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Abstract: Many natural shapes exhibit surprising symmetry and can be described by the Gielis
equation, which has several classical geometric equations (for example, the circle, ellipse and
superellipse) as special cases. However, the original Gielis equation cannot reflect some diverse
shapes due to limitations of its power-law hypothesis. In the present study, we propose a generalized
version by introducing a link function. Thus, the original Gielis equation can be deemed to be a special
case of the generalized Gielis equation (GGE) with a power-law link function. The link function can
be based on the morphological features of different objects so that the GGE is more flexible in fitting
the data of the shape than its original version. The GGE is shown to be valid in depicting the shapes
of some starfish and plant leaves.

Keywords: data fitting; hyperbolic functions; leaf shape; polar coordinates; power-law
functions; starfish

1. Introduction

In geometry, the equation of a circle in the Euclidean plane is usually expressed as(x
r

)2
+

( y
r

)2
= 1 (1)

where x and y are the coordinates of the circle on the x- and y-axes, respectively, with r the radius.
The circle is a special case of that of an ellipse:( x

A

)2
+

( y
B

)2
= 1 (2)

where A and B (A≥ B> 0) represent the major and minor axis semi-diameters, respectively. Interestingly,
circles and ellipses, as well as squares and rectangles, can be regarded as special cases of Lamé
curves [1,2], whose mathematical expression is listed as∣∣∣∣ x

A

∣∣∣∣n + ∣∣∣∣ y
B

∣∣∣∣n = 1 (3)
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where n is a real number. This equation has been shown to be valid for describing the actual
cross-sections of tree rings and bamboo shoots [2–5]. Equation (3) in polar coordinates can be
rewritten as

r(ϕ) =
(∣∣∣∣∣ 1

A
cos(ϕ)

∣∣∣∣∣n + ∣∣∣∣∣ 1
B

sin(ϕ)
∣∣∣∣∣n)−1/n

(4)

where r and φ are the polar radius and the angle between the straight line where the polar radius lies
and the x-axis, respectively.

Gielis proposed a more general polar equation that can reflect more complex natural shapes [1,2]:

r(ϕ) =
(∣∣∣∣∣ 1

A
cos

(m
4
ϕ
)∣∣∣∣∣n2

+

∣∣∣∣∣ 1
B

sin
(m

4
ϕ
)∣∣∣∣∣n3

)−1/n1

(5)

where n1, n2 and n3 are constants (both ∈ R); positive integer m was introduced to make the curve
generate arbitrary polygons (with m angles) consequently enhancing the flexibility of Lamé curves.
We refer to Equation (5) as the original Gielis equation (OGE) in the following text for simplicity.
OGE has been used to simulate many natural shapes, e.g., diatoms, eggs, cross sections of plants,
snowflakes and starfish [1,2]. OGE also has shown its validity in describing several actual natural
shapes, e.g., leaf shapes of Hydrocotyle vulgaris L., Polygonum perfoliatum L. and seed planar projections
of Ginkgo biloba L. [6,7]. Furthermore, OGE can produce regular, or at least very approximately regular
polygons [8,9]. When m = 1, A = B, n1 = n, and n2 = n3 = 1, OGE has a special case:

r(ϕ) = l
(∣∣∣∣∣cos

(1
4
ϕ
)∣∣∣∣∣+ ∣∣∣∣∣sin

(1
4
ϕ
)∣∣∣∣∣)−1/n

(6)

where l = A1/n. This simplified version has been used to describe the actual leaf shapes of 46 bamboo
species [2,10,11].

Although OGE is rather flexible in fitting the edge data of many natural shapes, it sometimes fails
to describe accurately some symmetrical natural shapes. To further strengthen its flexibility of data
fitting, we attempt to build a more generalized equation based on OGE, motivated by the study of
starfish, which display a wide diversity of shapes, not only the archetypical shapes. In the Plateau
problem of minimal surfaces, one of the constant mean curvature solutions for a soap film is a sphere,
but these solutions are for isotropic energy distributions only.

In crystallography, Wulff shapes describe anisotropic distributions of energy, and can take many
forms, with their corresponding constant anisotropic mean curvature surfaces [12]. Extending this
principle to biological species, starfish can be considered as spheres for specific anisotropic energy
distributions. Remarkably, pincushion starfish of the genus Culcita are close to spherical, intermediate
between classical spheres and the archetypical shapes of five-armed starfish. Another notable group of
starfish are biscuit starfish, almost pentagonal and flat. They belong to the genus Tosia. In order to
apply the above methods to these groups, a modification of the original Gielis equation is necessary.

2. The Generalized Gielis Equation (GGE) and Its Two New Special Cases

OGE can be rewritten as [6]

r(ϕ) = α

 1∣∣∣∣cos
(

m
4 ϕ

)∣∣∣∣n2
+ k

∣∣∣∣sin
(

m
4 ϕ

)∣∣∣∣n3


β

(7)
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where α = An2/n1 , k = An2 /Bn3 and β = 1/n1. Consider the formula inside the parentheses of
Equation (7), which we define as follows:

re(ϕ) =
1∣∣∣∣cos

(
m
4 ϕ

)∣∣∣∣n2
+ k

∣∣∣∣sin
(

m
4 ϕ

)∣∣∣∣n3
(8)

We refer to this as the elementary Gielis equation (EGE) for convenience. OGE hypothesizes
the existence of a power-law relationship between r and re. We refer to this relationship as the link
function, f. As this link function can take on other forms, we use the following more general expression
to replace OGE:

r(ϕ) = f [re(ϕ)] (9)

which we refer to as the generalized Gielis equation (GGE). In actuality, re is the polar radius of the
elementary Gielis curve generated by EGE, and r is the polar radius of the generalized Gielis curve
generated by GGE. Therefore, OGE is actually a special case of GGE with a power-law link function.

In the current study, we propose the following two candidate forms of the link function:

r = exp
[

1
a + b ln(re )

+ c
]

(10)

and
r = exp

[
δ0 + δ1 ln(re) + δ2(ln(re))

2
]

(11)

If we use the log transformation for the left-and right-hand sides of the above two equations,
we obtain, respectively:

Y =
1

a + b X
+ c (12)

and
Y = δ0 + δ1 X + δ2X2 (13)

where Y = ln(r) and X = ln(re). The first equation is actually a hyperbolic equation, and the second
one is a quadratic equation. If we also use the log transformation for both sides of the power-law
link function in OGE, a linear equation is obtained. We can express that by letting the coefficient δ2

in Equation (13) be zero. Of course, in nature, there are forms other than the above link functions;
however, these other forms also belong to the scope of GGE if there exists a clear functional expression
between r and re. Figure 1 provides a simulation example for Equation (10).
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Figure 1. A simulation example of the generalized Gielis curve. In panel (a), the red curve represents
the elementary Gielis curve, and the black curve represents the generalized Gielis curve (m = 5, k = 1,
n2 = n3 = 5, a = 2.0, b = 1.5 and c = 0.2); in panel (b), the red curve represents the link function between
r and re according to Equation (10); in panel (c), the red curve represents the link function on the log–log
plot according to Equation (12).
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3. Application of the Generalized Gielis Equation

In this section, we mainly illustrate the application of GGE to several starfish species of the families
Goniasteridae and Oreasteridae. Culcita and Tosia are the target genera, and Anthenoides tenuis and
Stellaster equestris are used as long-armed reference species. Furthermore, we test this on the leaves of
four plant species; in particular, we test whether this extension is applicable to elliptical leaves with
a broad basis. Table A1 in Appendix A shows the source of the material and species information.

Considering that the five arms of the starfish in Goniasteridae and Oreasteridae are approximately
equal, we further simplify Equation (8) to

re(ϕ) =
1∣∣∣∣cos

(
m
4 ϕ

)∣∣∣∣n + ∣∣∣∣sin
(

m
4 ϕ

)∣∣∣∣n (14)

For starfish, we fix m to be 5; for leaves, we fix m to be 1. To measure the goodness of fit,
root-mean-square error (RMSE) is used:

RMSE =

√∑N
i=1(ri − r̂i)

2

N
(15)

where ri and r̂i represent the observed and predicted polar radii of a starfish or a leaf described
by GGE; N represents the number of data points on the edge of that starfish or that leaf. In fact,∑N

i=1(ri − r̂i)
2 = RSS, where RSS is the residual sum of squares. However, RMSE is not suitable for

comparing the goodness of fit among different samples. The reason is that a large object usually has
a larger RMSE than a small object even when the fit to the former is just as good. Thus, we use the
following adjusted RMSE (RMSEadj) that can reduce the influence of the object’s size [13]:

RMSEadj =
RMSE
√

A/π
(16)

where A represents the area of an object of interest. We do not use the coefficient of determination
(i.e., r2) as an indicator because it has been considered to be problematic for reflecting the goodness of
fit of a nonlinear regression [14,15].

We developed a group of R scripts for extracting planar coordinates of shapes of interests and fit
GGE based on R (version 3.62) [16] (see Appendices S1 and S2 in the online supplementary materials).
In Appendix S2, we minimize the residual sum of squares (RSS) between the observed and predicted
polar radii of a starfish or a leaf described by GGE to estimate the parameters in GGE. The number of
data points on an image edge ranged between 1200 and 2700 depending on the original image size and
resolution, which is sufficient for describing the profile of the image.

Figure 2 shows the original images and the fitted results for the edge data of eight starfish using
GGE, and Figure 3 shows the fitted functional relationships (i.e., link functions) between r and re of the
eight starfish on a log–log plot. Figure 4 exhibits the fitted leaf shapes and corresponding link functions
for the four leaves on a log–log plot. Table A2 in Appendix A tabulates the estimated parameters and
indicators of goodness of fit.
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Figure 2. Original images of eight starfish (codes 1−8 in Table A1) and fitted generalized Gielis curves.
The number in the upper left corner for each black background image panel represents its sample
code. The panel below each black background image panel shows the scanned edge (represented by
a gray curve) and the fitted edge using GGE (represented by a red curve). The intersection between
the blue vertical and horizontal dashed lines represents the polar point; the black inclined dashed line
represents the previously used horizontal line of a standard GGE without an angle transformation.
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Figure 3. The scatter plots of ln(r) vs. ln(re) and the fitted link functions for each of the eight starfish.
In each panel, the small open circles represent the actual values, and the red curve represents the
fitted link function based on Equation (12). RMSE values shown here were calculated based on the
log-transformed data, while RMSE values in Table A1 were based on the untransformed data of r vs. re.
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Figure 4. Original images, scanned and predicted leaf edges, and fitted link functions on a log–log plot
for four plant species (codes 9–12 in Table A1). The number in the upper left corner for each green
image panel represents its sample code. The panel below each green image panel shows the scanned
edge (represented by a gray curve) and the fitted edge using GGE (represented by a red curve). In each
panel in the bottom row, the small open circles represent the actual values of ln(r) vs. ln(re), and the red
curve represents the fitted link function based on Equation (13).
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From Table A2, we can see most of the fitted results are satisfactory, with 10 out of the 12 RMSE
values smaller than 0.1. Samples 1, 5 and 12 have RMSE values > 0.10. Overall, the adjusted RMSE
values are significantly correlated with the RMSE values (r = 0.93, where r denotes the correlation
coefficient; p < 0.05) for the 12 samples. This means that the influence of the object’s size on the
goodness of fit (represented by RMSE) is not large for most of the investigated samples. For samples 2
and 4, the RMSE values are approximate (0.0510 vs. 0.0562); however, the adjusted RMSE of sample 2
is larger than that of sample 4 (0.0249 vs. 0.0151) because of the influence of size difference (13.16 cm2

vs. 43.22 cm2). It proves that the adjusted RMSE is more valid than RMSE in comparing the goodness
of fit when there is a large difference in size between any two objects.

4. Discussion

In Table A1, samples 1, 5 and 12 have larger RMSE values (>0.10) than the others.
For the first two samples, the two starfish have relatively longer arms than the other 7 starfish.

RMSE =

√∑N
i=1(ri − r̂i)

2/N can be considered to be an “average absolute deviation”, that is,
an average difference, ignoring sign, between the observed and predicted radii. According to Taylor’s
power law, there is a power-law relationship with an exponent >0 (usually falling within a range of
1 to 3) between the variance and mean of a non-negative random variable [17,18]. In other words,
the variance (and its square root) is an increasing function of the mean. Similarly, the RMSE of radii
is positively related to the size of the object and the extent of variation in polar radii. The bigger the
object is or the larger the extent of variation in polar radii is, the larger is its RMSE value. That is why
samples 1 and 5 have large RMSE values. However, for sample 12, the main reason for its large RMSE
value is as a result of the fitting approach. We minimized RSS as the target function of convergence.
For the generalized Gielis curve that we used to depict the blade with a power-law function, the polar
point was very close to the leaf base (i.e., the connection point of the blade and the petiole) if the leaf
is narrow [10,11]; [also see Figure 5 below]. The ratio of leaf width to length has a big effect on the
goodness of fit. A broad leaf shape ensures that the radii for the data points on the edge of a leaf close
to the polar point are not too small, which enhances the goodness of fit when RSS is minimized as the
target function. However, a narrow leaf shape gives rise to many small radii for the data points on
the edge of the leaf near to the polar point, and that results in a large deviation between the actual
and predicted radii (Figure 5). There are many data points that are far away from the polar point for
a narrow leaf shape. Minimizing RSS will tend to reduce the deviations for these data points because
the radii are larger than those of the data points close to the polar point. Unfortunately, most bamboo
leaves are narrow [19]. Thus, the minimization of RSS has resulted in a large deviation for the data
points close to the polar point. That is why sample 12 fits the data worse than the other samples.
The quadratic function given by Equation (13) with δ2 , 0 did not improve the goodness of fit.

For leaves which are flat, the 2D representations are of immediate value to quantify shape and
area. For starfish, the 2D representations can serve as one of the two sections to build a 3D starfish.
Whether the proposed two functions (i.e., the hyperbolic and quadratic equations) can apply to more
shapes is still unknown, meriting further investigation. We believe that other forms of link functions
can be found for shapes that cannot be adequately fitted by Equations (12) and (13).
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Figure 5. Illustration for the comparison between a broad blade (a) and a narrow blade (b). In each
panel, the red point represents the polar point; the blue points represent the data points on the edge
of the blade; the gray curve represents the blade edge; the segments between the polar point and the
data points on the edge represent radii. Each leaf shape was generated by GGE with a power-law
relationship (which is equation [13] when δ2 = 0). The horizontal axis of the generalized Gielis curve is
rotated counterclockwise by π/4 to conveniently show the image. Here, when δ1 decreases towards 0,
the curve approximates a circle with radius exp(δ0) and the polar point becomes the center of this circle
at the point (0, 0). In contrast, when δ1 increases towards a large value, the curve approximates a line
segment with length exp(δ0) and the polar point approaches the left endpoint of the segment.

5. Conclusions

In the present study, we propose a generalized Gielis equation (GGE) by introducing a link
function for the polar radius of the elementary Gielis equation (EGE). The original Gielis equation
(OGE) can then be regarded as a special case of GGE with a power-law link function between the
polar radius of EGE and that of GGE. Although OGE can produce a lot of shapes, the power-law link
function has limited validity for describing shapes such as the planar projection of starfish. In that case,
we put forward two candidate link functions (a log-hyperbolic function and a log-quadratic function)
to make OGE applicable to these shapes. We found that these two functions describe the shapes of the
investigated starfish and leaves well, showing that in nature, not all ontogenetic radial growth follows
the power-law relationship.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/12/4/645/s1,
Appendix S1: R script for extracting the planar coordinates of an image, Appendix S2: R script for fitting the edge
data using the generalized Gielis equation.
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Appendix A

There are two tables for tabulating the sample collection information and the fitted results using
the generalized Gielis equation, respectively.
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Table A1. Sample collection information.

Sample Code Scientific Name Family Locality Sampling Time

1 Anthenoides tenuis Liao & A.M. Clark Goniasteridae Philippines, Siquijor 2019

2 Culcita schmideliana Bruzelius Oreasteridae Philippines, Bohol.
Cabulan Island 2018

3 Culcita schmideliana Bruzelius Oreasteridae Philippines, Bohol.
Cabulan Island 2018

4 Culcita schmideliana Bruzelius Oreasteridae Philippines, Bohol.
Cabulan Island 2018

5 Stellaster equestris Bruzelius Goniasteridae Philippines, Surigao 2018

6 Tosia australis Gray Goniasteridae Edithburgh, Australia 1980

7 Tosia magnifica Müller & Troschel Goniasteridae Edithburgh, Australia 1980

8 Tosia magnifica Müller & Troschel Goniasteridae Edithburgh, Australia 1980

9 Trachelospermum jasminoides (Lindl.) Lem. Apocynaceae Nanjing, China 2019

10 Vinca major L. Apocynaceae Nanjing, China 2018

11 Chimonanthus praecox (L.) Link Calycanthaceae Nanjing, China 2017

12 Phyllostachys incarnata T.H. Wen Poaceae Nanjing, China 2016

Table A2. Estimated parameters and indicators for goodness of fit.

Code x̂0 ŷ0 θ̂ n̂ â b̂ ĉ Sample
Size

Area
(cm2) RSS RMSE RMSEadj

1 18.67 18.05 1.56 2006.90 1.1362 0.0599 0.8742 2488 32.00 235.22 0.3075 0.0963
2 7.75 7.47 2.85 8.39 2.0738 4.2943 0.4556 1482 13.16 3.8561 0.0510 0.0249
3 8.08 7.74 1.58 4.83 1.5802 3.7025 0.3311 1617 13.52 1.2516 0.0278 0.0134
4 14.51 13.94 0.30 139.04 2.8784 0.6546 1.1619 2684 43.22 8.4710 0.0562 0.0151
5 9.34 8.83 0.31 543.36 0.8644 0.1151 −0.1390 2282 6.09 34.53 0.1230 0.0883
6 5.66 5.42 0.29 7.73 2.7866 6.8694 0.2415 1526 7.37 0.4804 0.0177 0.0116
7 5.11 4.85 0.29 4.28 2.3100 5.4630 0.0503 1263 6.07 0.5415 0.0207 0.0149
8 5.88 5.66 2.79 5.95 2.6437 7.5884 0.2371 1267 7.58 0.3502 0.0166 0.0107

Code x̂0 ŷ0 θ̂ n̂ δ̂0 δ̂1 δ̂2
Sample

Size
Area
(cm2) RSS RMSE RMSEadj

9 4.98 5.06 0.76 1.32 1.3485 18.8344 48.2690 1653 5.40 2.7591 0.0409 0.0312
10 7.16 6.73 0.76 1.14 1.1925 7.2615 18.3014 1379 11.65 1.1927 0.0294 0.0153
11 7.84 8.12 0.81 0.73 1.9303 1.9169 −5.7404 1985 22.25 8.9448 0.0671 0.0252
12 14.67 15.22 0.81 1.23 2.8179 38.5217 0 2476 33.22 350.16 0.3761 0.1156

In this table, Code represents the sample code (see Table A1 for details); (x̂0, ŷ0) represents the estimated planar
coordinates of the polar point; θ̂ represents the estimated angle by which the horizontal line (i.e., the original x-axis)
of the generalized Gielis curve was rotated; n̂, b̂, ĉ, δ̂0, δ̂1 and δ̂2 are estimated parameters in Equations (12) and (13);
Sample size represents the number of data points on the edge of an image; Area represents the scanned (actual) area
of a starfish or leaf image; RSS is the residual sum of squares; RMSE is the root-mean-square error; RMSEadj is the
adjusted root-mean-square error.
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