two
horizons. The metric function g(r) in Equation (2) tends to the Schwarzschild metric for r � rg and to
the Minkowski metric g(r)→ 1 as r → ∞. Spacetime is asymptotically flat and admits three possible
configurations including a regular black hole with M > Mcr, an extreme regular black hole with the
double horizon ra = rb(M = Mcr1) and G-lump with M < Mcr.

Global structure of regular spacetime with the de Sitter center is shown in Figure 2 Left for the de
Sitter-Schwarzschild spacetime and in Figure 2 Right for spacetime with two vacuum scales.
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Figure 2. Left: Radial geodesics in de Sitter-Schwarzschild spacetime. Geodesic is plotted by thick line
for E2 ≥ 0 and by dashed line for E2 < 1. Surfaces r = const are shown by dotted lines. Right: Global
structure of spacetime with two vacuum scales.

Global structure is presented by the Penrose-Carter conformal diagrams which represent the
maximal analytic extension for solutions Equation (2), and contains an infinite sequence of regular
black and white holes, BH andWH, whose future and past singularities are replaced with regular
asymptotically de Sitter coresRC, and parallel (not causally connected) universes U1, U2. The horizons
are denoted by r−, r+, r++. The surfaces J − and J + are the null (ds2 = 0) boundaries of the manifold,
and i0 represents the spacelike infinities (see Reference [14] and references therein).

Extension of diagrams in both directions (up and down) satisfies the requirement of geodesic
completeness of manifold, which means that all geodesics can be infinitely continued to both future and
past except those which terminate in a singularity [46].

In regular spacetime, geodesics never terminate. All infalling particles travel towards future
regions of the Penrose-Carter diagram. Radial timelike geodesics satisfy the equation ṙ2 = E2 − g(r)
where the dot denotes derivative with respect to the proper time. For the asymptotically flat spacetime
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they are shown in Figure 2 Left [47]. A particle with E2 ≥ 1 arrives at the center where the type
of geodesic changes, ingoing geodesic becomes outgoing (see Figure 2 Left), and travel includes
"reflections" from the regular timelike surfaces r = 0 in the future [47]. A particle with E2 < 1 meets
a turning point ṙ = 0 at a surface r = ri (dotted lines in Figure 2 Left), and continues its motion
towards growing r. (Geodesics of this type exist also in the Reissner-Nordström spacetime where not
all infalling particles terminate in a singularity [46].)

Photons whose wave length is much less than a characteristic scale of geometry, propagate along
the null geodesics guided by ṙ = ±E, directed from J − towards J + and oriented under the angle
π/4. In spacetime with two vacuum scales shown in Figure 2 Right, geodesics behavior is similar.

In the field of a G-lump, test particles on radial geodesics penetrate the point r = 0 and move
outward it in the same space.

For the metrics from the class Equation (2) the quantum temperature of any horizon reads [48]

kTh =
h̄c
4π
|g′(rh)|. (6)

The partition function Z(kTh) calculated as the path integral sum for a canonical ensemble of
spacetime metrics from the class Equation (2) at the constant temperature of the horizon, entropy Sh
and internal energy Eh are given by [49]

Z(kTh) = Z0 exp
[

1
4

(
4πr2

h

)
− 1

kTh

(
|g′|
g′

rh
2

)]
∝ exp

[
S(rh)−

E(rh)

kTh

]
; Sh = πr2

h; Eh =
|g′|
g′

rh
2

. (7)

The specific heat of a horizon can be written in the form [30]

Ch = dEh/dTh =
2πrh

g′(rh) + g′′(rh)rh
, (8)

which allows to determine stability of a product of evaporation directly by its metric function.
Process of the quantum evaporation of RBH from its 3 horizons (shown in Figure 1 Left) occurs

with decreasing mass M and is directed towards the double-horizon state, ra ⇀↽ rb (the curve M = Mcr1

in Figure 1 Right), where the temperature vanishes [30]. Behavior of temperature-horizon dependence
(shown in Figure 3 Left) is generic, because the temperature evolves between two zero values, at the
double horizons ra = rb and rb = rc, hence it must have a maximum somewhere in between, where
specific heat Ch = dEh/dTh = (dEh/drh)(drh/dTh) (shown in Figure 3 Right) is inevitably broken and
changes the sign [28], which testifies for the 2-nd order phase transition followed by the quantum
cooling [28–30]. Maximum of the temperature is achieved at the phase transition and is given by
Ttr ' αTPl

√
ρΛ/ρPl with α ≤ 1 [28].

Figure 3. Temperature and specific heat of the black hole event horizon.

Evaporation stops at the double-horizon state ra = rb where the temperature vanishes and
specific heat becomes positive by virtue of Equation (8), hence the end-product of evaporation is the
thermodynamically stable remnant generically related to vacuum dark energy via its interior de Sitter
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vacuum ([30,50] and references therein). Its mass is determined by Mremn ' βMPl
√

ρPl/ρint [28,30]
where the coefficient β ≤ 1 depends on the form of the density profile.

For the pictures in this Section we applied the density profile [1]

ρ(r) = ρΛe−r3/r2
Λrg ; r2

Λ =
3

8πGρΛ
; ρΛ = ρ(r → 0); rg = 2GM, (9)

calculated in the simple semiclassical model of vacuum polarization effects in the gravitational field to
which contribute all fields involved in a collapse, which results in ρ ∝ exp (−Fcr/F), where F ∝ rg/r3

is the gravitational (tidal) force, and Fcr ∝ 1/r2
Λ is the critical (de Sitter) force [1,2,28].

For the density profile Equation (9) with ρΛ = ρGUT and MGUT ' 1015 GeV, the temperature at
the phase transition Ttr ' 0.2× 1011 GeV; the mass of the remnant Mremn ' 0.3× 1011 GeV [28].

The process of regular RBH evaporation is free of the existential problem crucial for a singular
black hole due to the absence of a mechanism preventing complete evaporation [24,25], which involves
an essential change in the spacetime structure from a spacetime with the distinguished (by the
singularity) center to the globally regular maximally symmetric de Sitter or Minkowski spacetime.
As a result, the question—how to evaporate a singularity?—also becomes irrelevant [27].

Regular object without the event and internal horizons (the upper curve, M < Mcr1, in Figure 1
Right) is identified as a self -gravitating soliton G-lump [2,28], which can be presented as a spherical
bubble with decreasing from the center density (WEC requires ρ′ ≤ 0 [2]) and is described by the
mini-superspace model with a single degree of freedom [51] in the gravitational potential V(r) =

−GM(r)/r. Energy spectrum of G-lump, En = h̄ω(n + 1/2)− GM(rm)/rm; ω =
√

3p⊥(rm)c/rΛ,
is shifted down by the minimum of the potential V(rm) in r = rm which corresponds to the binding
energy. Here p⊥ is the transversal pressure (normalized to ρΛ). The energy of the zero-point vacuum
mode E0 =

√
3p⊥ h̄c/2rΛ is remarkably similar to the energy of the Hawking radiation from the de

Sitter horizon, kTH = h̄c/2πrΛ, which would be emitted in the presence of the horizon [2]. For the
density profile Equation (9) p⊥(rm) ' 0.2.

Regular primordial black holes and G-lumps can arise during the early inflationary stage(s) in
the processes of collapse of quantum fluctuations arising from primordial inhomogeneities. For this
reason their observational signatures as heavy dark matter candidates provide the signatures for
inhomogeneity of the early universe [32]. Probability of their formation in a quantum collapse and
masses are constrained by [33]

D > exp

[
−4
(

M
MPl

)3/4
(

EPl
Ein f l

)]
;

M
MPl

>

(Ein f l

EPl

)4 ( EPl
Eint

)8
. (10)

Possibilities of formation of compact objects with the de Sitter interior depend on the scales
of the interior vacuum Eint and of the inflationary vacuum Ein f l . At the first inflation the scale of
inflationary vacuum can be adopted as the GUT scale Ein f l = EGUT . In the case of interior de Sitter
vacuum of the GUT scale [5], Eint = EGUT , mass of an arising object is constrained by M > 1011 g,
and most probable is formation of primordial RBHs. In the case of the Planck scale for interior de Sitter
vacuum [3,4], mass range for collapsing objects admits production of G-lumps. Objects with small
masses are produced with the bigger probability (for a detailed analysis see Reference [33]).

One more possibility implied by the standard model is production of compact objects with the
de Sitter interiors during the second inflationary stage in the early Universe. The standard model
of particle physics predicts a phase transition at the QCD scale of 100–200 MeV which can lead to a
second inflationary stage with duration of about 7–10 e-foldings (see Reference [52] and references
therein). In this case the formation constraints Equation (10) admit any mass.

Primordial RBH remnants and G-lumps can capture charged particles and form graviatoms—
gravitationally bound (αG = GMm/h̄c) quantum systems ([33] and references therein). Conditions
needed for the formation of graviatoms [33] constrain the masses of particles by m > 109 GeV for
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Eint = EGUT . This constraint admits GUT scale particles arising after the first inflation and leptoquarks
survived in galactic haloes [53].

Observational signatures of RBH remnants, G-lumps and graviatoms as heavy DM candidates
provide information about the scale of the interior de Sitter vacuum. Objects with the GUT scale
interiors, where baryon and lepton numbers are not conserved, may induce a proton decay in an
underground detector. The rough estimate for the cross-section of such a process by the geometrical
size of a nucleon (σ ∼ 10−26 cm2), would lead to one event per 107 years in one ton of a detector matter.
In the 1 km3 detector, like IceCUBE, there could be expected up to 300 events per year [32] which can
be observational signature of DM candidates with the de Sitter interiors in heavy dark matter searches
at the IceCUBE experiment [32].

Observational signature for graviatoms is provided by their electromagnetic radiation with
the characteristic frequency essentially depending on the scale of the interior de Sitter vacuum.
Most promising is the oscillatory radiation [33]. For the density profile Equation (9) the energy
h̄ω = 0.678 h̄c/rdeS = 0.678 × 1011 GeV (Eint/EGUT)

2 appears within the range of observational
possibilities (for cosmic photons up to 1011.5 GeV [54]).

3. Regular Spinning Compact Objects with DE Interiors

The spherically symmetric metrics Equation (2) belong to the Kerr-Schild class [34] and can be
transformed to the axially symmetric metrics in general, model-independent form as was established
by Gürses and Gürsey [35] who have shown that the metrics of this class can be presented in the
Lorentz covariant coordinate system, and developed the general approach based on the complex
Trautman-Newman translations which include the Newman-Janis algorithm typically applied for
constructing axially symmetric solutions describing spinning objects (for a review [39]).

In the Boyer-Lindquist coordinates the Gürses-Gürsey metric reads [35]

ds2 =
2 f − Σ

Σ
dt2 +

Σ
∆

dr2 + Σdθ2 − 4a f sin2 θ

Σ
dtdφ +

(
r2 + a2 +

2 f a2 sin2 θ

Σ

)
sin2 θdφ2 (11)

in the units c = G = 1. The Lorentz signature is [- + + +], and

∆ = r2 + a2 − 2 f (r); Σ = r2 + a2 cos2 θ, (12)

where a is the angular momentum. The metric Equation (11) contains a master function

f (r) = rM(r) (13)

which directly relates an axial solution with a spherical solution from which it originates. In the
asymptotically flat case considered here the metric Equation (11) reduces to that for the Kerr geometry,
f (r) → Mr as r → ∞ [35]. The mass parameter M =M(r → ∞) coming from a spherical solution,
is the finite positive mass generically related to the interior de Sitter vacuum and breaking of space-time
symmetry from the de Sitter group for any solution from the class specified by Equation (1) [2].

In the axially symmetric geometry surfaces of constant r are the oblate confocal ellipsoids [46]

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0, (14)

which degenerate, for r = 0, to the equatorial disk

x2 + y2 ≤ a2, z = 0, (15)

centered on the symmetry axis and bounded by the ring x2 + y2 = a2, z = 0. The Cartesian coordinates
x, y, z are related to the Boyer-Lindquist coordinates r, θ, φ by x2 + y2 = (r2 + a2) sin2 θ; z = r cos θ.
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The asymptotically flat spacetime with the metric Equation (11) can have not more than two
horizons [38]. They are defined by the equation

∆(r+, r−) = r2
± + a2 − 2 f (r±) = 0, (16)

where r− and r+ is the internal and event horizons, respectively.
Ergosphere is a surface of a static limit gtt = 0. It satisfies the equation

r2
e + a2 cos2 θ − 2 f (re) = 0. (17)

Ergoregions are defined by gtt < 0 (which makes possible extraction of rotational energy).
For black holes ergospheres and ergoregions exist for any density profile. In the case of a spinning
G-lump the existence of ergospheres depends on the density profile. G-lumps can have two ergospheres
and ergoregion between them, one ergosphere and ergoregion involving the whole interior, or no
ergospheres [38].

The stress-energy tensor responsible for the geometry Equation (11) can be written in the form [35]

Tµν = (ρ + p⊥)(uµuν − lµlν) + p⊥gµν (18)

in the orthonormal tetrad

uµ =
1√
±∆Σ

[(r2 + a2)δ
µ
0 + aδ

µ
3 ], lµ =

√
±∆
Σ

δ
µ
1 , nµ =

1√
Σ

δ
µ
2 , mµ =

−1√
Σ sin θ

[a sin2 θδ
µ
0 + δ

µ
3 ]. (19)

The sign plus refers to the R-regions outside the event horizon and inside the internal horizon
where the vector uµ is time-like. The sign minus refers to the regions between the horizons where the
vector lµ is time-like. The vectors mµ and nµ are space-like in all regions.

The eigenvalues of the stress-energy tensor Equation (18) in the co-rotating frame where ellipsoidal
layers rotate with the angular velocity ω(r) = uφ/ut = a/(r2 + a2), are defined by

Tµνuµuν = ρ(r, θ); Tµνlµlν = pr = −ρ; TµνnµnνTµνmµmν = p⊥(r, θ) (20)

in the regions outside the event horizon and inside the intern horizon where density is defined
as the eigenvalue corresponding to the time-lik eigenvector uµ. They are expressed via a related
spherical function f (r) as 8πΣ2ρ(r, θ) = 2( f ′r− f ); 8πΣ2 p⊥(r, θ) = 2( f ′r− f )− f ′′Σ [35]. With using
Equation (13) and definition of a mass function in Equation (2) we obtain the relation between
the density ρ(r, θ) and transversal pressure p⊥(r, θ) and the density ρ̃(r) and pressure p̃⊥(r) =

−ρ̃− rρ̃′/2 [1,3] for a related spherical solution

ρ(r, θ) =
r4

Σ2 ρ̃(r); pr = −ρ : p⊥(r, θ) =

(
r4

Σ2 −
r2

Σ

)
ρ̃(r) +

r2

Σ
p̃⊥(r), (21)

This gives the master relation basic for investigation of energy conditions for the class of regular
spinning objects described by the metrics Equation (11) obtained from the metrics Equation (2) [37,38]

pr = −ρ : p⊥ + ρ =
r|ρ̃′|
2Σ2 S(r, z); S(r, z) = r4 − z2P(r); P(r) =

2a2

r|ρ̃′| (ρ̃− p̃⊥). (22)

On the equatorial disk Equation (15), r = 0 and z = 0, the equation of state takes the form
p⊥ = pr = −ρ and represents the rotating de Sitter vacuum in the co-rotating frame [36–38].

Regular axially symmetric solutions satisfy the condition Equation (1) and describe regular
spinning black holes and solitons with the de Sitter vacuum interiors, asymptotically Kerr for a distant
observer [38]. The existence of interior de Sitter vacuum disk is the generic property of all regular
spinning objects described by solutions obtained with using the Newman-Janis algorithm [39].
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Energy conditions distinguish two kinds of their interior regions. In the case when a spherical
solution violates the dominant energy condition (DEC), ρ̃ < p̃⊥, we have P(r) ≤ 0, and the function
S(r, z) in Equation (22) vanishes only at approaching the de Sitter disk Equation (15). The 1-st type
interior of spinning objects satisfies WEC. It is shown in Figure 4 Left, where we also plotted the
horizons r+, r−, and the ergosphere.

The 1-st type interior of spinning objects satisfies WEC and looks as shown in Figure 4 Left,
where we also plotted the event horizon r+, the internal horizon r− and the ergosphere.

In the case when a spherical solution satisfies DEC, ρ̃ ≥ p̃⊥, we have P(r) ≥ 0 and there can exist
the closed de Sitter surface, S-surface p⊥ + ρ = 0 with the de Sitter disk as a bridge. In the cavities
between the upper and down boundaries of the S-surface and the bridge WEC is violated, p⊥ + ρ < 0,
p⊥ < −ρ, and cavities are filled with a phantom fluid. It is the 2-nd type interior shown in Fig.4 Right,
where rv is a characteristic regularization parameter [37,38].

x
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Figure 4. Left: Horizons, ergosphere and de Sitter vacuum disk for the 1-st type interior. Right:
Vacuum S-surface embedding de Sitter disk in the 2-nd type interior.

In a black hole with the 2-nd type interior the phantom region can be screened by the event
horizon. In the case of a G-lump the phantom region is open to the outside region. Its S-surface is
located beyond the ergosphere, a phantom region fits within the ergoregion, as a result the processes
of energy extraction can involve also the phantom energy.

For spinning G-lumps extraction of both rotational and phantom energy from their ergoregions is
facilitated by the absence of the horizons. In Figure 5 we show the S-surface (Left) plotted for a = 0.4
(where a is the angular momentum normalized to GM), and dependence of horizons on a (Right) for
different values xg = rg/rΛ where rg = 2 GM; rΛ = (3/(8πGρΛ))

1/2.
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Figure 5. Left: S-surface, horizons and ergosphere for a = 0.4. Right: Horizons dependently on a.
The parameters r and a are normalized to GM.
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Pictures in this Section are plotted for the particular exact solution, originated from the spherically
symmetric solution with the phenomenologically regularized Newtonian profile [38]

ρ̃ =
B2

(r2 + r2
v)

2 ; rv =
π2B2

M
;→ B2 = ρ̃Λr4

v; rv =

(
4r2

Λrg

3π

)1/3

=

(
4xg

3π

)1/3
rΛ, (23)

where ρ̃Λ is the density of the de Sitter vacuum on the disk r = 0 and xg = rg/rΛ.
The cut-off length scale rv in Equation (23) is proportional to the de Sitter radius rΛ. The parameter

B2/r4
v = ρ̃Λ gives the interior density at r → 0 and represents the energy density of self-interaction

directly related to Λ (8πGρ̃Λ = 3/r2
Λ = Λ), in accordance with the Zel’dovich idea [55] to associate

the cosmological constant with self-interaction [38].
The cut-off parameter rv allows us to present the mass of an object by the formula M = π2ρ̃Λr3

v,
which corresponds to the volume in the closed de Sitter world, and displays the relation of the mass for
rotating regular compact objects with the interior de Sitter vacuum revealed for the spherical objects of
this class [2].

For the density profile Equation (9) P(r) = r4
∗/r2 (r2

∗ = rva), and the condition S = 0 in
Equation (22) reduces to r6 − r4

∗z2 = 0. The width of the S-surface W2
S = (x2 + y2)S as the function of

z has two maxima at zm = ±r∗(1− a2/r2
∗)/2 [37,38]. The relation between the width of the S-surface

in the equatorial plane WS = a and its height HS = |z|max =
√

arv defines the form of the S-surface
by the oblateness parameter η = HS/WS .

The parameter B2 = Mrv/π2 in Equation (23) can be presented as B2 = β2GM2, where the
dimensionless parameter β2 = (2/π2)(4/3π)1/3(xg)−2/3. Detailed form of the S-surface depends on
the parameters β and on the specific angular momentum α = a/GM. The quantities HS , WS and the
oblateness parameter η are given by

HS =

√
a
rv

; WS = a; η =

√
rv

a
=

πβ√
α

. (24)

The case α > π2β2 corresponds to η < 1 and to the oblate S-surface shown in Figure 4.
For α < π2β2, we have η > 1 and the S-surface becomes prolate [38].

4. Summary and Discussion

We considered the basic features of regular compact objects with DE interiors as predicted by
analysis of regular solutions to dynamical equations governing their behavior. Such an approach
yields the information about generic properties without model assumptions and constraints.

Algebraic classification of stress-energy tensors allows to introduce in general setting dynamical
vacuum dark energy by reducing maximal symmetry of the Einstein cosmological term keeping the
vacuum equation of state only in one or two spatial directions. In the considered here case the algebraic
structure of a source term in the Einstein equations is specified by Tt

t = Tr
r (pr = −ρ). Regular

solutions of this class describe regular black holes, stable remnants of their quantum evaporation and
self-gravitating vacuum solitons G-lumps replacing naked singularities. The basic generic feature of
these objects is the de Sitter vacuum interiors.

For spinning regular objects of this class dynamical equations predict the existence of two kinds
of regular interiors, one preserving and the other violating the weak energy condition. The 1-st type
interior satisfies WEC and reduces to the equatorial disk of the de Sitter vacuum. In the 2-nd type the
interior de Sitter region is presented by a closed S-surface of the de Sitter vacuum with the equatorial
de Sitter disk as the bridge. The cavities between the S-surface are filled with a phantom substance
(p⊥ + ρ < 0) where WEC is violated.

Phantom energy defined by p = wρ with w < −1 was introduced as kind of a dark energy
which could be responsible for the observed acceleration of our universe in default of a time evolving
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cosmological constant [40]. In the most of models phantom energy originates from scalar field(s) with
negative kinetic energy and may involve extra dimensions (for a review [41]).

As follows from the general analysis, a phantom fluid appears inside the regular spinning objects
described by regular axially symmetric solutions of the Kerr-Schild class obtained with using the
Gürsey-Gürses approach including the Newman-Janis algorithm. In this case a phantom fluid is
essentially anisotropic, the phantom equation of state is valid for a transversal pressure, p⊥ = w⊥ρ with
w⊥ < −1. It violates the weak energy condition (which implies a non-negative energy density for any
local observer on a timelike curve) and can have negative energy density for a certain class of observers.
A phantom energy appears in these objects without explicit introduction of additional entities as generic
ingredient directly related to the algebraic structure of their stress-energy tensors. This question needs
further investigation for deeper understanding of the physical nature of a phantom energy.

Primordial regular black holes and G-lumps appear from primordial quantum fluctuations during
early inflationary stages when they can capture charged particles and form graviatoms.

Regular black hole remnants, G-lumps and graviatoms can be considered heavy DM candidates
with DE interiors responsible for their additional observational signatures. They can induce proton
decay in an underground detector which can serve as their observational signature for heavy dark matter
searches at the IceCUBE experiment. For the charged remnants [37] one can expect much stronger effect
of falling down its center and in consequence a much stronger effect of induced proton decay [32].

Graviatoms radiate within the range of the ultra-high energy ∼1011 GeV which in principle can
be observed and serve as observational signature for graviatoms as heavy DM candidates and as a
source of information about the energy scale of the interior de Sitter vacuum. Information about the scale
and properties of a phantom energy can in principle come from observational signatures for spinning
remnants, G-lumps and graviatoms with the 2-nd kind interiors, which contain phantom energy.

Efficiency of energy extraction from G-lumps ergoregions is facilitated by the absence of the
horizons. For spinning G-lumps with the 2-nd kind interiors the phantom regions are not screened by
the horizons. Open character of the phantom interiors for spinning G-lumps suggests the existence of
mechanisms of extraction of a phantom energy from their ergoregions and of related astrophysical
consequences. These questions need further investigation.
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