

Symmetry 2020, 12, 656; doi:10.3390/sym12040656 www.mdpi.com/journal/symmetry

Article

A Filter and Nonmonotone Adaptive Trust Region
Line Search Method for Unconstrained Optimization
Quan Qu 1, Xianfeng Ding 1,2,* and Xinyi Wang 1

1 School of Science, Southwest Petroleum University, Chengdu 610500, China;
201921000533@stu.swpu.edu.cn (Q.Q.); 201821000481@stu.swpu.edu.cn (X.W.)

2 School of Artificial Intelligence, Southwest Petroleum University, Chengdu 610500, China
* Correspondence: dingxianfeng@swpu.edu.cn; Tel.: +86-133-0823-8057

Received: 20 March 2020; Accepted: 3 April 2020; Published: 21 April 2020

Abstract: In this paper, a new nonmonotone adaptive trust region algorithm is proposed for
unconstrained optimization by combining a multidimensional filter and the Goldstein-type line
search technique. A modified trust region ratio is presented which results in more reasonable
consistency between the accurate model and the approximate model. When a trial step is rejected,
we use a multidimensional filter to increase the likelihood that the trial step is accepted. If the trial
step is still not successful with the filter, a nonmonotone Goldstein-type line search is used in the
direction of the rejected trial step. The approximation of the Hessian matrix is updated by the
modified Quasi-Newton formula (CBFGS). Under appropriate conditions, the proposed algorithm
is globally convergent and superlinearly convergent. The new algorithm shows better
performance in terms of the Dolan–Moré performance profile. Numerical results demonstrate the
efficiency and robustness of the proposed algorithm for solving unconstrained optimization
problems.

Keywords: unconstrained optimization; adaptive trust region; nonmonotone line search; filter;
convergence

1. Introduction

Consider the following unconstrained optimization problem:

min ()
nx R
f x

∈
, (1)

where f : nR R→ is a twice continuously differentiable function. The problem has widely used
in many applications based on medical science, optimal control, and functional approximation, etc.
As we all know, there are many methods for solving unconstrained optimization problems, such as
the conjugate gradient method [1–3], the Newton method [4,5], and the trust region method [6–8].
Constrained optimization problems can also be solved by processing constraint conditions and
transforming them into unconstrained optimization problems. Motivated by this, it is quite necessary
to propose a new modified trust region method for solving unconstrained optimization problems.

As is commonly known, the trust region method and the line search method are two frequently
used iterative methods. Line search methods involve the process of calculating the step length kα
in the specific direction kd and driving a new point as 1k k k kx x dα+ = + . The primary idea of the

trust region method is as follows: at current iteration point kx , the trial step kd is obtained by
solving the following subproblem：

Symmetry 2020, 12, 656 2 of 33

1min () g
2∈

= +
n

T T
k k kd R
m d d d B d , (2)

kd ≤ Δ , (3)

where . is the Euclidean norm, ()k kf f x= , ()k kg f x= ∇ , kB is a symmetric approximation matrix

of 2 ()k kG f x= ∇ , and kΔ is a trust region radius.

Traditional trust region methods have some disadvantages, such as the fact that the subproblem
needs to be solved many times to obtain an acceptable trial step within one iteration, which leads to
high computational costs for the iterative process. One way to overcome this disadvantage is to use
a line search strategy in the direction of the rejected trial step. Based on this situation, Nocedal and
Yuan [9] proposed an algorithm in 1998, combining the trust region method and the line search
method for the first time. Inspired by this, Michael et al., Li et al., and Zhang et al. proposed a trust
region method with the line search strategy ([10–12], respectively).

As can be seen in other works [4,7,8] monotone techniques are distinguished from nonmonotone
techniques in that the value of the function needs to be reduced at each iteration; at the same time,
the use of nonmonotone techniques can not only guarantee finding the global optimal solution
effectively, but also improve the convergence rate of the algorithm. The watchdog technique was
presented by Chamberlain et al. [13] in 1982 to overcome the Maratos effect of constrained
optimization problems. Motivated by this idea, a nonmonotone line search technique was proposed
by Grippo et al. [14] in 1986. The step length kα satisfies the following inequality:

()()α σα+ ≤ + T
k k k l k k k kf x d f g d , (4)

where (0,1)σ ∈ , () 0 ()
max { }l k k jj m k

f f −≤ ≤
= , (0) 0m = , 0 () min{ (1) 1, }m k m k N≤ ≤ − + , and 0N ≥ is

an integer constant.

However, the common nonmonotone term ()l kf
suffers from various drawbacks. For

example, the valid value of the produced function f in any iteration is essentially discarded, and
the numerical results highly depend on the choice of N . To overcome these drawbacks, Cui et al.
[15] proposed another nonmonotone line search method as follows:

() T
k k k k k k kf x d C g dα σα+ ≤ + , (5)

where the nonmonotone term kC is defined by

1 1 1

() 0
(1

,

,)η − − −

=
= + ≥

k

k k k k k

k

f x k
C Q C f x k

Q

, (6)

and

-1 -1

1 0
1

,
, 1η

=
= + ≥

k
k k

k
Q

Q k
, (7)

where (0,1)σ ∈ , min max[,]kη η η∈ , min [0,1]η ∈ , and max min[,1]η η∈ .

Based on this idea, in order to include the minimum value of kα in an acceptable interval and
keep the consistency of the nonmonotone term, we proposed a trust region method with the
Goldstein-type line search technique. The step length kα satisfies the following inequalities:

Symmetry 2020, 12, 656 3 of 33

1()α α+ ≤ + T
k k k k k k kf x d R c g d , (8)

2()α α+ ≥ + T
k k k k k k kf x d R c g d , (9)

where

() (1)k k l k k kR f fη η= + − , (10)

1
1(0,)
2

c ∈ , 2 1(,1)c c∈ , min max[,]kη η η∈ , min [0,1]η ∈ , and max min[,1]η η∈ .

To evaluate the consistency between the quadratic model and the objective function, the ratio is
defined by Ahookhosh et al. [16] as follows:

 ()
(0) ()

ρ − +=
−

k k k
k

k k k

R f x d
m m d

, (11)

It is well-known that the adaptive radius plays a valuable role in performance. In 1997, an
adaptive strategy for automatically determining the initial trust region radius was proposed by
Sartenear [17]. However, it can be seen that the gradient or Hessian information is not explicitly used
to update the radius. Motivated by the first-order information and second-order information of the
objective function, Zhang et al. [18] proposed a new scheme to determine trust region radius in 2002

as follows: 1p
kk kc g B
−

Δ = , where k kB B iI= + , i N∈ . In order to avoid computing the inverse

of the matrix and the Euclidean norm of
1
kB
−

 at each iteration point kx , Zhou et al. [19] proposed

an adaptive trust region radius as follows: 1

1

kp
k k

k

d
c g

y
−

−

Δ = , where 1 1k k ky g g− −= − , and c

and p are parameters. Prompted by the adaptive technique, Wang et al. [8] proposed a new adaptive

trust region radius as follows: k k kc g γΔ = , which reduces the related workload and calculation

time. Based on this fact, other authors also proposed modified adaptive trust region methods [20–22].

In order to overcome the difficulty of selecting penalty factors when using penalty functions,

Fletcher et al. first recommended the filter techniques for constrained nonlinear optimization (see [23]
for details). More recently, Gould et al. [24] explored a new nonmonotone trust region method with
multidimensional filter techniques for solving unconstrained optimization problems. This idea
incorporates the concept of nonmonotone to build a filter that can reject poor iteration points, and
enforce convergence from random starting points. At the same time, the prototype of the
multidimensional filter techniques relax the requirements of monotonicity in the classic trust region
framework. This idea has been popularized by some authors [25–27].

In the following, we refer to ()kf x∇ by 1 2(, ,...,)= n
k k k kg g g g ; when the th−i component of

()k kg g x= is needed, it is denoted with i
kg , where { } 1,2,3,...,∈i n . We say that an iteration point

1x dominates 2x whenever

1 2 2
i i

gg g gγ≤ − , (12)

where
1(0,)g n

γ ∈

is a small positive constant.

Symmetry 2020, 12, 656 4 of 33

Based on [8], we know that a multidimensional filter F is a list of n -tuples of the form

1 2(, ,...,)nk k kg g g , such that

{ } 1, 2,3,...,j j
k lg g j n≤ ∈ , (13)

where kg and lg belong to F .

For all ∈lg F , a new trial point kx is acceptable if there exists { }1, 2, 3, ...,j n∈ , such that

2 1 2 1

2 1
j j j
k k l lg g g g

γ γ γ γλ λ+ ≤ + , (14)

where 1γ and 2γ are positive constants, and 1λ and 2λ satisfy the inequality

1 2
10
n

λ λ≤ < < .

When an iteration point kx is accepted by the filter, we add ()kg x to the filter, and

()∈lg x F with the following property

2 1 2 1

2 1
j j j
k k l lg g g g

γ γ γ γλ λ+ ≤ + (15)

is removed from the filter.

The rest of this article is organized as follows. In Section 2, we describe a new nonmonotone
adaptive trust region algorithm. We establish the global convergence and superlinear convergence of
the algorithm in Section 3. In Section 4, numerical results are given, which show that the new method
is effective. Finally, some concluding comments are provided in Section 5.

2. The New Algorithm

In this section, a new filter and nonmonotone adaptive trust region Goldstein-type line search
method is proposed. The trust region ratio is used to determine whether the trial step kd is

accepted. Following the trust region ratio of Ahookhosh et al. in [16], we define a modified form as
follows:

()

()
()

k k k
k

l k k k k

R f x d
f f m d

ρ − +=
− −

, (16)

We can see that the effect of nonmonotonicity can be controlled the numerator and denominator,

respectively. Thus, the new trust region ratio may find the global optimal solution effectively.

Compared with the general filter trust region algorithm in [24], we propose a new criteria, that is,

whether the trial point +
kx satisfies

10 kρ μ< < , and verify whether it is accepted by the filter F .

At the same time, a new adaptive trust region radius is presented as follows:

p
k kc g γΔ = , (17)

where 0 1γ< < , 0 1c< < , and p is a nonnegative integer. Compared with the adaptive trust
region method in [8], the new method has the following effective properties: the parameter p plays
a vital role in adjusting the radius, and it can also reduce the workload and computational time.

Symmetry 2020, 12, 656 5 of 33

However, the new trust region radius only uses gradient function information, not function
information.

On the other hand, in each iteration, kd is the trial step to be calculated by

1min () g
2∈

= +
n

T T
k k kd R
m d d d B d , (18)

: p
k kd c g γ≤ Δ = , (19)

More formally, a filter and nonmonotone adaptive trust region line search method, which we
call the FNATR, is described as follows.

Algorithm 1. A new filter and nonmonotone adaptive trust region line search method.

Step 0. (Initialization) Start with 0
nx R∈ and the symmetric matrix 0 ∈ ×n nB R R . The constants 0ε > ,

0N > , 10 1μ< < , 0p = , 1 20 1β β< < < , 1 2
10 1
2

< < < <c c , and 0 0gΔ = are also given. Set

= ∅F , 0k = .

Step 1. If kg ε≤ , then stop.

Step 2. Solve the subproblems of Equations (18) and (19) to find the trial step kd , set k k kx x d+ = + .

Step 3. Compute kR and kρ , respectively.

Step 4. Test the trial step.

If 1kρ μ≥ , then set 1k kx x+
+ = , kk FF =+1 , and go to Step 5.

Otherwise, compute ()k kg f x+ += ∇ .

if kx
+

 is accepted by the filter F , then 1k kx x+
+ = ; add ()k kg f x+ += ∇ into the filter F ,

and go to Step 5.

Otherwise, find the step length kα , satisfying Equations (8) and (9), and set 1k k k kx x dα+ = + .
Then, set

1p p= + , and go to Step 5.

Step 5. Update the symmetric matrix kB by using a modified Quasi-Newton formula. Set

 1k k= + , 0p = , and go to Step 1.

In particular, we consider the following assumptions to analyze the convergence properties of
Algorithm 1.

Assumption 1.

H1. The level set
0() { () ()}L = ∈ ≤n

0x x R f x f x satisfies ()L ⊆ Ω0x ; ()f x is continuously

differentiable and has a lower bound.

H2. The matrix kB is uniformly bounded, i.e., there exists a constant 1 0M > such that

Symmetry 2020, 12, 656 6 of 33

1kB M≤ .

Remark 1. There is a constant 0(), 1τ ∈ ; kB is a positive definite symmetric matrix, and kd satisfies
the following inequalities:

(0) () min , k
k k k k k

k

g
m m d g

B
τ

 − ≥ Δ

, (20)

min , kT
k k k k

k

g
g d g

B
τ

 ≤ − Δ

. (21)

Remark 2. If f is continuously differentiable and ()f x∇ is Lipschitz continuous, there is a positive
constant L so that

() () ,f x f y L x y x y∇ − ∇ ≤ − ∀ ∈ Ω . (22)

3. Convergence Analysis

In order to easily derive convergence results, we define the following indexes: { }1kD k ρ μ= ≥ ,

{ }1 0 ρ μ += < <k kA k x Fis accepted by the filtand er , and { }1k k kS k x x d+= = + . Then,

{ }1 k kS k x Fρ μ += ≥ is accepted by the filteror . At the time of k S∉ , we obtain 1k k k kx x dα+ = + .

Lemma 1. Suppose that Assumption 1 holds, and kd is the solution of Equation (18); then,

() () min , k
l k k k k k k

k

g
f f m d g

B
τ

 − − ≥ Δ

. (23)

Proof. According to () 0 ()
max { }l k k jj m k

f f −≤ ≤
= , we have ()l k kf f≥ . Thus, we obtain

() () (0) ()l k k k k k k kf f m d m m d− − ≥ − . (24)

Taking into account Equation (24) and Remark 1, we can conclude that Equation (23) holds.

Lemma 2. For all k , we can find that

() () ()() ()20k k k k k k kf f x d m m d O d− + − − ≤ . (25)

Proof. The proof can be obtained by Taylor’s expansion and H3.

Lemma 3. Suppose that the infinite sequence { }kx is generated by Algorithm 1. The number of successful

iterations is infinite, that is, S = +∞ . Then, we have { } 0()kx L x⊂ .

Proof. We can proceed by induction. When 0k = , apparently we obtain 0 0()x L x∈ .

Symmetry 2020, 12, 656 7 of 33

Assuming that 0()kx L x∈ (0)k ≥ holds, we get 0kf f≤ . Then, we prove 1 0()kx L x+ ∈ .
Consider the following two cases:

Case 1: When k D∈ , according to Equation (16) we have,

1 1 ()(())k k l k k k kR f f f m dμ+− ≥ − − , (26)

Thus,

1 1 ()(())k k l k k k kR f f f m dμ+≥ + − − , (27)

According to Equations (23) and (27), we can obtain 1k kR f +≥ . Using the definition of kR

and ()l kf , we get

() () () ()(1) (1)k k l k k k k l k k l k l kR f f f f fη η η η= + − ≤ + − = , (28)

The above two inequalities show that

1 () 0k k l kf R f f+ ≤ ≤ ≤ , (29)

Case 2: When k A∈ , according to
10 kρ μ< < , we have () 0k k kR f x d− + > . Thus, we obtain

1 () 0k k l kf R f f+ ≤ ≤ ≤ . This shows the sequence ()0{ }kx L x⊂ .

Lemma 4. Suppose that Assumption 1 holds , and the sequence { }kx is generated by Algorithm 1. Then, the

sequence (){ }l kf
is not monotonically increasing and convergent.

Proof. The proof is similar to the proof of Lemma 5 in [8] and is here omitted.

Lemma 5. Suppose that Assumption 1 holds, and the sequence { }kx
is generated by Algorithm 1. Moreover,

assume that there exists a constant 0 1ε< < , so that kg ε> , for all k . Then, Algorithm 1 is well defined;

that is, the algorithm terminates in a limited number of steps.

Proof. In contradiction, suppose that Algorithm 1 cycles infinitely at iteration k . Then, we have

1

p

k pρ μ< → ∞ , (30)

Following Equation (17), we have 0pc → as p → ∞ . Thus, we get,

0p p
k kd ≤ Δ → , (31)

where p
kd is a solution of the subproblem of Equation (18) corresponding to p in the th−k

iteration. Combining Lemma 1, Lemma 2, and Equation (28), we obtain

Symmetry 2020, 12, 656 8 of 33

 ()

() ()

()

() ()() 1
() ()

() ()
()

1
p pp

k k k l k k k kk k k
p p

l k k k k l k k k k

p p
k k k k k

p
l k k k k

p

k

R f x d f f m dR f x d
f f m d f f m d

f f x d m d
f f m d

ρ
− + − + +− + − =

− − − −

− + +≤
− −

− =

()

()

()
() ()

2

2

1

2

min ,

min ,

 0

p
k

k
k k

k

p
k

k

k

k

O d

g
g

B

O d

M

O
p

O

τ

ετε

≤
 Δ

≤

Δ

Δ
≤ → → ∞

Δ

,

(32)

which implies that there exists a sufficiently large p such that 1ρ μ≥
p

k as → ∞p . This

contradicts Equation (30), and shows that Algorithm 1 is well defined.

Lemma 6. Suppose that Assumption 1 holds , and there exists a constant ε such that kg ε≥

for all

k . Therefore, there is a constant υ such that

, 0, 1, 2,..., k kυΔ > = , (33)

Proof. The proof is similar to that of Theorem 6.4.3 in [28], and is therefore omitted here.

In what follows, we establish global convergence of Algorithm 1 based on the above and the

lemmas.

Theorem 1. (Global Convergence) Suppose that Assumption 1 holds, and the sequence{ }kx is generated by

Algorithm 1, such that,

lim inf 0kk
g

→∞
= (34)

Proof . Divide the proof into the following two cases:

Case 1: The number of successful iterations and many filter iterations are infinite, i.e., S = +∞ ,

=+∞A .

Suppose, on the contrary, that Equation (34) does not hold. Thus, there exists a constant ε
such that kg ε> , as k is sufficiently large. Introduce the index of set { }iS k= . Following H1, we

can find that { }kg is bounded. Therefore, there is a subsequence { } { }t ik k⊆ such that

Symmetry 2020, 12, 656 9 of 33

lim
tkt

g ε
→∞

= ,
(35)

where ε is a constant. The iteration point
tk
x

is accepted by the filter

tk
F ; then there exists

{ }1,2,...,j n∈ , for every 1t > , that is

11t k tt

j j
k g kg g gγ

−−
− ≤ − (36)

As t is sufficiently large, we have

()1
lim 0

t kt

j j
kt
g g

−→∞
− = . (37)

However, we obtain
1

0
tg k ggγ γ ε
−

− ≤ − < , which means that Equation (37) does not hold. The

proof is completed.

Case 2: The number of successful iterations is infinite, and the number of filter iterations is finite, i.e.,

S = +∞ , <A + ∞ .

We proceed from the following proof with a contradiction. Suppose that there exists a constant
0ε > , such that kg ε≥ , for sufficiently large k . Based on <A + ∞ , for sufficiently large

k S∈ , we have 1kρ μ≥ . Thus, set

{ }, 1,...,k p p k Sξ = + .
(38)

Based on H2, Equation (28), Lemma 1, and Lemma 6, we write

() ()() 1 1 1
1

min , εξ μ τε υ+ +
∈ ∈

− ≥ − ≥

 l k k k k k
k T k T

f f R f
M

. (39)

As p and k are sufficiently large, according to S = +∞
and <A + ∞ , we know that kξ

is sufficiently large. Thus, we can find that
1

1

min , εξ μ τε υ

→ +∞

k M
, and the left end of Equation

(39) has no lower bound. We can deduce that

() ()() 1 () (1)

() (1)

k

l k k l j l j
k T j p

l p l k

f f f f

f f

+ +
∈ =

+

− ≥ −

= −

.

(40)

Using Lemma 4, as p and k are sufficiently large, the left end of Equation (40) has a lower

bound, which contradicts Equation (39). This completes the proof of Theorem 1.

Now, based on the appropriate conditions, the following superlinear convergence is presented
for Algorithm 1.

Symmetry 2020, 12, 656 10 of 33

Theorem 2. (Superlinear Convergence) Suppose that Assumption 1 holds, and the sequence { }kx generated

by Algorithm 1 converges to *x . Moreover, it is reasonable to assume that the Hessian matrix 2 *()f x∇ is

positive definite. If k kd ≤ Δ , where 1
k k kd B g−= − , and

2 *(()
lim 0k k

k
k

B f x d
d→∞

− ∇
= , (41)

then the sequence { }kx
converges to *x in a superlinear manner.

Proof. Found using the same method as in the proof of Theorem 4.1 in [29].

4. Preliminary Numerical Experiments

In this section, we present numerical results to illustrate the performance of Algorithm 1 in
comparison with the standard nonmonotone trust region algorithm of Pang et al. in [30] (ASNTR),
the nonmonotone adaptive trust region algorithm of Ahookhoosh et al. in [16] (ANATR), and the
multidimensional filter trust region algorithm of Wang et al. in [8] (AFTR). We performed our codes
in double precision format of algorithm in MATLAB 9.4 programming, and the codes are given in
the Appendix A. A set of unconstrained optimization test problems are selected from Andrei [31]
with the some medium-scale and large-scale problems. The stopping criteria are that the number of
iterations exceeds 10,000 or 610 (1 ())k kg f x−≤ + . fn , in , and CPU represent the total number of

function evaluations, the total number of gradient evaluations, and running time in seconds,
respectively. Following Step 0, we exploit the following values: 1 0.25μ = , 1=0.25β , 2 =1.5β ,

0 0.25η = , 5=N , 0.5ε = , 1 0.25=c , 2 0.75=c , and 0 = ∈ ×n nB I R R . In addition, kη is updated by
the following recursive formula:

0

-1 -2

/ 2, if 1
() / 2, if 2k
k k

k
k

η
η

η η
=

= + ≥
, (42)

The matrix kB is updated using a CBFGS formula [32]:

2

1

2

 ,

,

αε

ε
+

+ − ≥

=
 <

T T T
k k k k k k k k

k kT T
k k k k k k

k T
k k

k k
k

y y B d d B y dB g
d y d B d d

B
y dB g
d

 ,
 (43)

where 1k k kd x x+= − , and 1k k ky g g+= − .

In Table 1, it is easily can be seen that Algorithm 1 outperforms the ASNTR, ANATR, and AFTR
algorithms with respect to fn , in , and CPU, especially for some problems. The Dolan–Moré [33]

performance profile was used to compare the efficiency using the number of functional evaluations,

the number of gradient evaluations, and running time. A performance index can be selected as

measure of comparison among the mentioned algorithms, and the results can be illustrated by a
performance profile. For every 1τ ≥ , the performance profile gives the proportion ()ρ τ of the test

problems. The performance of each considered algorithmic variant was the best within a range of τ
of the best.

Symmetry 2020, 12, 656 11 of 33

Table 1. Numerical comparisons on a subset of test problems. ASNTR: The standard nonmonotone
trust region algorithm of Pang et al.; ANATR: The nonmonotone adaptive trust region algorithm of

Ahookhoosh et al.; AFTR: The multidimensional filter trust region algorithm of Wang et al.

Problem n /f in n

 ASNTR CPU ANATR CPU AFTR CPU Algorithm 1 CPU

Extended
Rosenbrock

500 2649/1326 1867.254 1071/840 1545.386 547/387 642.091 86/47 70.369

Extended White
and Holst function

500 13/7 26.788 5/3 6.524 5/3 2.125 3/2 0.218

Extended Beale 500 29/15 4.386 43/22 15.351 40/36 8.532 22/17 2.953
Penalty i 500 13/8 32.186 5/3 6.593 7/4 2.176 3/2 0.171

Pert.Quad 36 153/80 0.5523 128/67 0.4704 101/73 0.8631 86/45 0.167
Raydan 1 100 26/14 0.862 130/98 2.263 208/105 3.5009 82/42 0.923
Raydan 2 500 13/8 0.9660 13/8 0.9966 11/6 0.9549 9/5 0.780

Diadonal 1 500 82/42 40.591 1459/812 1957.794 59/43 21.091 21/11 9.107
Diadonal 2 500 4765/3529 1532.176 251/198 106.641 390/201 43.252 2116/1062 430.600
Diagonal 3 500 1634/933 1822.091 1389/766 1536.226 349/288 327.056 201/101 88.049

Hager 500 42/23 30.258 1418/760 270.837 87/46 45.342 51/26 14.278
Generalized

Tridiagonal 1
500 63/32 5.6490 53/28 8.349 46/24 13.419 70/36 11.163

Extended
Tridiagonal 1

500 25/13 0.9857 25/13 3.448 14/10 3.2337 8/7 0.823

Extended TET 500 15/8 4.2638 15/9 1.632 17/9 2.5044 17/9 1.452
Diadonal 4 500 7/4 0.3293 7/4 0.857 9/8 4.0362 5/4 0.419
Diadonal 5 500 106/54 43.3048 134/112 57.032 127/106 41.096 155/79 19.024
Diadonal 7 1000 96/78 29.197 88/73 22.309 34/15 10.265 19/15 2.561
Diadonal 8 1000 159/122 18.542 133/126 43.067 76/36 6.781 27/21 1.550

Extended Him 1000 35/18 7.150 30/16 17.975 108/87 514.843 28/18 22.572
Full Hessian FH3 1000 11/6 1.755 11/6 5.555 17/13 5.1472 11/6 3.912

Extended BD1 1000 43/25 61.358 30/16 17.9073 35/19 23.4119 30/19 26.971
Quadratic QF1 1000 287/195 157.332 293/219 0.259 400/274 87.043 197/99 43.280
FLETCHCR34 1000 847/505 67.511 345/225 100.676 24/16 73.265 8/5 33.145
ARWHEAD 1000 47/24 38.4334 29/16 24.338 64/41 38.552 24/17 18.299

NONDIA 1000 197/104 96.176 92/47 56.432 33/23 34.726 51/35 22.318
DQDRTIC 1000 23/12 52.102 36/19 40.949 46/37 86.265 22/15 16.526

EG2 1000 55/30 79.991 28/16 16.042 19/19 14.169 51/26 32.424
Broyden

Tridiagonal
1000 1978/1488 1545.221 1553/1288 1266.076 1226/987 782.560 754/646 456.105

Almost Perturbed
Quadratic

1600 2548/2267 1960.433 2118/1829 1543.253 1078/718 1067.206 657/425 279.316

Perturbed
Tridiagonal
Quadratic

3000 1342/1025 1672.434 1132/876 1033.255 745/552 835.265 453/357 572.371

DIXMAANA 3000 576/463 132.240 223/198 88.211 378/320 108.452 209/165 78.542
DIXMAANB 3000 248/201 64.215 165/122 40.233 67/56 25.109 48/32 37.120
DIXMAANC 3000 279/197 177.221 246/167 134.272 95/43 30.140 58/24 19.011

Extended DENSCH 3000 673/418 476.214 533/388 309.605 254/105 199.421 87/42 219.167
SINCOS 3000 2067/1554 1045.301 1653/1274 836.022 337/233 472.032 275/141 165.665

HIMMELH 3000 967/721 526.211 506/349 255.629 197/196 109.276 45/32 40.127
BIGGSB1 3000 3760/2045 2321.509 2254/1886 1308.227 1836/1025 904.234 4051/2381 1987.456

ENGVAL1 3000 1784/1087 1643.092 587/423 960.421 63/43 243.840 58/32 167.991
BDEXP 3000 2259/1876 978.432 1342/978 832.013 172/137 385.439 67/43 59.276

Symmetry 2020, 12, 656 12 of 33

INDEF 3000 325/209 2430.215 178/156 1023.211 34/31 721.343 19/11 479.263
NONSCOMP 3000 264/107 1742.856 96/47 1389.123 34/18 921.324 22/14 679.120

QUARTC 3000 167/123 643.254 332/289 921.313 22/20 425.995 67/54 356.762

It can be easily seen from Figures 1–3 that the new algorithm shows a better performance than

the other algorithms from the perspective of the number of function evaluations, the number of

gradient evaluations, and running time, especially in contrast to ASNTR. As a general result, we can

infer that the new algorithm is more efficient and robust than the other mentioned algorithms in

terms of the total number of iterations and running time.

Figure 1. Performance profile for the number of function evaluations (fn).

Figure 2. Performance profile for the number of gradient evaluations (in).

Symmetry 2020, 12, 656 13 of 33

Figure 3. Performance profile for running time (CPU).

5. Conclusions

In this paper, we combine the nonmonotone adaptive line search strategy with

multidimensional filter techniques, and propose a nonmonotone trust region method with a new
adaptive radius. Our method possesses the following attractive properties:

(1) The new algorithm is quite different from the standard trust region method; in order to
avoid resolving the subproblem, a new nonmonotone Goldstein-type line search is performed in
the direction of the rejected trial step.

(2) A new adaptive trust region radius is presented, which decreases the amount of work and
computational time. However, full use of the function information for the new trust region radius
is not made. A modified trust region ratio is computed which provides more information about
evaluating the consistency between the quadratic model and the objective function.

(3) The approximation of the Hessian matrix is updated by the modified BFGS method.

Convergence analysis has shown that the proposed algorithm preserves global convergence
as well as superlinear convergence. Numerical experiments were performed on a set of
unconstrained optimization test problems in [31]. The numerical results showed that the proposed
method is more competitive than the ASNTR, ANATR, and AFTR algorithms for medium-scale
problems and large-scale problems with respect to the performance profile explained by Dolan–
Moré in [33]. Thus, we can draw the conclusion that the new algorithm works quite well for solving
unconstrained optimization problems. In the future, it will be interesting to see the new
nonmonotone trust region method used to solve constrained optimization problems and nonlinear
equations with constrained conditions. On the other hand, it also will be interesting to combine an
improved conjugate gradient algorithm with an improved nonmonotone trust region method to
solve many optimization problems.

Author Contributions: Conceptualization, Q.Q.; Writing—original draft, Q.Q.; Methodology, Q.Q; Writing—
review and editing, X.D; Resources, X.D. Data curation, X.W; Project administration, X.W; Software, X.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank all those who helped improve the quality of the article.

Conflicts of Interest: The authors declare no conflict of interest.

Symmetry 2020, 12, 656 14 of 33

Appendix A

function [xstar,ystar,fnum,gnum,k,val]=nonmonotone40(x0,N,npro)

flag=1;

k=1;

j=0;

x=x0;

n=length(x);

f(k)=f_test(x,n,npro);

g=g_test(x,n,npro);

H=eye(n,n);

eta1=0.25;

fnum=1;

gnum=1;

flk=f(k);

p=0;

delta=norm(g);

eps=1e-6;

t=1;

F(:,t)=x;

t=t+1;

while flag

 if (norm(g)<=eps*(1+abs(f(k))))

 flag=0;

 break;

 end

 [d, val] = Trust_q(f(k), g, H, delta);

 faiafa=f_test(x+d,n,npro);

 fnum=fnum+1;

Symmetry 2020, 12, 656 15 of 33

 flk=mmax(f,k-j,k);

 Rk=0.25*flk+0.75*f(k);

 dq = flk- f_test(x,n,npro)- val;

 df=Rk-faiafa;

 rk = df/dq;

 flag_filter=0;

 if rk > eta1

 x1=x+d;

 faiafa=f_test(x1,n,npro);

 else

 g0=g_test(x+d,n,npro);

 for i=1:(t-1)

 gg=g_test(F(:,i),n,npro);

 end

 for l =1:n

 rg=1/sqrt(n-1);

 if abs(g0(l))<=abs(gg(l))-rg*norm(gg)

 flag_filter=1;

 end

 end

 m=0;

 mk=0;

 rho=0.6;

 sigma=0.25;

 while (m<20)

 if f_test(x+rho^m*d,n,npro)<f_test(x,n,npro)+sigma*rho^m*g'*d

 mk=m;

 break;

Symmetry 2020, 12, 656 16 of 33

 end

 m=m+1;

 end

 x1=x+rho^mk*d;

 faiafa=f_test(x1,n,npro);

 fnum=fnum+1;

 p=p+1;

 end

 flag1=0;

 if flag_filter==1

 flag1=1;

 g_f2=abs(g);

 for i=1:t-1

 g_f1=abs(g_test(F(:,i),n,npro));

 if g_f1>g_f2

 F(:,i)=x0;

 end

 end

 end

 %%%%%%%%%%%%%%%%%%%%

 if flag1==1

 F(:,t)=x;

 t=t+1;

 else

 for i=1:t-1

 if F(:,i)==x

 F(:,i)=[];

Symmetry 2020, 12, 656 17 of 33

 t=t-1;

 end

 end

 end

 dx = x1-x;

 dg=g_test(x1, n,npro)-g;

 if dg'*dx > 0

 H= H- (H*(dx*dx’) *H)/(dx'*H*dx) + (dg*dg')/(dg'*dx);

 end

 delta=0.5^p*norm(g)^0.75;

 k=k+1;

 f(k)=faiafa;

 j=min ([j+1, M]);

 g=g_test(x1, n,npro);

 gnum=gnum+1;

 x0=x1;

 x=x0;

 p=0;

end

val = f(k)+ g'*d + 0.5*d'*H*d;

xstar=x;

ystar=f(k);

end

function [d, val] = Trust_q(Fk, gk, H, deltak)

min qk(d)=fk+gk'*d+0.5*d'*Bk*d, s.t.||d|| <= delta

n = length(gk);

rho = 0.6;

sigma = 0.4;

Symmetry 2020, 12, 656 18 of 33

mu0 = 0.5;

lam0 = 0.25;

gamma = 0.15;

epsilon = 1e-6;

d0 = ones(n, 1);

zbar = [mu0, zeros(1, n + 1)]';

i = 0;

mu = mu0;

lam = lam0;

d = d0;

while i <= 100

 HB = dah (mu, lam, d, gk, H, deltak);

 if norm(HB) <= epsilon

 break;

 end

 J = JacobiH(mu, lam, d,H, deltak);

 b = psi (mu, lam, d, gk, H, deltak, gamma) *zbar - HB;

 dz = J\b;

 dmu = dz(1);

 dlam = dz(2);

 dd = dz(3 : n + 2);

 m = 0;

 mi = 0;

 while m < 20

 t1 = rho^m;

 Hnew = dah (mu + t1*dmu, lam + t1*dlam, d + t1*dd, gk, H, deltak);

 if norm(Hnew) <= (1 - sigma*(1 - gamma*mu0) *rho^m) *norm(HB)

 mi = m;

Symmetry 2020, 12, 656 19 of 33

 break;

 end

 m = m+1;

 end

 alpha = rho^mi;

 mu = mu + alpha*dmu;

 lam = lam + alpha*dlam;

 d = d + alpha*dd;

 i = i + 1;

end

val = Fk+ gk'*d + 0.5*d'*H*d;

end

function p = phi (mu, a, b)

p = a + b - sqrt((a - b)^2 + 4*mu^2);

end

function HB = dah (mu, lam, d, gk,H, deltak)

n = length(d);

HB = zeros (n + 2, 1);

HB (1) = mu;

HB (2) = phi (mu, lam, deltak^2 - norm(d)^2);

HB (3: n + 2) = (H + lam*eye(n)) *d + gk;

end

function J = JacobiH(mu, lam, d, H, deltak)

n = length(d);

t2 = sqrt((lam + norm(d)^2 - deltak^2)^2 + 4*mu^2);

pmu = -4*mu/t2;

thetak = (lam + norm(d)^2 - deltak^2)/t2;

J= [1, 0, zeros(1, n);

Symmetry 2020, 12, 656 20 of 33

 pmu, 1 - thetak, -2*(1 + thetak)*d';

 zeros (n, 1), d, H+ lam*eye(n)];

end

function si = psi (mu, lam, d, gk,H, deltak, gamma)

HB = dah (mu, lam, d, gk,H, deltak);

si = gamma*norm(HB)*min (1, norm(HB));

end

Partial test function

 function f = f_test(x,n,nprob)

% integer i,iev,ivar,j

% real ap,arg,bp,c2pdm6,cp0001,cp1,cp2,cp25,cp5,c1p5,c2p25,c2p625,

% c3p5,c25,c29,c90,c100,c10000,c1pd6,d1,d2,eight,fifty,five,

% four,one,r,s1,s2,s3,t,t1,t2,t3,ten,th,three,tpi,two,zero

% real fvec(50), y(15)

 zero = 0.0e0; one = 1.0e0; two = 2.0e0; three = 3.0e0; four = 4.0e0;

 five = 5.0e0; eight = 8.0e0; ten = 1.0e1; fifty = 5.0e1;

 c2pdm6 = 2.0e-6; cp0001 = 1.0e-4; cp1 = 1.0e-1; cp2 = 2.0e-1;

 cpp2=2.0e-2; cp25 = 2.5e-1; cp5 = 5.0e-1; c1p5 = 1.5e0; c2p25 = 2.25e0;

 c2p625 = 2.625e0; c3p5 = 3.5e0; c25 = 2.5e1; c29 = 2.9e1;

 c90 = 9.0e1; c100 = 1.0e2; c10000 = 1.0e4; c1pd6 = 1.0e6;

 ap = 1.0e-5; bp = 1.0e0;

if nprob == 1

% extended rosenbrock function

 f = zero;

 for j = 1: 2: n

 t1 = one - x(j);

 t2 = ten*(x(j+1) - x(j)^2);

 f = f + t1^2 + t2^2;

Symmetry 2020, 12, 656 21 of 33

 end

 elseif nprob == 3

% Extended White & Holst function

 f = zero;

 for j = 1: 2: n

 t1 = one - x(j);

 t2 = ten*(x(j+1) - x(j)^3);

 f = f + t1^2 + t2^2;

 end

elseif nprob == 4

%EXT beale function.

f=zero;

for j=1:2: n

s1=one-x(j+1);

t1=c1p5-x(j)*s1;

s2=one-x(j+1) ^2;

t2=c2p25-x(j)*s2;

s3 = one - x(j+1) ^3;

t3 = c2p625 - x(j)*s3;

 f = f+t1^2 + t2^2 + t3^2;

 end

elseif nprob == 5

% penalty function i.

 t1 = -cp25;

 t2 = zero;

 for j = 1: n

 t1 = t1 + x(j)^2;

 t2 = t2 + (x(j) - one) ^2;

Symmetry 2020, 12, 656 22 of 33

 end

 f = ap*t2 + bp*t1^2;

elseif nprob == 6

% Pert.Quad

 f1=zero;

 f2=zero;

 f=zero;

for j=1: n

 t=j*x(j)^2;

 f1=t+f1;

for j=1: n

 t2=x(j);

 f2=f2+t2;

end

f=f+f1+1/c100*f2^2;

elseif nprob == 7

 % Raydan 1

 f=zero;

for j=1: n

 f1=j*(exp(x(j))-x(j))/ten;

 f=f1+f;

end

elseif nprob == 8

% Raydan 2 function

 f=zero;

 for j=1: n

 ff=exp(x(j))-x(j);

 f=ff+f;

Symmetry 2020, 12, 656 23 of 33

 end

elseif nprob==9

 % Diagonal 1

 f=zero;

 for j=1: n

 ff=exp(x(j))-j*x(j);

 f=ff+f;

end

elseif nprob==10

% Diagonal 2

f=zero;

for j=1: n

 ff=exp(x(j))-x(j)/j;

 f=ff+f;

 x0(j)=1/j;

end

elseif nprob==11

% Diagonal 3

f=zero;

for i=1: n

 ff=exp(x(i))-i*sin(x(i));

 f=ff+f;

end

elseif nprob==12

 % Hager

f=zero;

for j=1: n

f1=exp(x(j))-sqrt(j)*x(j);

Symmetry 2020, 12, 656 24 of 33

f=f+f1;

end

elseif nprob==13

%Gen. Trid 1

f=zero;

for j=1: n-1

 f1=(x(j)-x(j+1) +one) ^4+(x(j)+x(j+1)-three) ^2;

 f=f+f1;

end

elseif nprob==14

%Extended Tridiagonal 1 function

f=zero;

for j=1:2: n

f1=(x(j)+x(j+1)-three) ^2+(x(j)+x(j+1) +one) ^4;

f=f1+f;

end

elseif nprob==15

%Extended TET function

f=zero;

for j=1:2: n

 f1=exp(x(j)+three*x(j+1)-cp1) + exp(x(j)-three*x(j+1)-cp1) +exp(-x(j)-cp1);

 f=f1+f;

end

end

function g = g_test(x,n,nprob)

% integer i,iev,ivar,j

% real ap,arg,bp,c2pdm6,cp0001,cp1,cp2,cp25,cp5,c1p5,c2p25,c2p625,

% * c3p5,c19p8,c20p2,c25,c29,c100,c180,c200,c10000,c1pd6,d1,d2,

Symmetry 2020, 12, 656 25 of 33

% * eight,fifty,five,four,one,r,s1,s2,s3,t,t1,t2,t3,ten,th,

% * three,tpi,twenty,two,zero

% real fvec(50), y(15)

% real float

% data zero,one,two,three,four,five,eight,ten,twenty,fifty

% * /0.0e0,1.0e0,2.0e0,3.0e0,4.0e0,5.0e0,8.0e0,1.0e1,2.0e1,

% * 5.0e1/

% data c2pdm6, cp0001, cp1, cp2, cp25, cp5, c1p5, c2p25, c2p625, c3p5,

% * c19p8, c20p2, c25, c29, c100, c180, c200, c10000, c1pd6

% * /2.0e-6,1.0e-4,1.0e-1,2.0e-1,2.5e-1,5.0e-1,1.5e0,2.25e0,

% * 2.625e0,3.5e0,1.98e1,2.02e1,2.5e1,2.9e1,1.0e2,1.8e2,2.0e2,

% * 1.0e4,1.0e6/

% data ap,bp/1.0e-5,1.0e0/

% data y(1),y(2),y(3),y(4),y(5),y(6),y(7),y(8),y(9),y(10),y(11),

% * y (12), y (13), y (14), y (15)

% * /9.0e-4,4.4e-3,1.75e-2,5.4e-2,1.295e-1,2.42e-1,3.521e-1,

% * 3.989e-1,3.521e-1,2.42e-1,1.295e-1,5.4e-2,1.75e-2,4.4e-3,

% * 9.0e-4/

 zero = 0.0e0; one = 1.0e0; two = 2.0e0; three = 3.0e0; four = 4.0e0;

 five = 5.0e0; eight = 8.0e0; ten = 1.0e1; twenty = 2.0e1; fifty = 5.0e1;

 cpp2=2.0e-2; c2pdm6 = 2.0e-6; cp0001 = 1.0e-4; cp1 = 1.0e-1; cp2 = 2.0e-1;

 cp25 = 2.5e-1; cp5 = 5.0e-1; c1p5 = 1.5e0; c2p25 = 2.25e0; c40=4.0e1;

 c2p625 = 2.625e0; c3p5 = 3.5e0; c25 = 2.5e1; c29 = 2.9e1;

 c180 = 1.8e2; c100 = 1.0e2; c400=4.0e4; c200=2.0e2; c600=6.0e2; c10000 = 1.0e4; c1pd6 = 1.0e6;

 ap = 1.0e-5; bp = 1.0e0; c200 = 2.0e2; c19p8 = 1.98e1;

 c20p2 = 2.02e1;

if nprob == 1

%extended rosenbrock function.

Symmetry 2020, 12, 656 26 of 33

 for j = 1: 2: n

 t1 = one - x(j);

 g(j+1) = c200*(x(j+1) - x(j)^2);

 g(j) = -two*(x(j)*g(j+1) + t1);

 end

elseif nprob == 3

% Extended White & Holst function

 for j = 1: 2: n

 t1 = one - x(j);

 g(j)=two*t1-c600*(x(j+1)-x(j)^3) *x(j);

 g(j+1) =c200*(x(j+1)-x(j)^3);

 end

elseif nprob == 4

% powell badly scaled function.

 for j=1:2: n

 s1 = one - x(j+1);

 t1 = c1p5 - x(j)*s1;

 s2 = one - x(j+1) ^2;

 t2 = c2p25 - x(j)*s2;

 s3 = one - x(j+1) ^3;

 t3 = c2p625 - x(j)*s3;

 g(j) = -two*(s1*t1 + s2*t2 + s3*t3);

 g(j+1) = two*x(j)*(t1 + x(j+1) *(two*t2 + three*x(j+1) *t3));

 end

elseif nprob == 5

% penalty function i.

 for j=1: n

 g(j)=four*bp*x(j)*(x(j)^2-cp25) +two*(x(j)-one);

Symmetry 2020, 12, 656 27 of 33

 end

elseif nprob == 6

 % Perturbed Quadratic function

 f2=zero;

for j=1: n

 t2=x(j);

 f2=f2+t2;

end

for j=1: n

g(j)=two*j*x(j)+cpp2*f2^2;

end

elseif nprob == 7

% Raydan 1

for j=1: n

 g(j)=j*(exp(x(j))-one)/ten;

end

elseif nprob ==8

% Raydan 2

for j=1: n

g(j)=exp(x(j))-one;

end

elseif nprob==9

% Diagonal 1 function

for j=1: n

 g(j)=exp(x(j))-j;

end

elseif nprob==10

% Diagonal 2 function

Symmetry 2020, 12, 656 28 of 33

for j=1: n

g(j)=exp(x(j))-1/j;

end

elseif nprob==11

% Diagonal 3 function

for j=1: n

g(j)=exp(x(j))-j*cos(x(j));

end

elseif nprob==12

% Hager function

for j=1: n

g(j)=exp(x(j))-sqrt(j);

end

elseif nprob==13

% Gen. Trid 1

for j=1:2: n-1

g(j)=four*(x(j)-x(j+1)+one)^3+two*(x(j)+x(j+1)-three);

g(j+1)=-four*(x(j)-x(j+1)+one)^3+two*(x(j)+x(j+1)-three);

end

elseif nprob==14

%Extended Tridiagonal 1 function

 for j=1:2: n

 g(j)=two*(x(j)+x(j+1)-three)+four*(x(j)+x(j+1)+one)^3;

 g(j+1)=two*(x(j)+x(j+1)-three)+four*(x(j)+x(j+1)+one)^3;

 end

elseif nprob==15

% Extended TET function

for j=1:2: n

Symmetry 2020, 12, 656 29 of 33

g(j)=exp(x(j)+three*x(j+1)-cp1)+ exp(x(j)-three*x(j+1)-cp1)-exp(-x(j)-0.1);

g(j+1) =three*exp(x(j)+three*x(j+1)-cp1)-three*exp(x(j)-three*x(j+1)-cp;

end

tic;

npro=1;

%Extended Rosenbrock

if npro==1

 x0=zeros (500,1);

 for i=1:2:500

 x0(i)=-1.2;

 x0(i+1) =1;

 end

%Generalized Rosenbrock

elseif npro==2

 x0=zeros (1000,1);

 for i=1:2:1000

 x0(i)=-1.2;

 x0(i+1) =1;

 end

%Extended White & Holst function

elseif npro==3

 x0=zeros (500,1);

 for i=1:2:500

 x0(i)=-1.2;

 x0(i+1) =1;

 end

%Extended Beale

elseif npro==4

Symmetry 2020, 12, 656 30 of 33

 x0=zeros (500,1);

 for i=1:2:500

 x0(i)=1;

 x0(i)=0.8;

 end

 %Penalty

elseif npro==5

 x0=zeros (500,1);

 for i=1:500

 x0(i)=i;

 end

% Perturbed Quadratic function

elseif npro==6

 x0=0.5*ones (36,1);

% Raydan 1

elseif npro == 7

 x0=ones (100,1);

%Raydan 2

elseif npro==8

 x0=ones (500,1);

%Diagonal 1 function

elseif npro==9

 x0=0.5*ones (500,1);

%Diagonal 2 function

 elseif npro==10

 x0=zeros (500,1);

 for i=1:500

 x0(i)=1/i;

Symmetry 2020, 12, 656 31 of 33

 end

%Diagonal 3 function

elseif npro==11

 x0=ones (500,1);

% Hager function

 elseif npro==12

 x0=ones (500,1);

%Gen. Trid 1

 elseif npro==13

 x0=2*ones (500,1);

%Extended Tridiagonal 1 function

 elseif npro==14

 x0=2*ones (500,1);

%Extended TET function

 elseif npro==15

 x0=0.1*ones (500,1);

end

N=5;

[xstar,ystar,fnum,gnum,k,val]=nonmonotone40(x0,N,npro);

fprintf('%d, %d,%d',fnum,gnum,val);

xstar;

ystar;

toc

References

1. Jiang, X.Z.; Jian, J.B. Improved Fletcher-Reeves and Dai-Yuan conjugate gradient methods with the strong
Wolfe line search. J. Comput. Appl. Math. 2019, 328, 525–534.

2. Fatemi, M. A new efficient conjugate gradient method for unconstrained optimization. J. Comput. Appl.
Math. 2016, 300, 207–216.

3. Andrei, N. New hybrid conjugate gradient algorithms for unconstrained optimization. Encycl. Optim. 2009,
141, 2560–2571.

4. Gao, H.; Zhang, H.B.; Li, Z.B. A nonmonotone inexact Newton method for unconstrained optimization.
Optim. Lett. 2017, 11, 947–965.

Symmetry 2020, 12, 656 32 of 33

5. Kenji, U.; Nobuo, Y. A regularized Newton method without line search for unconstrained optimization.
Comput. Optim. Appl. 2014, 59, 321–351.

6. Xue, Y.Q.; Liu, H.W.; Liu, H.Z. An improved nonmonotone adaptive trust region method. Appl. Math. 2019,
3, 335–350.

7. Rezaee, S.; Babaie-Kafaki, S. A modified nonmonotone trust region line search method. J. Appl. Math.
Comput. 2017, doi:10.1007/s12190-017-1113-4.

8. Wang, X.Y.; Ding, X.F.; Qu, Q. A New Filter Nonmonotone Adaptive Trust Region Method for
Unconstrained Optimization. Symmetry 2020, 12, 208, doi:10.3390/sym12020208.

9. Nocedal, J.; Yuan, Y. Combining trust region and line search techniques. Adv. Nonlinear Program. 1998, 153–
175.

10. Michael, Gertz. E. A Quasi-Newton Trust Region Method. Math. Program. 2004, 100, 447–470.
11. Li, C.Y.; Zhou, Q.H.; Wu, X. A Non-Monotone Trust Region Method with Non-Monotone Wolfe-Type Line

Search Strategy for Unconstrained Optimization. J. Appl. Math. Phys. 2015, 3, 707–712.
12. Zhang, H.C.; Hager, W.W. A nonmonotone line search technique and its application to unconstrained

optimization. SIAM J. Optim. 2004, 14, 1043–1056.
13. Chamberlain, R.M.; Powell, M.J.D.; Lemarechal, C.; Pedersen, H.C. The watchdog technique for forcing

convergence in algorithm for constrained optimization. Math. Program. Stud. 1982, 16, 1–17.
14. Grippo, L.; Lamparillo, F.; Lucidi, S. A nonmonotone line search technique for Newton’s method. Siam J.

Numer. Anal. 1986, 23, 707–716.
15. Cui, Z.C.; Wu, B.; Qu, S.J. Combining nonmonotone conic trust region and line search techniques for

unconstrained optimization. J. Comput. Appl. Math. 2011, 235, 2432–2441.
16. Ahookhoosh, M.; Amini, K.; Peyghami, M. A nonmonotone trust region line search method for large scale

unconstrained optimization. Appl. Math. Model. 2012, 36, 478–487.
17. Sartenaer, A. Automatic determination of an initial trust region in nonlinear programming. SIAM J. Sci.

Comput. 1997, 18, 1788–1803.
18. Zhang, X.S.; Zhang, J.L.; Liao, L.Z. An adaptive trust region method and its convergence. Sci. China 2002,

45, 620–631.
19. Zhou, S.; Yuan, G.L.; Cui, Z.R. A new adaptive trust region algorithm for optimization problems. Acta Math.

Sci. 2018, 38B, 479–496.
20. Kimiaei, M. A new class of nonmonotone adaptive trust-region methods for nonlinear equations with box

constraints. Calcolo 2017, 54, 769–812.
21. Amini, K.; Shiker Mushtak, A.K.; Kimiaei, M. A line search trust-region algorithm with nonmonotone

adaptive radius for a system of nonlinear equations. Q. J. Oper. Res. 2016, 4, 132–152.
22. Peyghami, M.R.; Tarzanagh, D.A. A relaxed nonmonotone adaptive trust region method for solving

unconstrained optimization problems. Comput. Optim. Appl. 2015, 61, 321–341.
23. Fletcher, R.; Leyffer, S. Nonlinear programming without a penalty function. Math. Program. 2002, 91, 239–

269.
24. Gould, N.I.; Sainvitu, C.; Toint, P.L. A filter-trust-region method for unconstrained optimization. Siam J.

Optim. 2005, 16, 341–357.
25. Wächter, A.; Biegler, L.T. Line search filter methods for nonlinear programming and global convergence.

SIAM J. Optim. 2005, 16, 1–31.
26. Miao, W.H.; Sun, W. A filter trust-region method for unconstrained optimization. Numer. Math. J. Chin.

Univ. 2007, 19, 88–96.
27. Zhang, Y.; Sun, W.; Qi, L. A nonmonotone filter Barzilai-Borwein method for optimization. Asia Pac. J. Oper.

Res. 2010, 27, 55–69.
28. Conn, A.R.; Gould, N.I.M.; Toint, P.L. Trust-Region Methods, MPS-SIAM Series on Optimization; SIAM:

Philadelphia, PA, USA, 2000.
29. Gu, N.Z.; Mo, J.T. Incorporating Nonmonotone Strategies into the Trust Region for Unconstrained

Optimization. Comput. Math. Appl. 2008, 55, 2158–2172.
30. Pang, S.M.; Chen, L.P. A new family of nonmonotone trust region algorithm. Math. Pract. Theory .2011, 10,

211‒218.
31. Andrei, N. An unconstrained optimization test functions collection. Environ. Sci. Technol. 2008, 10, 6552–

6558.

Symmetry 2020, 12, 656 33 of 33

32. Toint, P.L. Global convergence of the partitioned BFGS algorithm for convexpartially separable
optimization. Math. Program. 1986, 36, 290–306.

33. Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002,
91, 201–213.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open

access article distributed under the terms and conditions of the Creative Commons

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

