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Abstract: In this paper, a new nonmonotone adaptive trust region algorithm is proposed for 
unconstrained optimization by combining a multidimensional filter and the Goldstein-type line 
search technique. A modified trust region ratio is presented which results in more reasonable 
consistency between the accurate model and the approximate model. When a trial step is rejected, 
we use a multidimensional filter to increase the likelihood that the trial step is accepted. If the trial 
step is still not successful with the filter, a nonmonotone Goldstein-type line search is used in the 
direction of the rejected trial step. The approximation of the Hessian matrix is updated by the 
modified Quasi-Newton formula (CBFGS). Under appropriate conditions, the proposed algorithm 
is globally convergent and superlinearly convergent. The new algorithm shows better 
performance in terms of the Dolan–Moré performance profile. Numerical results demonstrate the 
efficiency and robustness of the proposed algorithm for solving unconstrained optimization 
problems.  

Keywords: unconstrained optimization; adaptive trust region; nonmonotone line search; filter; 
convergence 

1. Introduction 

Consider the following unconstrained optimization problem:  

min ( )
nx R
f x

∈
, (1)

where f : nR R→  is a twice continuously differentiable function. The problem has widely used 
in many applications based on medical science, optimal control, and functional approximation, etc. 
As we all know, there are many methods for solving unconstrained optimization problems, such as 
the conjugate gradient method [1–3], the Newton method [4,5], and the trust region method [6–8]. 
Constrained optimization problems can also be solved by processing constraint conditions and 
transforming them into unconstrained optimization problems. Motivated by this, it is quite necessary 
to propose a new modified trust region method for solving unconstrained optimization problems. 

As is commonly known, the trust region method and the line search method are two frequently 
used iterative methods. Line search methods involve the process of calculating the step length kα  
in the specific direction kd  and driving a new point as 1k k k kx x dα+ = + . The primary idea of the 

trust region method is as follows: at current iteration point kx , the trial step kd  is obtained by 
solving the following subproblem： 
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1min ( ) g
2∈

= +
n

T T
k k kd R
m d d d B d , (2)

kd ≤ Δ , (3)

where .  is the Euclidean norm, ( )k kf f x= , ( )k kg f x= ∇ , kB is a symmetric approximation matrix 

of 2 ( )k kG f x= ∇ , and kΔ  is a trust region radius.  

Traditional trust region methods have some disadvantages, such as the fact that the subproblem 
needs to be solved many times to obtain an acceptable trial step within one iteration, which leads to 
high computational costs for the iterative process. One way to overcome this disadvantage is to use 
a line search strategy in the direction of the rejected trial step. Based on this situation, Nocedal and 
Yuan [9] proposed an algorithm in 1998, combining the trust region method and the line search 
method for the first time. Inspired by this, Michael et al., Li et al., and Zhang et al. proposed a trust 
region method with the line search strategy ([10–12], respectively). 

As can be seen in other works [4,7,8] monotone techniques are distinguished from nonmonotone 
techniques in that the value of the function needs to be reduced at each iteration; at the same time, 
the use of nonmonotone techniques can not only guarantee finding the global optimal solution 
effectively, but also improve the convergence rate of the algorithm. The watchdog technique was 
presented by Chamberlain et al. [13] in 1982 to overcome the Maratos effect of constrained 
optimization problems. Motivated by this idea, a nonmonotone line search technique was proposed 
by Grippo et al. [14] in 1986. The step length kα  satisfies the following inequality: 

( )( )α σα+ ≤ + T
k k k l k k k kf x d f g d , (4)

where (0,1)σ ∈ , ( ) 0 ( )
max { }l k k jj m k

f f −≤ ≤
= , (0) 0m = , 0 ( ) min{ ( 1) 1, }m k m k N≤ ≤ − + , and 0N ≥ is 

an integer constant.  

However, the common nonmonotone term ( )l kf  
suffers from various drawbacks. For 

example, the valid value of the produced function f  in any iteration is essentially discarded, and 
the numerical results highly depend on the choice of N . To overcome these drawbacks, Cui et al. 
[15] proposed another nonmonotone line search method as follows: 

( ) T
k k k k k k kf x d C g dα σα+ ≤ + , (5)

where the nonmonotone term kC  is defined by 

1 1 1

( )                            0
(     1

,

,)η − − −

=
= + ≥


k

k k k k k

k

f x k
C Q C f x k

Q

, (6)

and 

-1 -1

1                         0
1

,
,          1η

=
=  + ≥

k
k k

k
Q

Q k
, (7)

where (0,1)σ ∈ , min max[ , ]kη η η∈ , min [0,1]η ∈  , and max min[ ,1]η η∈ .  

Based on this idea, in order to include the minimum value of kα  in an acceptable interval and 
keep the consistency of the nonmonotone term, we proposed a trust region method with the 
Goldstein-type line search technique. The step length kα  satisfies the following inequalities: 
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1( )α α+ ≤ + T
k k k k k k kf x d R c g d , (8)

2( )α α+ ≥ + T
k k k k k k kf x d R c g d , (9)

where 

( ) (1 )k k l k k kR f fη η= + − , (10)

1
1(0, )
2

c ∈ , 2 1( ,1)c c∈ , min max[ , ]kη η η∈ , min [0,1]η ∈ , and max min[ ,1]η η∈ . 

To evaluate the consistency between the quadratic model and the objective function, the ratio is 
defined by Ahookhosh et al. [16] as follows: 

 ( )
(0) ( )

ρ − +=
−

k k k
k

k k k

R f x d
m m d

, (11)

It is well-known that the adaptive radius plays a valuable role in performance. In 1997, an 
adaptive strategy for automatically determining the initial trust region radius was proposed by 
Sartenear [17]. However, it can be seen that the gradient or Hessian information is not explicitly used 
to update the radius. Motivated by the first-order information and second-order information of the 
objective function, Zhang et al. [18] proposed a new scheme to determine trust region radius in 2002 

as follows:  1p
kk kc g B
−

Δ = , where  k kB B iI= + , i N∈ . In order to avoid computing the inverse 

of the matrix and the Euclidean norm of 
1
kB
−

 at each iteration point kx , Zhou et al. [19] proposed 

an adaptive trust region radius as follows: 1

1

kp
k k

k

d
c g

y
−

−

Δ = , where 1 1k k ky g g− −= − , and c  

and p are parameters. Prompted by the adaptive technique, Wang et al. [8] proposed a new adaptive 

trust region radius as follows: k k kc g γΔ = , which reduces the related workload and calculation 

time. Based on this fact, other authors also proposed modified adaptive trust region methods [20–22]. 

In order to overcome the difficulty of selecting penalty factors when using penalty functions,  

Fletcher et al. first recommended the filter techniques for constrained nonlinear optimization (see [23] 
for details). More recently, Gould et al. [24] explored a new nonmonotone trust region method with 
multidimensional filter techniques for solving unconstrained optimization problems. This idea 
incorporates the concept of nonmonotone to build a filter that can reject poor iteration points, and 
enforce convergence from random starting points. At the same time, the prototype of the 
multidimensional filter techniques relax the requirements of monotonicity in the classic trust region 
framework. This idea has been popularized by some authors [25–27]. 

In the following, we refer to ( )kf x∇  by 1 2( , ,..., )= n
k k k kg g g g ; when the th−i component of 

( )k kg g x=  is needed, it is denoted with i
kg , where { } 1,2,3,...,∈i n . We say that an iteration point 

1x  dominates 2x  whenever 

1 2 2
i i

gg g gγ≤ − , (12)

where 
1(0, )g n

γ ∈
 

is a small positive constant. 
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Based on [8], we know that a multidimensional filter F  is a list of n -tuples of the form 

1 2( , ,..., )nk k kg g g , such that 

{ }   1, 2,3,...,j j
k lg g j n≤ ∈ ,  (13)

where kg  and lg  belong to F . 

For all ∈lg F , a new trial point kx  is acceptable if there exists { }1, 2, 3, ...,j n∈ , such that  

2 1 2 1

2 1
j j j
k k l lg g g g

γ γ γ γλ λ+ ≤ + , (14)

where 1γ  and 2γ  are positive constants, and 1λ  and 2λ  satisfy the inequality 

1 2
10
n

λ λ≤ < < .  

When an iteration point kx  is accepted by the filter, we add ( )kg x  to the filter, and 

( )∈lg x F  with the following property 

2 1 2 1

2 1
j j j
k k l lg g g g

γ γ γ γλ λ+ ≤ +  (15)

is removed from the filter. 

The rest of this article is organized as follows. In Section 2, we describe a new nonmonotone 
adaptive trust region algorithm. We establish the global convergence and superlinear convergence of 
the algorithm in Section 3. In Section 4, numerical results are given, which show that the new method 
is effective. Finally, some concluding comments are provided in Section 5.  

2. The New Algorithm 

In this section, a new filter and nonmonotone adaptive trust region Goldstein-type line search 
method is proposed. The trust region ratio is used to determine whether the trial step kd  is 

accepted. Following the trust region ratio of Ahookhosh et al. in [16], we define a modified form as 
follows: 


( )

( )
( )

k k k
k

l k k k k

R f x d
f f m d

ρ − +=
− −

, (16)

We can see that the effect of nonmonotonicity can be controlled the numerator and denominator, 

respectively. Thus, the new trust region ratio may find the global optimal solution effectively. 

Compared with the general filter trust region algorithm in [24], we propose a new criteria, that is, 

whether the trial point +
kx  satisfies 

10 kρ μ< < , and verify whether it is accepted by the filter F . 

At the same time, a new adaptive trust region radius is presented as follows: 

p
k kc g γΔ = , (17)

where 0 1γ< < , 0 1c< < , and p  is a nonnegative integer. Compared with the adaptive trust 
region method in [8], the new method has the following effective properties: the parameter p  plays 
a vital role in adjusting the radius, and it can also reduce the workload and computational time. 
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However, the new trust region radius only uses gradient function information, not function 
information. 

On the other hand, in each iteration, kd  is the trial step to be calculated by  

1min ( ) g
2∈

= +
n

T T
k k kd R
m d d d B d , (18) 

: p
k kd c g γ≤ Δ = , (19) 

More formally, a filter and nonmonotone adaptive trust region line search method, which we 
call the FNATR, is described as follows. 

Algorithm 1. A new filter and nonmonotone adaptive trust region line search method. 

Step 0. (Initialization) Start with 0
nx R∈ and the symmetric matrix 0 ∈ ×n nB R R . The constants 0ε > , 

0N > , 10 1μ< < , 0p = , 1 20 1β β< < < , 1 2
10 1
2

< < < <c c , and 0 0gΔ =  are also given. Set 

= ∅F , 0k = . 

Step 1. If kg ε≤ , then stop. 

Step 2. Solve the subproblems of Equations (18) and (19) to find the trial step kd , set k k kx x d+ = + . 

Step 3. Compute kR  and  kρ , respectively.  

Step 4. Test the trial step. 

If  1kρ μ≥ , then set 1k kx x+
+ = , kk FF =+1 , and go to Step 5.  

Otherwise, compute ( )k kg f x+ += ∇ . 

if kx
+

 is accepted by the filter F , then 1k kx x+
+ = ; add ( )k kg f x+ += ∇  into the filter F , 

and go to Step 5.  

Otherwise, find the step length kα , satisfying Equations (8) and (9), and set 1k k k kx x dα+ = + . 
Then, set 

1p p= + , and go to Step 5. 

Step 5. Update the symmetric matrix kB  by using a modified Quasi-Newton formula. Set 

    1k k= + , 0p = , and go to Step 1. 

In particular, we consider the following assumptions to analyze the convergence properties of 
Algorithm 1. 

Assumption 1. 

H1. The level set 
0( ) { ( ) ( )}L = ∈ ≤n

0x x R f x f x  satisfies ( )L ⊆ Ω0x ; ( )f x is continuously 

differentiable and has a lower bound. 

H2. The matrix kB  is uniformly bounded, i.e., there exists a constant 1 0M >  such that 
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1kB M≤ . 

Remark 1. There is a constant  0( ),  1τ ∈ ; kB  is a positive definite symmetric matrix, and kd  satisfies 
the following inequalities:  

(0) ( ) min , k
k k k k k

k

g
m m d g

B
τ

  − ≥ Δ 
  

, (20)

min , kT
k k k k

k

g
g d g

B
τ

  ≤ − Δ 
  

. (21)

Remark 2. If f  is continuously differentiable and ( )f x∇  is Lipschitz continuous, there is a positive 
constant L  so that 

 
( ) ( )     ,f x f y L x y x y∇ − ∇ ≤ − ∀ ∈ Ω . (22)

3. Convergence Analysis 

In order to easily derive convergence results, we define the following indexes: { }1kD k ρ μ= ≥ , 

{ }1  0  ρ μ += < <k kA k x Fis accepted by the filtand er  , and { }1k k kS k x x d+= = + . Then, 

{ }1    k kS k x Fρ μ += ≥  is accepted by the filteror  . At the time of k S∉ , we obtain 1k k k kx x dα+ = + .  

Lemma 1. Suppose that Assumption 1 holds, and kd  is the solution of Equation (18); then,  

( ) ( ) min , k
l k k k k k k

k

g
f f m d g

B
τ

  − − ≥ Δ 
  

. (23)

Proof. According to ( ) 0 ( )
max { }l k k jj m k

f f −≤ ≤
= , we have ( )l k kf f≥ . Thus, we obtain 

( ) ( ) (0) ( )l k k k k k k kf f m d m m d− − ≥ − . (24)

Taking into account Equation (24) and Remark 1, we can conclude that Equation (23) holds. 

Lemma 2. For all k , we can find that 

( ) ( ) ( )( ) ( )20k k k k k k kf f x d m m d O d− + − − ≤ . (25)

Proof. The proof can be obtained by Taylor’s expansion and H3.  

Lemma 3. Suppose that the infinite sequence { }kx  is generated by Algorithm 1. The number of successful 

iterations is infinite, that is, S = +∞ . Then, we have { } 0( )kx L x⊂ . 

Proof. We can proceed by induction. When 0k = , apparently we obtain 0 0( )x L x∈ . 
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Assuming that 0( )kx L x∈ ( 0)k ≥  holds, we get 0kf f≤ . Then, we prove 1 0( )kx L x+ ∈ . 
Consider the following two cases: 

Case 1: When k D∈ , according to Equation (16) we have, 

1 1 ( )( ( ))k k l k k k kR f f f m dμ+− ≥ − − , (26)

Thus, 

1 1 ( )( ( ))k k l k k k kR f f f m dμ+≥ + − − , (27)

According to Equations (23) and (27), we can obtain 1k kR f +≥ . Using the definition of kR  

and ( )l kf , we get 

( ) ( ) ( ) ( )(1 ) (1 )k k l k k k k l k k l k l kR f f f f fη η η η= + − ≤ + − = , (28)

The above two inequalities show that 

1 ( ) 0k k l kf R f f+ ≤ ≤ ≤ , (29)

Case 2: When k A∈ , according to 
10 kρ μ< < , we have ( ) 0k k kR f x d− + > . Thus, we obtain 

1 ( ) 0k k l kf R f f+ ≤ ≤ ≤ . This shows the sequence ( )0{ }kx L x⊂ .  

Lemma 4. Suppose that Assumption 1 holds , and the sequence { }kx is generated by Algorithm 1. Then, the 

sequence ( ){ }l kf  
is not monotonically increasing and convergent. 

Proof. The proof is similar to the proof of Lemma 5 in [8] and is here omitted.  

Lemma 5. Suppose that Assumption 1 holds, and the sequence { }kx  
is generated by Algorithm 1. Moreover, 

assume that there exists a constant 0 1ε< < , so that kg ε> , for all k . Then, Algorithm 1 is well defined; 

that is, the algorithm terminates in a limited number of steps. 

Proof. In contradiction, suppose that Algorithm 1 cycles infinitely at iteration k . Then, we have  


1    

p

k pρ μ< → ∞ , (30)

Following Equation (17), we have 0pc →  as p → ∞ . Thus, we get, 

0p p
k kd ≤ Δ → , (31)

where p
kd  is a solution of the subproblem of Equation (18) corresponding to p in the th−k

iteration. Combining Lemma 1, Lemma 2, and Equation (28), we obtain 
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 ( )

( ) ( )

( )

( ) ( )( ) 1
( ) ( )

( ) ( )                                                    
( )

                             

1
p pp

k k k l k k k kk k k
p p

l k k k k l k k k k

p p
k k k k k

p
l k k k k

p

k

R f x d f f m dR f x d
f f m d f f m d

f f x d m d
f f m d

ρ
− + − + +− + − =

− − − −

− + +≤
− −

− =

( )

( )

( )
( ) ( )

2

2

1

2

                       
min ,

                                                    
min ,

                                                    0

p
k

k
k k

k

p
k

k

k

k

O d

g
g

B

O d

M

O
p

O

τ

ετε

≤
  Δ 
  

≤
 

Δ 
 

Δ
≤ → → ∞

Δ

, 

(32)

which implies that there exists a sufficiently large p  such that  1ρ μ≥
p

k  as → ∞p . This 

contradicts Equation (30), and shows that Algorithm 1 is well defined.  

Lemma 6. Suppose that Assumption 1 holds , and there exists a constant ε  such that kg ε≥
 

for all 

k . Therefore, there is a constant υ  such that 

,  0,  1,  2,...,  k kυΔ > = , (33)

Proof. The proof is similar to that of Theorem 6.4.3 in [28], and is therefore omitted here.  

In what follows, we establish global convergence of Algorithm 1 based on the above and the  

lemmas. 

Theorem 1. (Global Convergence) Suppose that Assumption 1 holds, and the sequence{ }kx is generated by 

Algorithm 1, such that, 

lim inf 0kk
g

→∞
=  (34)

Proof . Divide the proof into the following two cases: 

Case 1: The number of successful iterations and many filter iterations are infinite, i.e., S = +∞ , 

=+∞A . 

Suppose, on the contrary, that Equation (34) does not hold. Thus, there exists a constant ε  
such that kg ε> , as k  is sufficiently large. Introduce the index of set { }iS k= . Following H1, we 

can find that { }kg  is bounded. Therefore, there is a subsequence { } { }t ik k⊆  such that 
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lim
tkt

g ε
→∞

= , 
(35) 

where ε  is a constant. The iteration point 
tk
x

 
is accepted by the filter 

tk
F ; then there exists 

{ }1,2,...,j n∈ , for every 1t > , that is 

11t k tt

j j
k g kg g gγ

−−
− ≤ −  (36) 

As t  is sufficiently large, we have  

( )1
lim 0

t kt

j j
kt
g g

−→∞
− = . (37)

However, we obtain 
1

0
tg k ggγ γ ε
−

− ≤ − < , which means that Equation (37) does not hold. The 

proof is completed. 

Case 2: The number of successful iterations is infinite, and the number of filter iterations is finite, i.e., 

S = +∞ , <A + ∞ . 

We proceed from the following proof with a contradiction. Suppose that there exists a constant 
0ε > , such that kg ε≥ , for sufficiently large k . Based on <A + ∞ , for sufficiently large 

k S∈ , we have  1kρ μ≥ . Thus, set 

{ }, 1,...,k p p k Sξ = +  . 
(38)

Based on H2, Equation (28), Lemma 1, and Lemma 6, we write
 

( ) ( )( ) 1 1 1
1

min , εξ μ τε υ+ +
∈ ∈

 
− ≥ − ≥  

 
 l k k k k k
k T k T

f f R f
M

. (39) 

As p  and k  are sufficiently large, according to S = +∞  
and <A + ∞ , we know that kξ  

is sufficiently large. Thus, we can find that 
1

1

min , εξ μ τε υ
 

→ +∞ 
 

k M
, and the left end of Equation 

(39) has no lower bound. We can deduce that 

( ) ( )( ) 1 ( ) ( 1)

( ) ( 1)                         

k

l k k l j l j
k T j p

l p l k

f f f f

f f

+ +
∈ =

+

− ≥ −

= −

 
. 

(40) 

Using Lemma 4, as p and k  are sufficiently large, the left end of Equation (40) has a lower 

bound, which contradicts Equation (39). This completes the proof of Theorem 1.  

Now, based on the appropriate conditions, the following superlinear convergence is presented 
for Algorithm 1.  
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Theorem 2. (Superlinear Convergence) Suppose that Assumption 1 holds, and the sequence { }kx  generated 

by Algorithm 1 converges to *x . Moreover, it is reasonable to assume that the Hessian matrix 2 *( )f x∇  is 

positive definite. If k kd ≤ Δ , where 1
k k kd B g−= − , and 

2 *( ( )
lim 0k k

k
k

B f x d
d→∞

− ∇
= , (41)

then the sequence { }kx  
converges to *x  in a superlinear manner. 

Proof. Found using the same method as in the proof of Theorem 4.1 in [29].  

4. Preliminary Numerical Experiments 

In this section, we present numerical results to illustrate the performance of Algorithm 1 in 
comparison with the standard nonmonotone trust region algorithm of Pang et al. in [30] (ASNTR), 
the nonmonotone adaptive trust region algorithm of Ahookhoosh et al. in [16] (ANATR), and the 
multidimensional filter trust region algorithm of Wang et al. in [8] (AFTR). We performed our codes 
in double precision format of algorithm in MATLAB 9.4 programming, and the codes are given in 
the Appendix A. A set of unconstrained optimization test problems are selected from Andrei [31] 
with the some medium-scale and large-scale problems. The stopping criteria are that the number of 
iterations exceeds 10,000 or 610 (1 ( ) )k kg f x−≤ + . fn , in , and CPU represent the total number of 

function evaluations, the total number of gradient evaluations, and running time in seconds, 
respectively. Following Step 0, we exploit the following values: 1 0.25μ = , 1=0.25β , 2 =1.5β ,

0 0.25η = , 5=N , 0.5ε = , 1 0.25=c , 2 0.75=c , and 0 = ∈ ×n nB I R R . In addition, kη is updated by 
the following recursive formula: 

 

0

-1 -2

/ 2,                   if  1
( ) / 2,     if  2k
k k

k
k

η
η

η η
=

=  + ≥
, (42)

The matrix kB  is updated using a CBFGS formula [32]: 

 

2

1

2

 ,     

,                                                               

αε

ε
+


+ − ≥

= 
 <


T T T
k k k k k k k k

k kT T
k k k k k k

k T
k k

k k
k

y y B d d B y dB g
d y d B d d

B
y dB g
d

 ,    
  (43)

where 1k k kd x x+= − , and 1k k ky g g+= − .  

In Table 1, it is easily can be seen that Algorithm 1 outperforms the ASNTR, ANATR, and AFTR 
algorithms with respect to fn , in , and CPU, especially for some problems. The Dolan–Moré [33] 

performance profile was used to compare the efficiency using the number of functional evaluations, 

the number of gradient evaluations, and running time. A performance index can be selected as 

measure of comparison among the mentioned algorithms, and the results can be illustrated by a 
performance profile. For every 1τ ≥ , the performance profile gives the proportion ( )ρ τ of the test 

problems. The performance of each considered algorithmic variant was the best within a range of τ
of the best. 
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Table 1. Numerical comparisons on a subset of test problems. ASNTR: The standard nonmonotone 
trust region algorithm of Pang et al.; ANATR: The nonmonotone adaptive trust region algorithm of 

Ahookhoosh et al.; AFTR: The multidimensional filter trust region algorithm of Wang et al. 

Problem n  /f in n         

  ASNTR CPU ANATR CPU AFTR CPU Algorithm 1 CPU 

Extended 
Rosenbrock  

500 2649/1326 1867.254 1071/840 1545.386 547/387 642.091 86/47 70.369 

Extended White 
and Holst function 

500 13/7 26.788 5/3 6.524 5/3 2.125 3/2 0.218 

Extended Beale 500 29/15 4.386 43/22 15.351 40/36 8.532 22/17 2.953 
Penalty i 500 13/8 32.186 5/3 6.593 7/4 2.176 3/2 0.171 

Pert.Quad 36 153/80 0.5523 128/67 0.4704 101/73 0.8631 86/45 0.167 
Raydan 1 100 26/14 0.862 130/98 2.263 208/105 3.5009 82/42 0.923 
Raydan 2 500 13/8 0.9660 13/8 0.9966 11/6 0.9549 9/5 0.780 

Diadonal 1 500 82/42 40.591 1459/812 1957.794 59/43 21.091 21/11 9.107 
Diadonal 2 500 4765/3529 1532.176 251/198 106.641 390/201 43.252 2116/1062 430.600 
Diagonal 3 500 1634/933 1822.091 1389/766 1536.226 349/288 327.056 201/101 88.049 

Hager 500 42/23 30.258 1418/760 270.837 87/46 45.342 51/26 14.278 
Generalized 

Tridiagonal 1 
500 63/32 5.6490 53/28 8.349 46/24 13.419 70/36 11.163 

Extended 
Tridiagonal 1 

500 25/13 0.9857 25/13 3.448 14/10 3.2337 8/7 0.823 

Extended TET 500 15/8 4.2638 15/9 1.632 17/9 2.5044 17/9 1.452 
Diadonal 4 500 7/4 0.3293 7/4 0.857 9/8 4.0362 5/4 0.419 
Diadonal 5 500 106/54 43.3048 134/112 57.032 127/106 41.096 155/79 19.024 
Diadonal 7 1000 96/78 29.197 88/73 22.309 34/15 10.265 19/15 2.561 
Diadonal 8  1000 159/122 18.542 133/126 43.067 76/36 6.781 27/21 1.550 

Extended Him 1000 35/18 7.150 30/16 17.975 108/87 514.843 28/18 22.572 
Full Hessian FH3 1000 11/6 1.755 11/6 5.555 17/13 5.1472 11/6 3.912 

Extended BD1 1000 43/25 61.358 30/16 17.9073 35/19 23.4119 30/19 26.971 
Quadratic QF1 1000 287/195 157.332 293/219 0.259 400/274 87.043 197/99 43.280 
FLETCHCR34 1000 847/505 67.511 345/225 100.676 24/16 73.265 8/5  33.145 
ARWHEAD 1000 47/24 38.4334 29/16 24.338 64/41 38.552 24/17 18.299 

NONDIA 1000 197/104 96.176 92/47 56.432 33/23 34.726 51/35 22.318 
DQDRTIC 1000 23/12 52.102 36/19 40.949 46/37 86.265 22/15 16.526 

EG2 1000 55/30 79.991 28/16 16.042 19/19 14.169 51/26 32.424 
Broyden 

Tridiagonal  
1000 1978/1488 1545.221 1553/1288 1266.076 1226/987 782.560 754/646 456.105 

Almost Perturbed 
Quadratic 

1600 2548/2267 1960.433 2118/1829 1543.253 1078/718 1067.206 657/425 279.316 

Perturbed 
Tridiagonal 
Quadratic  

3000 1342/1025 1672.434 1132/876 1033.255 745/552 835.265 453/357 572.371 

DIXMAANA 3000 576/463 132.240 223/198 88.211 378/320 108.452 209/165 78.542 
DIXMAANB  3000 248/201 64.215 165/122 40.233 67/56 25.109 48/32 37.120 
DIXMAANC  3000 279/197 177.221 246/167 134.272 95/43 30.140 58/24 19.011 

Extended DENSCH 3000 673/418 476.214 533/388 309.605 254/105 199.421 87/42 219.167 
SINCOS 3000 2067/1554 1045.301 1653/1274 836.022 337/233 472.032 275/141 165.665 

HIMMELH 3000 967/721 526.211 506/349 255.629 197/196 109.276 45/32 40.127 
BIGGSB1 3000 3760/2045 2321.509 2254/1886 1308.227 1836/1025 904.234 4051/2381 1987.456 

ENGVAL1 3000 1784/1087 1643.092 587/423 960.421 63/43 243.840 58/32 167.991 
BDEXP 3000 2259/1876 978.432 1342/978 832.013 172/137 385.439 67/43 59.276 
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INDEF 3000 325/209 2430.215 178/156 1023.211 34/31 721.343 19/11 479.263 
NONSCOMP 3000 264/107 1742.856 96/47 1389.123 34/18 921.324 22/14 679.120 

QUARTC 3000 167/123 643.254 332/289 921.313 22/20 425.995 67/54 356.762 

It can be easily seen from Figures 1–3 that the new algorithm shows a better performance than 

the other algorithms from the perspective of the number of function evaluations, the number of 

gradient evaluations, and running time, especially in contrast to ASNTR. As a general result, we can 

infer that the new algorithm is more efficient and robust than the other mentioned algorithms in 

terms of the total number of iterations and running time. 

 

Figure 1. Performance profile for the number of function evaluations ( fn ). 

  

Figure 2. Performance profile for the number of gradient evaluations ( in ). 
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Figure 3. Performance profile for running time (CPU). 

5. Conclusions 

In this paper, we combine the nonmonotone adaptive line search strategy with 

multidimensional filter techniques, and propose a nonmonotone trust region method with a new 
adaptive radius. Our method possesses the following attractive properties: 

(1) The new algorithm is quite different from the standard trust region method; in order to 
avoid resolving the subproblem, a new nonmonotone Goldstein-type line search is performed in 
the direction of the rejected trial step. 

(2) A new adaptive trust region radius is presented, which decreases the amount of work and 
computational time. However, full use of the function information for the new trust region radius 
is not made. A modified trust region ratio is computed which provides more information about 
evaluating the consistency between the quadratic model and the objective function.  

(3) The approximation of the Hessian matrix is updated by the modified BFGS method. 

Convergence analysis has shown that the proposed algorithm preserves global convergence 
as well as superlinear convergence. Numerical experiments were performed on a set of 
unconstrained optimization test problems in [31]. The numerical results showed that the proposed 
method is more competitive than the ASNTR, ANATR, and AFTR algorithms for medium-scale 
problems and large-scale problems with respect to the performance profile explained by Dolan–
Moré in [33]. Thus, we can draw the conclusion that the new algorithm works quite well for solving 
unconstrained optimization problems. In the future, it will be interesting to see the new 
nonmonotone trust region method used to solve constrained optimization problems and nonlinear 
equations with constrained conditions. On the other hand, it also will be interesting to combine an 
improved conjugate gradient algorithm with an improved nonmonotone trust region method to 
solve many optimization problems. 

Author Contributions: Conceptualization, Q.Q.; Writing—original draft, Q.Q.; Methodology, Q.Q; Writing—
review and editing, X.D; Resources, X.D. Data curation, X.W; Project administration, X.W; Software, X.W. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: The authors thank all those who helped improve the quality of the article. 

Conflicts of Interest: The authors declare no conflict of interest. 



Symmetry 2020, 12, 656 14 of 33 

 

Appendix A 

function [xstar,ystar,fnum,gnum,k,val]=nonmonotone40(x0,N,npro) 

flag=1; 

k=1; 

j=0; 

x=x0; 

n=length(x); 

f(k)=f_test(x,n,npro); 

g=g_test(x,n,npro); 

H=eye(n,n); 

eta1=0.25; 

fnum=1; 

gnum=1; 

flk=f(k); 

p=0; 

delta=norm(g); 

eps=1e-6; 

t=1; 

F(:,t)=x; 

t=t+1; 

while flag  

    if (norm(g)<=eps*(1+abs(f(k)))) 

        flag=0; 

        break; 

    end 

    [d, val] = Trust_q(f(k), g, H, delta); 

    faiafa=f_test(x+d,n,npro); 

    fnum=fnum+1; 
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    flk=mmax(f,k-j,k); 

    Rk=0.25*flk+0.75*f(k); 

    dq = flk- f_test(x,n,npro)- val; 

    df=Rk-faiafa; 

    rk = df/dq;  

    flag_filter=0; 

     if rk > eta1  

       x1=x+d; 

      faiafa=f_test(x1,n,npro); 

     else 

         g0=g_test(x+d,n,npro);  

         for i=1:(t-1) 

         gg=g_test(F(:,i),n,npro); 

         end 

         for l =1:n 

             rg=1/sqrt(n-1); 

         if abs(g0(l))<=abs(gg(l))-rg*norm(gg) 

             flag_filter=1;   

         end 

         end 

           m=0; 

           mk=0; 

          rho=0.6; 

         sigma=0.25; 

    while (m<20) 

        if f_test(x+rho^m*d,n,npro)<f_test(x,n,npro )+sigma*rho^m*g'*d  

            mk=m; 

           break; 
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       end 

        m=m+1; 

     end 

     x1=x+rho^mk*d;  

     faiafa=f_test(x1,n,npro); 

     fnum=fnum+1; 

     p=p+1; 

     end 

     flag1=0; 

     if flag_filter==1   

            flag1=1; 

            g_f2=abs(g); 

             for i=1:t-1 

              g_f1=abs(g_test(F(:,i),n,npro)); 

               if g_f1>g_f2 

                   F(:,i)=x0; 

      

               end 

             end 

    end   

        %%%%%%%%%%%%%%%%%%%% 

         if flag1==1 

             F(:,t)=x; 

             t=t+1;   

         else 

         for i=1:t-1      

                           if F(:,i)==x 

                               F(:,i)=[]; 
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                               t=t-1; 

                           end 

              end 

         end 

    dx = x1-x; 

    dg=g_test(x1, n,npro)-g; 

    if dg'*dx > 0  

            H= H- (H*(dx*dx’) *H)/(dx'*H*dx) + (dg*dg')/(dg'*dx);      

    end 

     delta=0.5^p*norm(g)^0.75; 

     k=k+1; 

     f(k)=faiafa; 

     j=min ([j+1, M]); 

     g=g_test(x1, n,npro); 

     gnum=gnum+1; 

     x0=x1; 

     x=x0; 

     p=0; 

end 

val = f(k)+ g'*d + 0.5*d'*H*d; 

xstar=x; 

ystar=f(k); 

end   

function [d, val] = Trust_q(Fk, gk, H, deltak) 

min qk(d)=fk+gk'*d+0.5*d'*Bk*d, s.t.||d|| <= delta 

n = length(gk); 

rho = 0.6; 

sigma = 0.4; 
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mu0 = 0.5; 

lam0 = 0.25; 

gamma = 0.15; 

epsilon = 1e-6; 

d0 = ones(n, 1); 

zbar = [mu0, zeros(1, n + 1)]'; 

i = 0; 

mu = mu0; 

lam = lam0; 

d = d0; 

while i <= 100 

    HB = dah (mu, lam, d, gk, H, deltak); 

    if norm(HB) <= epsilon 

        break; 

    end 

    J = JacobiH(mu, lam, d,H, deltak); 

    b = psi (mu, lam, d, gk, H, deltak, gamma) *zbar - HB; 

    dz = J\b; 

    dmu = dz(1);  

    dlam = dz(2);  

    dd = dz(3 : n + 2); 

    m = 0;  

    mi = 0; 

    while m < 20 

        t1 = rho^m; 

        Hnew = dah (mu + t1*dmu, lam + t1*dlam, d + t1*dd, gk, H, deltak); 

        if norm(Hnew) <= (1 - sigma*(1 - gamma*mu0) *rho^m) *norm(HB)  

            mi = m;  
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            break; 

        end 

        m = m+1; 

    end 

    alpha = rho^mi; 

    mu = mu + alpha*dmu; 

    lam = lam + alpha*dlam; 

    d = d + alpha*dd; 

    i = i + 1; 

end 

val = Fk+ gk'*d + 0.5*d'*H*d; 

end 

function p = phi (mu, a, b) 

p = a + b - sqrt((a - b)^2 + 4*mu^2); 

end 

function HB = dah (mu, lam, d, gk,H, deltak) 

n = length(d); 

HB = zeros (n + 2, 1); 

HB (1) = mu; 

HB (2) = phi (mu, lam, deltak^2 - norm(d)^2); 

HB (3: n + 2) = (H + lam*eye(n)) *d + gk; 

end 

function J = JacobiH(mu, lam, d, H, deltak) 

n = length(d); 

t2 = sqrt((lam + norm(d)^2 - deltak^2)^2 + 4*mu^2); 

pmu = -4*mu/t2; 

thetak = (lam + norm(d)^2 - deltak^2)/t2; 

J= [1,                0,               zeros(1, n); 



Symmetry 2020, 12, 656 20 of 33 

 

    pmu,           1 - thetak,  -2*(1 + thetak)*d'; 

    zeros (n, 1),  d,               H+ lam*eye(n)]; 

end 

function si = psi (mu, lam, d, gk,H, deltak, gamma) 

HB = dah (mu, lam, d, gk,H, deltak); 

si = gamma*norm(HB)*min (1, norm(HB)); 

end 

Partial test function 

  function f = f_test(x,n,nprob) 

%      integer i,iev,ivar,j 

%      real ap,arg,bp,c2pdm6,cp0001,cp1,cp2,cp25,cp5,c1p5,c2p25,c2p625, 

%           c3p5,c25,c29,c90,c100,c10000,c1pd6,d1,d2,eight,fifty,five, 

%           four,one,r,s1,s2,s3,t,t1,t2,t3,ten,th,three,tpi,two,zero 

%      real fvec(50), y(15) 

     zero = 0.0e0; one = 1.0e0; two = 2.0e0; three = 3.0e0; four = 4.0e0; 

     five = 5.0e0; eight = 8.0e0; ten = 1.0e1; fifty = 5.0e1;     

     c2pdm6 = 2.0e-6; cp0001 = 1.0e-4; cp1 = 1.0e-1; cp2 = 2.0e-1;   

     cpp2=2.0e-2; cp25 = 2.5e-1; cp5 = 5.0e-1; c1p5 = 1.5e0; c2p25 = 2.25e0; 

     c2p625 = 2.625e0; c3p5 = 3.5e0; c25 = 2.5e1; c29 = 2.9e1; 

     c90 = 9.0e1; c100 = 1.0e2; c10000 = 1.0e4; c1pd6 = 1.0e6; 

     ap = 1.0e-5; bp = 1.0e0; 

if nprob == 1  

% extended rosenbrock function 

      f = zero; 

      for j = 1: 2: n 

         t1 = one - x(j); 

         t2 = ten*(x(j+1) - x(j)^2); 

         f = f + t1^2 + t2^2; 
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      end 

 elseif nprob == 3 

% Extended White & Holst function 

      f = zero; 

      for j = 1: 2: n 

         t1 = one - x(j); 

         t2 = ten*(x(j+1) - x(j)^3); 

         f = f + t1^2 + t2^2; 

      end 

elseif nprob == 4 

%EXT beale function. 

f=zero; 

for j=1:2: n 

s1=one-x(j+1); 

t1=c1p5-x(j)*s1; 

s2=one-x(j+1) ^2; 

t2=c2p25-x(j)*s2; 

s3 = one - x(j+1) ^3; 

t3 = c2p625 - x(j)*s3; 

 f = f+t1^2 + t2^2 + t3^2; 

 end 

elseif nprob == 5 

% penalty function i. 

      t1 = -cp25; 

      t2 = zero; 

      for j = 1: n 

         t1 = t1 + x(j)^2; 

         t2 = t2 + (x(j) - one) ^2; 
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      end 

      f = ap*t2 + bp*t1^2; 

elseif nprob == 6 

% Pert.Quad 

      f1=zero; 

      f2=zero; 

      f=zero; 

for j=1: n 

      t=j*x(j)^2; 

     f1=t+f1; 

for j=1: n 

    t2=x(j); 

    f2=f2+t2; 

end 

f=f+f1+1/c100*f2^2; 

elseif nprob == 7 

 % Raydan 1 

  f=zero; 

for j=1: n 

    f1=j*(exp(x(j))-x(j))/ten; 

    f=f1+f; 

end 

elseif nprob == 8 

% Raydan 2 function 

    f=zero; 

    for j=1: n 

    ff=exp(x(j))-x(j); 

    f=ff+f; 
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    end     

elseif nprob==9 

 % Diagonal 1 

    f=zero; 

    for j=1: n 

     ff=exp(x(j))-j*x(j); 

     f=ff+f; 

end 

elseif nprob==10 

% Diagonal 2 

f=zero; 

for j=1: n 

    ff=exp(x(j))-x(j)/j; 

    f=ff+f; 

    x0(j)=1/j; 

end 

elseif nprob==11 

% Diagonal 3 

f=zero; 

for i=1: n 

    ff=exp(x(i))-i*sin(x(i)); 

    f=ff+f; 

end   

elseif nprob==12 

 % Hager 

f=zero; 

for j=1: n 

f1=exp(x(j))-sqrt(j)*x(j); 
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f=f+f1; 

end  

elseif nprob==13 

%Gen. Trid 1 

f=zero; 

for j=1: n-1 

    f1=(x(j)-x(j+1) +one) ^4+(x(j)+x(j+1)-three) ^2; 

    f=f+f1; 

end 

elseif nprob==14 

%Extended Tridiagonal 1 function 

f=zero; 

for j=1:2: n 

f1=(x(j)+x(j+1)-three) ^2+(x(j)+x(j+1) +one) ^4; 

f=f1+f; 

end   

elseif nprob==15 

%Extended TET function 

f=zero; 

for j=1:2: n 

    f1=exp(x(j)+three*x(j+1)-cp1) + exp(x(j)-three*x(j+1)-cp1) +exp(-x(j)-cp1); 

    f=f1+f; 

end     

end 

function g = g_test(x,n,nprob)      

%      integer i,iev,ivar,j 

%      real ap,arg,bp,c2pdm6,cp0001,cp1,cp2,cp25,cp5,c1p5,c2p25,c2p625, 

%     *     c3p5,c19p8,c20p2,c25,c29,c100,c180,c200,c10000,c1pd6,d1,d2, 
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%     *     eight,fifty,five,four,one,r,s1,s2,s3,t,t1,t2,t3,ten,th, 

%     *    three,tpi,twenty,two,zero 

%      real fvec(50), y(15) 

%      real float 

%      data zero,one,two,three,four,five,eight,ten,twenty,fifty 

%     *    /0.0e0,1.0e0,2.0e0,3.0e0,4.0e0,5.0e0,8.0e0,1.0e1,2.0e1, 

%     *      5.0e1/ 

%      data c2pdm6, cp0001, cp1, cp2, cp25, cp5, c1p5, c2p25, c2p625, c3p5, 

%     *     c19p8, c20p2, c25, c29, c100, c180, c200, c10000, c1pd6 

%     *    /2.0e-6,1.0e-4,1.0e-1,2.0e-1,2.5e-1,5.0e-1,1.5e0,2.25e0, 

%     *      2.625e0,3.5e0,1.98e1,2.02e1,2.5e1,2.9e1,1.0e2,1.8e2,2.0e2, 

%     *      1.0e4,1.0e6/ 

%      data ap,bp/1.0e-5,1.0e0/ 

%      data y(1),y(2),y(3),y(4),y(5),y(6),y(7),y(8),y(9),y(10),y(11), 

%     *     y (12), y (13), y (14), y (15) 

%     *    /9.0e-4,4.4e-3,1.75e-2,5.4e-2,1.295e-1,2.42e-1,3.521e-1, 

%     *      3.989e-1,3.521e-1,2.42e-1,1.295e-1,5.4e-2,1.75e-2,4.4e-3, 

%     *      9.0e-4/ 

     zero = 0.0e0; one = 1.0e0; two = 2.0e0; three = 3.0e0; four = 4.0e0; 

     five = 5.0e0; eight = 8.0e0; ten = 1.0e1; twenty = 2.0e1; fifty = 5.0e1; 

     cpp2=2.0e-2; c2pdm6 = 2.0e-6; cp0001 = 1.0e-4; cp1 = 1.0e-1; cp2 = 2.0e-1;    

     cp25 = 2.5e-1; cp5 = 5.0e-1; c1p5 = 1.5e0; c2p25 = 2.25e0; c40=4.0e1; 

     c2p625 = 2.625e0; c3p5 = 3.5e0; c25 = 2.5e1; c29 = 2.9e1; 

     c180 = 1.8e2; c100 = 1.0e2; c400=4.0e4; c200=2.0e2; c600=6.0e2; c10000 = 1.0e4; c1pd6 = 1.0e6; 

     ap = 1.0e-5; bp = 1.0e0; c200 = 2.0e2; c19p8 = 1.98e1; 

     c20p2 = 2.02e1;      

if nprob == 1 

%extended rosenbrock function. 
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   for j = 1: 2: n 

         t1 = one - x(j); 

         g(j+1) = c200*(x(j+1) - x(j)^2); 

         g(j) = -two*(x(j)*g(j+1) + t1); 

   end 

elseif nprob == 3 

% Extended White & Holst function 

 for j = 1: 2: n 

         t1 = one - x(j); 

    g(j)=two*t1-c600*(x(j+1)-x(j)^3) *x(j); 

    g(j+1) =c200*(x(j+1)-x(j)^3); 

 end 

elseif nprob == 4 

% powell badly scaled function.  

    for j=1:2: n  

      s1 = one - x(j+1); 

      t1 = c1p5 - x(j)*s1; 

      s2 = one - x(j+1) ^2; 

      t2 = c2p25 - x(j)*s2; 

      s3 = one - x(j+1) ^3; 

      t3 = c2p625 - x(j)*s3; 

      g(j) = -two*(s1*t1 + s2*t2 + s3*t3); 

      g(j+1) = two*x(j)*(t1 + x(j+1) *(two*t2 + three*x(j+1) *t3)); 

    end 

elseif nprob == 5 

% penalty function i. 

   for j=1: n  

      g(j)=four*bp*x(j)*(x(j)^2-cp25) +two*(x(j)-one); 
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   end 

elseif nprob == 6 

  % Perturbed Quadratic function 

    f2=zero; 

for j=1: n 

    t2=x(j); 

    f2=f2+t2; 

end 

for j=1: n 

g(j)=two*j*x(j)+cpp2*f2^2; 

end    

elseif nprob == 7 

% Raydan 1 

for j=1: n 

    g(j)=j*(exp(x(j))-one)/ten; 

end 

elseif nprob ==8      

% Raydan 2 

for j=1: n 

g(j)=exp(x(j))-one; 

end 

elseif nprob==9 

% Diagonal 1 function 

for j=1: n 

 g(j)=exp(x(j))-j; 

end 

elseif nprob==10 

% Diagonal 2 function 
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for j=1: n 

g(j)=exp(x(j))-1/j; 

end 

elseif nprob==11 

% Diagonal 3 function 

for j=1: n 

g(j)=exp(x(j))-j*cos(x(j)); 

end   

elseif nprob==12 

% Hager function 

for j=1: n 

g(j)=exp(x(j))-sqrt(j); 

end 

elseif nprob==13 

% Gen. Trid 1 

for j=1:2: n-1 

g(j)=four*(x(j)-x(j+1)+one)^3+two*(x(j)+x(j+1)-three); 

g(j+1)=-four*(x(j)-x(j+1)+one)^3+two*(x(j)+x(j+1)-three); 

end 

elseif nprob==14 

%Extended Tridiagonal 1 function 

  for j=1:2: n 

    g(j)=two*(x(j)+x(j+1)-three)+four*(x(j)+x(j+1)+one)^3; 

    g(j+1)=two*(x(j)+x(j+1)-three)+four*(x(j)+x(j+1)+one)^3; 

  end 

elseif nprob==15 

% Extended TET function  

for j=1:2: n 
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g(j)=exp(x(j)+three*x(j+1)-cp1)+ exp(x(j)-three*x(j+1)-cp1)-exp(-x(j)-0.1); 

g(j+1) =three*exp(x(j)+three*x(j+1)-cp1)-three*exp(x(j)-three*x(j+1)-cp; 

end 

tic; 

npro=1; 

%Extended Rosenbrock 

if npro==1 

    x0=zeros (500,1); 

    for i=1:2:500 

        x0(i)=-1.2; 

        x0(i+1) =1; 

    end 

%Generalized Rosenbrock     

elseif npro==2 

 x0=zeros (1000,1); 

    for i=1:2:1000 

        x0(i)=-1.2; 

        x0(i+1) =1; 

    end 

%Extended White & Holst function 

elseif npro==3 

  x0=zeros (500,1); 

    for i=1:2:500 

        x0(i)=-1.2; 

        x0(i+1) =1; 

    end 

%Extended Beale 

elseif npro==4 
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   x0=zeros (500,1); 

   for i=1:2:500 

       x0(i)=1; 

       x0(i)=0.8; 

   end 

 %Penalty 

elseif npro==5 

    x0=zeros (500,1); 

    for i=1:500 

    x0(i)=i; 

    end 

% Perturbed Quadratic function 

elseif npro==6 

    x0=0.5*ones (36,1); 

% Raydan 1 

elseif npro == 7    

    x0=ones (100,1); 

%Raydan 2 

elseif npro==8 

   x0=ones (500,1); 

%Diagonal 1 function 

elseif npro==9 

  x0=0.5*ones (500,1); 

%Diagonal 2 function 

 elseif npro==10 

   x0=zeros (500,1); 

   for i=1:500 

    x0(i)=1/i; 
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   end 

%Diagonal 3 function 

elseif npro==11 

    x0=ones (500,1); 

% Hager function 

 elseif npro==12 

    x0=ones (500,1); 

%Gen. Trid 1 

 elseif npro==13 

    x0=2*ones (500,1); 

%Extended Tridiagonal 1 function 

 elseif npro==14 

    x0=2*ones (500,1); 

%Extended TET function 

 elseif npro==15 

    x0=0.1*ones (500,1); 

end 

N=5; 

[xstar,ystar,fnum,gnum,k,val]=nonmonotone40(x0,N,npro); 

fprintf('%d, %d,%d',fnum,gnum,val); 

xstar; 

ystar; 

toc  
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