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Abstract: The major purpose of this article is to seek for exact traveling wave solutions of
the nonlinear space-time Sharma–Tasso–Olver equation in the sense of conformable derivatives.
The novel (G′

G )-expansion method and the generalized Kudryashov method, which are analytical,
powerful, and reliable methods, are used to solve the equation via a fractional complex transformation.
The exact solutions of the equation, obtained using the novel (G′

G )-expansion method, can be
classified in terms of hyperbolic, trigonometric, and rational function solutions. Applying the
generalized Kudryashov method to the equation, we obtain explicit exact solutions expressed as
fractional solutions of the exponential functions. The exact solutions obtained using the two methods
represent some physical behaviors such as a singularly periodic traveling wave solution and a
singular multiple-soliton solution. Some selected solutions of the equation are graphically portrayed
including 3-D, 2-D, and contour plots. As a result, some innovative exact solutions of the equation
are produced via the methods, and they are not the same as the ones obtained using other techniques
utilized previously.

Keywords: nonlinear conformable space-time Sharma–Tasso–Olver equation; conformable derivative;
novel (G′

G )-expansion method; generalized Kudryashov method; singular kink-type solution; singular
multiple-soliton solution

1. Introduction

Many nonlinear physical phenomena, such as those found in solid-state physics, plasma physics,
optical fibers, shallow water waves, fluid dynamics, and biology, have been modeled by nonlinear
partial differential equations (NPDEs) of integer- or fractional-order. Therefore, finding explicit exact
solutions and approximate analytical solutions of NPDEs is one of the most significant and active areas
of investigation in pure and applied mathematics. Several powerful methods based on using symbolic
software packages such as Mathematica or Maple 17 have been proposed and developed to analytically
solve NPDEs. Some examples of approaches for obtaining approximate solutions in an analytical
form to NPDEs are the Adomian decomposition method (ADM) [1,2], the variational iteration method
(VIM) [3,4], the differential transform method (DTM) [5], and the homotopy perturbation method
(HPM) [6,7]. Some algorithms for obtaining explicit exact solutions of NPDEs are, for instance, the
(G′

G )-expansion method [8,9], the (G′
G , 1

G )-expansion method [10], the fractional Riccati expansion
method [11,12], the improved extended tanh-coth method [13], the Kudryashov method [14,15],
and the sub-equation method [16,17]. All of the above methods are based on the homogeneous
balance principle.
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In particular, the novel (G′
G )-expansion method and the generalized Kudryashov method have

been widely applied to NPDEs for finding explicit exact solutions. The utilizations of the novel
(G′

G )-expansion method for solving NPDEs are reviewed as follows. The novel (G′
G )-expansion

method is a generalization of many kinds of the (G′
G )-expansion methods such as the basic

(G′
G )-expansion method proposed by Wang et al. [18], the improved (G′

G )-expansion method introduced
by Zhang et al. [19], and the generalized and improved (G′

G )-expansion method presented by
Akbar et al. [20]. Later on, Hafez et al. [21] employed the novel (G′

G )-expansion method to obtain exact
traveling wave solutions of the Klein–Gordon equation. Alam et al. obtained explicit exact solutions
of the Boussinesq equation [22] and the (1 + 1)-dimensional modified Benjamin–Bona–Mahony
equation [23] using the novel (G′

G )-expansion method. In 2015, Hafez et al. [24] employed the
method to construct the exact solutions of the (2 + 1)-dimensional coupled integrable nonlinear
Maccari system. Alam et al. [25] used the method to find explicit exact traveling wave solutions
of the (1 + 1)-dimensional combined KdV-mKdV equation. They found that the solutions of the
equation include solitary wave solutions, kink-type solutions, and periodic solutions. Moreover,
Alam et al. [26] demonstrated applications of the novel (G′

G )-expansion method for obtaining novel
exact traveling wave solutions of the complex coupled Higgs field equations. In 2016, Hafez [27]
employed the novel (G′

G )-expansion method to construct some new traveling wave solutions of the
(1+ 1)-dimensional cubic nonlinear Schrödinger’s equation. Exact solutions of the (1+ 1)-dimensional
compound KdVB equation obtained by the novel (G′

G )-expansion method were studied by Alam
and Muhammad Belgacem [28]. The novel (G′

G )-expansion method was implemented to find
traveling wave solutions of the positive Gardner-KP equation by Akbar et al. [29]. The recent
review of the applications of the generalized Kudryashov method is as follows. In 2015, the
(3 + 1)-dimensional Kadomtsev–Petviashvili equation, the (3 + 1)-dimensional Jimbo–Miwa equation,
and the (3 + 1)-dimensional Zakharov–Kuznetsov equation were studied by Islam et al. [30] to
achieve their exact solutions through the generalized Kudryashov method. In 2016, Kaplan [31]
utilized the method to seek for exact solutions of the nonlinear Jaulent–Miodek hierarchy and the
(2 + 1)-dimensional Calogero–Bogoyavlenskii–Schiff equation. In 2017, Mahmud et al. [32] applied
the generalized Kudryashov method to construct exact traveling wave solutions of the Fisher equation
and the PHI-four equation. In 2018, Biswas et al. [33] obtained dark, bright, and singular soliton
solutions of the perturbed nonlinear Schrödinger’s equation with fractional temporal evolution using
the generalized Kudryashov method. Nestor et al. [34] investigated that the generalized Kudryashov
method provides solitary wave solutions and hyperbolic function solutions for the dimensionless
Schrödinger’s equation with quadratic-cubic nonlinearity. Houwe et al. [35] used the method to
obtain dark and bright exact solutions for the perturbed nonlinear Schrödinger’s equation describing
the dynamics of ultrashort optical solitons. Through applying the generalized Kudryashov and the
novel

(
G′
G

)
-expansion methods to the nonlinear complex fractional generalized-Zakharov system,

Lu et al. [36] obtained its new forms of analytical and solitary traveling wave solutions. In 2019,
Demiray and Bulut [37] applied the generalized Kudryashov method to search for dark and bright
soliton solutions of the coupled Higgs equation and the Nizhnik–Novikov–Veselov (NNV) system.
In addition, Habib et al. [38] employed the generalized Kudryashov method to attain exact solutions
of the Burgers-Huxley, the mKdV, and the first extended fifth-order nonlinear equations.

However, the objective of this paper is to apply the novel (G′
G )-expansion method and the

generalized Kudryashov method to analytically solve the conformable space-time Sharma–Tasso–Olver
(STO) equation in the sense of conformable derivatives to obtain a considerable number of exact
solutions. The STO equation has been utilized in many scientific applications such as in nonlinear
optics, dispersive wave phenomena, plasma physics, quantum field theory, and physical sciences
(see [39–43] and references therein). To the best of the authors’ knowledge, there are no researchers
who have utilized these methods to solve the STO equation with conformable derivatives for obtaining
its exact solutions. Some of the exact solutions of the equation, which will be derived in the following
sections, are new and reported in this paper for the first time. The rest of this paper is arranged
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as follows. In Section 2, the definition and some properties of the conformable derivative are given.
The description of the two methods is included in this section as well. In Section 3, we illustrate
the application of the used methods to the nonlinear conformable space-time Sharma–Tasso–Olver
equation. In Section 4, we give some plots and their physical explanations of some chosen exact
solutions of the equation. Some conclusions and discussions for the results obtained using the methods
are given in Section 5.

2. Mathematical Preliminaries

In this section, we will provide fundamental concepts including the definition and vital properties
of the conformable derivative and the algorithms of the novel (G′

G )-expansion method and the
generalized Kudryashov method. They are required for constructing explicit exact solutions of
the conformable space-time Sharma–Tasso–Olver equation using the methods.

2.1. Conformable Derivative and Its Properties

The definition of the conformable derivative and its important properties are provided as follows.

Definition 1. Let f : [0, ∞) → R be a function. Then, the conformable derivative of f of order α is defined
by [44,45]

Dα
t f (t) = lim

ε→0

f (t + εt1−α)− f (t)
ε

, for all t > 0, 0 < α ≤ 1. (1)

The function f is α-conformable differentiable at a point t > 0 if the limit in Equation (1) exists.

Remark 1. The derivative defined in Equation (1) was initially called the conformable fractional derivative
and had been utilized in numerous applications of fractional differential equations (FDEs) [46–48]. Until 2018,
Tarasov [49] showed that the conformable fractional derivative in Equation (1) does not provide innovative
ideas in the spaces of differentiable functions and is not a fractional-order derivative. In particular, some of the
following properties demonstrate that the conformable fractional derivative can be written in terms of an ordinary
derivative. Throughout this work, we thus call the derivative in Equation (1) the conformable derivative.

Theorem 1. [44,45] Let α ∈ (0, 1], and suppose functions f (t), g(t) are α-conformable differentiable at a point
t > 0. Then,

Dα
t (λ) = 0, where λ = constant,

Dα
t (t

µ) = µtµ−α, for all µ ∈ R,

Dα
t (a f (t) + bg(t)) = aDα

t f (t) + bDα
t g(t), for all a, b ∈ R,

Dα
t ( f (t)g(t)) = f (t)Dα

t g(t) + g(t)Dα
t f (t),

Dα
t

(
f (t)
g(t)

)
=

g(t)Dα
t f (t)− f (t)Dα

t g(t)
g(t)2 .

Remark 2. Conformable derivatives of some interesting functions are as follows [44].

(1) Dα
t (e

ct) = ct1−αect, c ∈ R.
(2) Dα

t (sin bt) = bt1−α cos bt, b ∈ R.
(3) Dα

t (cos bt) = −bt1−α sin bt, b ∈ R.
(4) Dα

t (
1
α tα) = 1.

(5) Dα
t ( f (t)) = t1−α d f (t)

dt
, provided that f (t) is differentiable.
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Theorem 2. [45,46] Suppose f : (0, ∞) → R is a function such that f is differentiable and α-conformable
differentiable. Further, suppose that g is a differentiable function defined in the range of f . Then,

Dα
t ( f ◦ g)(t) = t1−α f ′(g(t))g′(t), (2)

where the prime notation (′) denotes the ordinary derivative.

2.2. Description of the Methods

Consider the following nonlinear evolution partial differential equation for two independent
variables x and t,

F(u, Dα
t u, Dβ

x u, D2α
t u, Dα

t Dβ
x u, D2β

x u, . . . ) = 0, (3)

where Dα
t u, Dβ

x u are the conformable derivatives of a dependent variable u with respect to variables
t and x, respectively, with 0 < α, β < 1. The function F is a polynomial of the unknown function
u = u(x, t), and its diverse partial derivatives in which the highest order derivatives and nonlinear
terms are involved. There is a common step between the novel (G′

G )-expansion method and the
generalized Kudryashov method which is a conversion from the partial differential equation in (3) to
an ordinary differential equation (ODE) via using a traveling wave variable ξ [50–52]. We suppose that

U(ξ) = u(x, t), ξ =
xβ

β
− Vtα

α
, (4)

where V is a non-zero arbitrary constant. Converting (3) via transformation (4) and then integrating
the resulting equation with respect to ξ (if possible), Equation (3) is reduced to an ODE in the variable
U = U(ξ) as

P(U, U′, U′′, U′′′, . . . ) = 0, (5)

where P is a polynomial function of U(ξ) and its various derivatives. The prime notation (′) represents
the ordinary derivative with respect to ξ.

Next, we provide the remaining steps of each of the methods.

2.2.1. Description of the Novel (G′
G )-Expansion Method

Step 1: Suppose that a solution of Equation (5) can be expressed in powers of ψ(ξ) as follows,

U(ξ) =
N

∑
j=−N

aj (ψ(ξ))
j , (6)

where

ψ(ξ) = d + φ(ξ) with φ(ξ) =
G′(ξ)
G(ξ)

. (7)

The unknown constants a−N or aN may be zero, but both of them cannot be zero simultaneously.
The constants aj (j = 0,±1,±2, . . . ,±N) and d are computed at a following step and the function
G = G(ξ) satisfies the following nonlinear second-order ODE,

GG′′ = λGG′ + µG2 + v
(
G′
)2 , (8)

where the prime notation (′) is the ordinary derivative with respect to ξ, and where λ, µ, and v are
real parameters.
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Using the Cole–Hopf transformation φ(ξ) = ln(G(ξ))ξ = G′(ξ)/G(ξ), Equation (8) can be
reduced into the generalized Riccati equation as follows,

φ′(ξ) = µ + λφ(ξ) + (v− 1)φ2(ξ). (9)

It has been discovered that Equation (9) has thirty-nine exact solutions (see [53–55] for the details).
Step 2: The value of the positive integer N in solution (6) can be computed by balancing the

highest-order derivative term with the nonlinear terms of the highest order occurring in Equation (5).
The degree formulas of some terms are given as

Deg
[

dqU(ξ)

dξq

]
= N + q, Deg

[
(U(ξ))p

(
dqU(ξ)

dξq

)s]
= Np + s(N + q), (10)

where N is the degree of U(ξ), i.e., Deg[U(ξ)] = N.
Step 3: Substituting Equation (6) along with Equations (7) and (8) into Equation (5), we get

polynomials in (d + φ(ξ))k, k = 0,±1,±2, . . . ,±m, where m is some positive integer. Equating all
coefficients of the same power of the resulting polynomials to zero, we obtain an over-determined set
of algebraic equations for aj (j = 0,±1,±2, . . . ,±N), d and V.

Step 4: Assuming that the unknown constants of the algebraic equations in Step 3 can be possibly
obtained, we then substitute the values of these constants together with the solution φ(ξ) of Equation (9)
into Equation (6) to get exact traveling wave solutions of (3) when ξ is defined in (4).

2.2.2. Description of the Generalized Kudryashov Method

Step 1: Assume that the solution of Equation (5) can be expressed in a rational form as

U(ξ) =
∑N

i=0 aiQi(ξ)

∑M
j=0 bjQj(ξ)

, (11)

where ai(i = 0, 1, 2 . . . , N), bj(j = 0, 1, 2 . . . , M) are constants to be determined at a later step such
that aN 6= 0, bM 6= 0 and the function Q = Q(ξ) is a solution of

Q′(ξ) = Q2(ξ)−Q(ξ). (12)

It is obviously found that the solution of Equation (12) is

Q(ξ) =
1

1 + Ceξ
, (13)

where C is a constant of integration.
Step 2: We find the positive integers N and M in Equation (11) by employing the homogeneous

balance method, i.e, equating between the highest order derivative and the highest power nonlinear
term in Equation (5). The formulas in Equation (10) can also be used in this step.

Step 3: Substituting Equation (11) into Equation (5) along with Equation (12), we obtain a
polynomial R(Q) of Q. Next, equating all of the coefficients of R(Q) to zero, a system of algebraic
equations is obtained. Solving this system with the aid of symbolic software packages such as Maple,
we can get the values of ai(i = 0, 1, 2 . . . , N), bj(j = 0, 1, 2 . . . , M). When we substitute these values
and the function Q(ξ) in Equation (13) into Equation (11), then we attain the exact solutions of the
reduced Equation (5). In consequence, exact solutions of (3) are finally obtained using ξ defined in (4).
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3. Application of the Methods

The Sharma–Tasso–Olver equation of integer order is expressed as

ut + 3ρu2
x + 3ρu2ux + 3ρuuxx + ρuxxx = 0, (14)

where ρ is an arbitrary real parameter. In this paper, we, however, consider the conformable space-time
Sharma–Tasso–Olver equation described as

Dα
t u + 3ρ

(
Dβ

x u
)2

+ 3ρu2Dβ
x u + 3ρuD2β

x u + ρD3β
x u = 0, t > 0, 0 < α, β ≤ 1, (15)

where Dκ
s u represents the conformable derivative of the function u with respect to an independent

variable s of order κ. This function u(x, t) is unknown and depends on the variables x and t, and ρ

is an arbitrary real parameter. We will apply the novel
(

G′
G

)
-expansion method and the generalized

Kudryashov method to produce exact traveling wave solutions of (15). However, the common step of
both methods is to convert (15) into an ODE via the traveling wave transformation in the variables x
and t as follows,

ξ =
xβ

β
− Vtα

α
. (16)

Utilizing Theorem 2, we obtain Dα
t u = −VU′, Dβ

x u = U′, and D2β
x u = Dβ

x

(
Dβ

x u
)

, D3β
x u =

Dβ
x

(
D2β

x u
)

. Then, Equation (15) is reduced into the ODE in the variable U = U(ξ) as

−VU′ + ρU′′′ + 3ρ
(
U′
)2

+ 3ρUU′′ + 3ρU2U′ = 0, (17)

where the prime notation (′) denotes the derivative with respect to ξ. Integrating Equation (17)
with respect to ξ along with algebraically manipulating some terms and then letting the constant of
integration to be zero, we get the following ODE,

−VU + ρU′′ + 3ρUU′ + ρU3 = 0. (18)

3.1. Obtaining Exact Solutions of Equation (15) Using the Novel (G′
G )-Expansion Method

Utilizing the formulas (10) to balance the highest order derivative U′′ with the nonlinear term of
the highest order U3 in Equation (18), we obtain N = 1. By Equation (6) in Section 2.2.1, the solution
of Equation (18) has the following form,

U(ξ) = a−1 (ψ(ξ))
−1 + a0 + a1 (ψ(ξ)) , (19)

where ψ(ξ) = d + φ(ξ) and φ(ξ) = G′
G is a solution of the generalized Riccati equation in Equation (9).

Substituting Equation (19) into Equation (18), the left hand side of Equation (18) is converted into
polynomials of (ψ(ξ))j = (d + φ(ξ))j, where j = 0,±1,±2,±3.

Equating the coefficients of the same power of the resulting polynomials to zero, we have the
following set of nonlinear algebraic equations,
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(ψ(ξ))3 : 2 ρ v2a1 + 3 ρ va2
1 + ρ a3

1 − 4 ρ va1 − 3 ρ a2
1 + 2 ρ a1 = 0,

(ψ(ξ))2 : −6 dρ v2a1 − 6 dρ va2
1 + 12 dρ va1 + 6 dρ a2

1 + 3 λ ρ va1 + 3 λ ρ a2
1 + 3 ρ va0a1 + 3 ρ a0a2

1

− 6 dρ a1 − 3 λ ρ a1 − 3 ρ a0a1 = 0,

ψ(ξ) : 6 d2ρ v2a1 + 3 d2ρ va2
1 − 12 d2ρ va1 − 3 d2ρ a2

1 − 6 dλ ρ va1 − 3 dλ ρ a2
1 − 6 dρ va0a1

+ 6 d2ρ a1 + 6 dλ ρ a1 + 6 dρ a0a1 + λ2ρ a1 + 3 λ ρ a0a1 + 2 µ ρ va1 + 3 µ ρ a2
1 + 3 ρ a−1a2

1

+ 3 ρ a2
0a1 − 2 µ ρ a1 −Va1 = 0,

(ψ(ξ))0 : −2 d3ρ v2a1 + 4 d3ρ va1 + 3 d2λ ρ va1 + 3 d2ρ va0a1 − 2 d3ρ a1 − 3 d2λ ρ a1 − 3 d2ρ a0a1

− dλ2ρ a1 − 3 dλ ρ a0a1 − 2 dµ ρ va1 − 2 dρ v2a−1 + 2 dµ ρ a1 + 4 dρ va−1 + λ µ ρ a1

+ λ ρ va−1 + 3 µ ρ a0a1 − 3 ρ va−1a0 + 6 ρ a−1a0a1 + ρ a3
0 − 2 dρ a−1 − λ ρ a−1 + 3 ρ a−1a0

−Va0 = 0,
(ψ(ξ))−1 : 6 d2ρ v2a−1 − 12 d2ρ va−1 − 6 dλ ρ va−1 + 6 dρ va−1a0 + 6 d2ρ a−1 + 6 dλ ρ a−1 − 6 dρ a−1a0

+ λ2ρ a−1 − 3 λ ρ a−1a0 + 2 µ ρ va−1 − 3 ρ va2
−1 + 3 ρ a2

−1a1 + 3 ρ a−1a2
0 − 2 µ ρ a−1

+ 3 ρ a2
−1 −Va−1 = 0,

(ψ(ξ))−2 : −6 d3ρ v2a−1 + 12 d3ρ va−1 + 9 d2λ ρ va−1 − 3 d2ρ va−1a0 − 6 d3ρ a−1 − 9 d2λ ρ a−1

+ 3 d2ρ a−1a0 − 3 dλ2ρ a−1 + 3 dλ ρ a−1a0 − 6 dµ ρ va−1 + 6 dρ va−1
2 + 6 dµ ρ a−1

− 6 dρ a2
−1 + 3 λ µ ρ a−1 − 3 λ ρ a2

−1 − 3 µ ρ a−1a0 + 3 ρ a2
−1a0 = 0,

(ψ(ξ))−3 : 2 d4ρ v2a−1 − 4 d4ρ va−1 − 4 d3λ ρ va−1 + 2 d4ρ a−1 + 4 d3λ ρ a−1 + 2 d2λ2ρ a−1

+ 4 d2µ ρ va−1 − 3 d2ρ va2
−1 − 4 d2µ ρ a−1 + 3 d2ρ a2

−1 − 4 dλ µ ρ a−1 + 3 dλ ρ a2
−1

+ 2 µ2ρ a−1 − 3 µ ρ a2
−1 + ρ a3

−1 = 0.

(20)

Using the symbolic computation software Maple 17 to solve the above system (20), we obtain
three independent cases of the unknown constants a0, a1, a−1, d, and V. For the sake of convenience,
we set

∆ = λ2 − 4µ(v− 1). (21)

Consequently, the exact solutions of Equation (15), depending upon the following three cases of
the unknowns in Equation (20) and the families of the solution φ(ξ) as shown in Appendix of [53], are
expressed as follows.

Case 1: The first set of the unknown constants is

a−1 = 0, a0 = 2 dv− 2 d− λ, a1 = −2 v + 2, d = d, V = ρ∆, (22)

where µ, λ, v, d, and ρ are arbitrary constants. Substituting Equation (22) into Equation (19) and then

using Equations (16) and (21), we obtain the following exact solutions in which ξ =
xβ

β
− ρ∆tα

α
.

Family 1: When ∆ > 0 and λ(v− 1) 6= 0 (or µ(v− 1) 6= 0), the solutions of Equation (15) written in
terms of the hyperbolic functions are as follows,

u1
1(x, t) = 2dv− 2d− λ + (−2v + 2)

d−
λ +
√

∆ tanh
(

1
2

√
∆ξ
)

2(v− 1)

 , (23)

u1
2(x, t) = 2dv− 2d− λ + (−2v + 2)

d−
λ +
√

∆coth
(

1
2

√
∆ξ
)

2(v− 1)

 , (24)

u1
3,4(x, t) = 2dv− 2d− λ + (−2v + 2)

d−
λ +
√

∆
(

tanh
(√

∆ξ
)
± isech

(√
∆ξ
))

2(v− 1)

 , (25)
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u1
5,6(x, t) = 2dv− 2d− λ + (−2v + 2)

d−
λ +
√

∆
(

coth
(√

∆ξ
)
± csch

(√
∆ξ
))

2(v− 1)

 , (26)

u1
7(x, t) = 2dv− 2d− λ + (−2v + 2)

d−
2 λ +

√
∆
(

tanh
(

1
4

√
∆ξ
)
+ coth

(
1
4

√
∆ξ
))

4(v− 1)

 , (27)

u1
8,9(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
1

2(v− 1)

−λ +
±
√
(A2 + B2)∆− A

√
∆ cosh

(√
∆ξ
)

A sinh
(√

∆ξ
)
+ B

 , (28)

u1
10,11(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
1

2(v− 1)

−λ−
±
√
(−A2 + B2)∆ + A

√
∆ sinh

(√
∆ξ
)

A cosh
(√

∆ξ
)
+ B

 , (29)

where A and B are two non-zero real constants that satisfy B2 − A2 > 0,

u1
12(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
2µ cosh

(
1
2

√
∆ξ
)

√
∆ sinh

(
1
2

√
∆ξ
)
− λ cosh

(
1
2

√
∆ξ
)
 , (30)

u1
13(x, t) = 2dv− 2d− λ + (−2v + 2)

d−
2µ sinh

(
1
2

√
∆ξ
)

λ sinh
(

1
2

√
∆ξ
)
−
√

∆ cosh
(

1
2

√
∆ξ
)
 , (31)

u1
14,15(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
2µ cosh

(√
∆ξ
)

√
∆ sinh

(√
∆ξ
)
− λ cosh

(√
∆ξ
)
± i
√

∆

 , (32)

u1
16,17(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
2µ sinh

(√
∆ξ
)

−λ sinh
(√

∆ξ
)
+
√

∆ cosh
(√

∆ξ
)
±
√

∆

 , (33)

u1
18(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
4µ sinh

(
1
4

√
∆ξ
)

cosh
(

1
4

√
∆ξ
)

−2 λ sinh
(

1
4

√
∆ξ
)

cosh
(

1
4

√
∆ξ
)
+ 2
√

∆
(

cosh
(

1
4

√
∆ξ
))2
−
√

∆

 . (34)

Family 2: When ∆ < 0 and λ(v − 1) 6= 0 (or µ(v − 1) 6= 0), the exact solutions of Equation (15)
expressed in terms of the trigonometric functions are as follows,

u1
19(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
−λ +

√
−∆ tan

(
1
2
√
−∆ξ

)
2(v− 1)

 , (35)

u1
20(x, t) = 2dv− 2d− λ + (−2v + 2)

d−
λ +
√
−∆ cot

(
1
2
√
−∆ξ

)
2(v− 1)

 , (36)

u1
21,22(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
−λ +

√
−∆

(
tan

(√
−∆ξ

)
± sec

(√
−∆ξ

))
2(v− 1)

 , (37)

u1
23,24(x, t) = 2dv− 2d− λ + (−2v + 2)

d−
λ +
√
−∆

(
cot
(√
−∆ξ

)
± csc

(√
−∆ξ

))
2(v− 1)

 , (38)

u1
25(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
−2λ +

√
−∆

(
tan

(
1
4

√
−∆ξ

)
− cot

(
1
4

√
−∆ξ

))
4(v− 1)

 , (39)

u1
26,27(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
1

2(v− 1)

−λ +
±
√
− (A2 − B2)∆− A

√
−∆ cos

(√
−∆ξ

)
A sin

(√
−∆ξ

)
+ B

 , (40)

u1
28,29(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
1

2(v− 1)

−λ−
±
√
− (A2 − B2)∆ + A

√
−∆ cos

(√
−∆ξ

)
A sin

(√
−∆ξ

)
+ B

 , (41)
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where A and B are two non-zero real constants satisfying A2 − B2 > 0,

u1
30(x, t) = 2dv− 2d− λ + (−2v + 2)

d−
2µ cos

(
1
2
√
−∆ξ

)
√
−∆ sin

(
1
2
√
−∆ξ

)
+ λ cos

(
1
2
√
−∆ξ

)
 , (42)

u1
31(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
2µ sin

(
1
2
√
−∆ξ

)
−λ sin

(
1
2
√
−∆ξ

)
+
√
−∆ cos

(
1
2
√
−∆ξ

)
 , (43)

u1
32,33(x, t) = 2dv− 2d− λ + (−2v + 2)

d−
2µ cos

(√
−∆ξ

)
√
−∆ sin

(√
−∆ξ

)
+ λ cos

(√
−∆ξ

)
±
√
−∆

 , (44)

u1
34,35(x, t) = 2dv− 2d− λ + (−2v + 2)

d +
2µ sin

(√
−∆ξ

)
−λ sin

(√
−∆ξ

)
+
√
−∆ cos

(√
−∆ξ

)
±
√
−∆

 , (45)

u1
36(x, t) = 2dv− 2d− λ + (−2v + 2) (46)

×

d +
4µ sin

(
1
4
√
−∆ξ

)
cos

(
1/4
√
−∆ξ

)
−2 λ sin

(
1
4
√
−∆ξ

)
cos

(
1
4
√
−∆ξ

)
+ 2
√
−∆

(
cos

(
1
4
√
−∆ξ

))2
−
√
−∆

 . (47)

Family 3: When µ = 0 and λ(v− 1) 6= 0, the exact solutions of Equation (15) written as the hyperbolic
functions are as follows,

u1
37(x, t) = 2dv− 2d− λ + (−2v + 2)

(
d− λ c1

(v− 1) c1 + cosh (λ ξ)− sinh (λ ξ)

)
, (48)

u1
38(x, t) = 2dv− 2d− λ + (−2v + 2)

(
d− λ (cosh (λ ξ) + sinh (λ ξ))

(v− 1) (c1 + cosh (λ ξ) + sinh (λ ξ))

)
, (49)

where c1 is an arbitrary constant.
Family 4: When µ = λ = 0 and v− 1 6= 0, the rational function solution of Equation (15) is as follows,

u1
39(x, t) = 2dv− 2d + (−2v + 2)

(
d− 1

(v− 1) ξ + c2

)
, (50)

where c2 is an arbitrary constant.
Case 2: The second set of the unknown constants is

a−1 = −λ2 − 4 µ v + 4 µ

2(v− 1)
, a0 = 0, a1 = −2 v + 2, d =

λ

2(v− 1)
, V = 4ρ∆, (51)

where µ, λ, v, and ρ are arbitrary constants. Substituting Equation (51) into Equation (19), and then

using Equations (16) and (21), we obtain the following explicit exact solutions in which ξ =
xβ

β
−

4ρ∆tα

α
.

Family 1: When ∆ > 0 and λ(v − 1) 6= 0 (or µ(v − 1) 6= 0), the exact solutions of Equation (15)
expressed as the hyperbolic functions are
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u2
1(x, t) =

√
∆

tanh
(

1
2

√
∆ξ
) +

(√
∆ tanh

(
1
2

√
∆ξ

))
, (52)

u2
2(x, t) =

√
∆

coth
(

1
2

√
∆ξ
) +

(√
∆ coth

(
1
2

√
∆ξ

))
, (53)

u2
3,4(x, t) =

√
∆

tanh
(√

∆ξ
)
± isech

(√
∆ξ
) +

(√
∆
(

tanh
(√

∆ξ
)
± isech

(√
∆ξ
)))

, (54)

u2
5,6(x, t) =

√
∆

coth
(√

∆ξ
)
± csch

(√
∆ξ
) +

(√
∆
(

coth
(√

∆ξ
)
± csch

(√
∆ξ
)))

, (55)

u2
7(x, t) =

2
√

∆

tanh
(

1
4

√
∆ξ
)
+ coth

(
1
4

√
∆ξ
) +

√
∆
(

tanh
(

1
4

√
∆ξ
)
+ coth

(
1
4

√
∆ξ
))

2
, (56)

u2
8,9(x, t) = − ∆

±
√

(A2+B2)∆−A
√

∆ cosh(
√

∆ξ)
A sinh(

√
∆ξ)+B

−
±
√
(A2 + B2)∆− A

√
∆ cosh

(√
∆ξ
)

A sinh
(√

∆ξ
)
+ B

, (57)

u2
10,11(x, t) =

∆
±
√

(−A2+B2)∆+A
√

∆ sinh(
√

∆ξ)
A cosh(

√
∆ξ)+B

+
±
√
(−A2 + B2)∆ + A

√
∆ sinh

(√
∆ξ
)

A cosh
(√

∆ξ
)
+ B

, (58)

where A and B are non-zero real constants satisfying B2 − A2 > 0,

u2
12(x, t) = − ∆

2 (v− 1)
(

λ
2 v−2 +

2µ cosh( 1
2

√
∆ξ)√

∆ sinh( 1
2

√
∆ξ)−λ cosh( 1

2

√
∆ξ)

) − 2 (v− 1)

×

 λ

2 v− 2
+

2µ cosh
(

1
2

√
∆ξ
)

√
∆ sinh

(
1
2

√
∆ξ
)
− λ cosh

(
1
2

√
∆ξ
)
 , (59)

u2
13(x, t) = − ∆

2 (v− 1)
(

λ
2 v−2 −

2µ sinh( 1
2

√
∆ξ)

λ sinh( 1
2

√
∆ξ)−

√
∆ cosh( 1

2

√
∆ξ)

) − 2 (v− 1)

×

 λ

2 v− 2
−

2µ sinh
(

1
2

√
∆ξ
)

λ sinh
(

1
2

√
∆ξ
)
−
√

∆ cosh
(

1
2

√
∆ξ
)
 , (60)

u2
14,15(x, t) = − ∆

2 (v− 1)
(

λ
2 v−2 +

2µ cosh(
√

∆ξ)√
∆ sinh(

√
∆ξ)−λ cosh(

√
∆ξ)±i

√
∆

) − 2 (v− 1)

×

 λ

2 v− 2
+

2µ cosh
(√

∆ξ
)

√
∆ sinh

(√
∆ξ
)
− λ cosh

(√
∆ξ
)
± i
√

∆

 , (61)

u2
16,17(x, t) = − ∆

2 (v− 1)
(

λ
2 v−2 +

2µ sinh(
√

∆ξ)
−λ sinh(

√
∆ξ)+

√
∆ cosh(

√
∆ξ)±

√
∆

) − 2 (v− 1)

×

 λ

2 v− 2
+

2µ sinh
(√

∆ξ
)

−λ sinh
(√

∆ξ
)
+
√

∆ cosh
(√

∆ξ
)
±
√

∆

 , (62)
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u2
18(x, t) = − ∆

2 (v− 1)
(

λ
2 v−2 +

4µ sinh( 1
4

√
∆ξ) cosh( 1

4

√
∆ξ)

−2 λ sinh( 1
4

√
∆ξ) cosh( 1

4

√
∆ξ)+2

√
∆(cosh( 1

4

√
∆ξ))

2−
√

∆

) − 2 (v− 1)

×

 λ

2 v− 2
+

4µ sinh
(

1
4

√
∆ξ
)

cosh
(

1
4

√
∆ξ
)

−2 λ sinh
(

1
4

√
∆ξ
)

cosh
(

1
4

√
∆ξ
)
+ 2
√

∆
(

cosh
(

1
4

√
∆ξ
))2
−
√

∆

 . (63)

Family 2: When ∆ < 0 and λ(v− 1) 6= 0 (or µ(v− 1) 6= 0), the exact solutions of Equation (15) written
in terms of the trigonometric functions are shown as follows,

u2
19(x, t) = − ∆

√
−∆ tan

(
1
2
√
−∆ξ

) −(√−∆ tan
(

1
2

√
−∆ξ

))
, (64)

u2
20(x, t) =

∆
√
−∆ cot

(
1
2
√
−∆ξ

) +

(√
−∆ cot

(
1
2

√
−∆ξ

))
, (65)

u2
21,22(x, t) = − ∆

√
−∆

(
tan

(√
−∆ξ

)
± sec

(√
−∆ξ

)) − (√−∆
(

tan
(√
−∆ξ

)
± sec

(√
−∆ξ

)))
, (66)

u2
23,24(x, t) =

∆
√
−∆

(
cot
(√
−∆ξ

)
± csc

(√
−∆ξ

)) +
(√
−∆

(
cot
(√
−∆ξ

)
± csc

(√
−∆ξ

)))
, (67)

u2
25(x, t) = − 2∆

√
−∆

(
tan

(
1
4
√
−∆ξ

)
− cot

(
1
4
√
−∆ξ

)) −
√
−∆

(
tan

(
1
4
√
−∆ξ

)
− cot

(
1
4
√
−∆ξ

))
2

, (68)

u2
26,27(x, t) = − ∆

±
√
−(A2−B2)∆−A

√
−∆ cos(

√
−∆ξ)

A sin(
√
−∆ξ)+B

−
±
√
− (A2 − B2)∆− A

√
−∆ cos

(√
−∆ξ

)
A sin

(√
−∆ξ

)
+ B

, (69)

u2
28,29(x, t) =

∆
±
√
−(A2−B2)∆+A

√
−∆ cos(

√
−∆ξ)

A sin(
√
−∆ξ)+B

+
±
√
− (A2 − B2)∆ + A

√
−∆ cos

(√
−∆ξ

)
A sin

(√
−∆ξ

)
+ B

, (70)

where A and B are two non-zero real constants such that A2 − B2 > 0,

u2
30(x, t) = − ∆

2 (v− 1)
(

λ
2 v−2 −

2µ cos( 1
2

√
−∆ξ)√

−∆ sin( 1
2

√
−∆ξ)+λ cos( 1

2

√
−∆ξ)

) − 2 (v− 1)

×

 λ

2 v− 2
−

2µ cos
(

1
2
√
−∆ξ

)
√
−∆ sin

(
1
2
√
−∆ξ

)
+ λ cos

(
1
2
√
−∆ξ

)
 , (71)

u2
31(x, t) = − ∆

2 (v− 1)
(

λ
2 v−2 +

2µ sin( 1
2

√
−∆ξ)

−λ sin( 1
2

√
−∆ξ)+

√
−∆ cos( 1

2

√
−∆ξ)

) − 2 (v− 1)

×

 λ

2 v− 2
+

2µ sin
(

1
2
√
−∆ξ

)
−λ sin

(
1
2
√
−∆ξ

)
+
√
−∆ cos

(
1
2
√
−∆ξ

)
 , (72)

u2
32,33(x, t) = − ∆

2 (v− 1)
(

λ
2 v−2 −

2µ cos(
√
−∆ξ)√

−∆ sin(
√
−∆ξ)+λ cos(

√
−∆ξ)±

√
−∆

) − 2 (v− 1)

×

 λ

2 v− 2
−

2µ cos
(√
−∆ξ

)
√
−∆ sin

(√
−∆ξ

)
+ λ cos

(√
−∆ξ

)
±
√
−∆

 , (73)
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u2
34,35(x, t) = − ∆

2 (v− 1)
(

λ
2 v−2 +

2µ sin(
√
−∆ξ)

−λ sin(
√
−∆ξ)+

√
−∆ cos(

√
−∆ξ)±

√
−∆

) − 2 (v− 1)

×

 λ

2 v− 2
+

2µ sin
(√
−∆ξ

)
−λ sin

(√
−∆ξ

)
+
√
−∆ cos

(√
−∆ξ

)
±
√
−∆

 , (74)

u2
36(x, t) = − ∆

2 (v− 1)
(

λ
2v−2 +

4µ sin( 1
4

√
−∆ξ) cos( 1

4

√
−∆ξ)

−2λ sin( 1
4

√
−∆ξ) cos( 1

4

√
−∆ξ)+2

√
−∆(cos( 1

4

√
−∆ξ))

2−
√
−∆

) − 2 (v− 1)

×

 λ

2v− 2
+

4µ sin
(

1
4
√
−∆ξ

)
cos

(
1
4
√
−∆ξ

)
−2λ sin

(
1
4
√
−∆ξ

)
cos

(
1
4
√
−∆ξ

)
+ 2
√
−∆

(
cos

(
1
4
√
−∆ξ

))2
−
√
−∆

 . (75)

Family 3: When µ = 0 and λ(v − 1) 6= 0, Equation (15) has the hyperbolic function solutions
as follows,

u2
37(x, t) = − λ2

2 (v− 1)
(

λ
2 v−2 −

λ c1
(v−1)c1+cosh(λ ξ)−sinh(λ ξ)

) − 2 (v− 1)

×
(

λ

2 v− 2
− λ c1

(v− 1) c1 + cosh (λ ξ)− sinh (λ ξ)

)
, (76)

u2
38(x, t) = − λ2

2 (v− 1)
(

λ
2 v−2 −

λ (cosh(λ ξ)+sinh(λ ξ))
(c1+cosh(λ ξ)+sinh(λ ξ))(v−1)

) − 2 (v− 1)

×
(

λ

2 v− 2
− λ (cosh (λ ξ) + sinh (λ ξ))

(c1 + cosh (λ ξ) + sinh (λ ξ)) (v− 1)

)
, (77)

where c1 is an arbitrary constant.
Family 4: When µ = λ = 0 and v− 1 6= 0, Equation (15) has the rational function solution as follows,

u2
39(x, t) =

2
ξ + c2

, (78)

where c2 is an arbitrary constant.
Case 3: The last set of the unknown constants is expressed as

a−1 = 2 d2v− 2d2 − 2dλ + 2µ, a0 = −2 dv + 2 d + λ, a1 = 0, d = d, V = ρ∆, (79)

where µ, λ, v, d, and ρ are arbitrary constants. Substituting Equation (79) into Equation (19), and then

using Equations (16) and (21), we obtain the following exact solutions in which ξ =
xβ

β
− ρ∆tα

α
.

Family 1: When ∆ > 0 and λ(v− 1) 6= 0 (or µ(v− 1) 6= 0), the exact solutions of Equation (15) written
as the hyperbolic function solutions are as follows,

u3
1(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d− 1
2(v−1)

(
λ +
√

∆ tanh
(

1
2

√
∆ξ
)) − 2dv + 2d + λ, (80)

u3
2(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d− 1
2(v−1)

(
λ +
√

∆ coth
(

1
2

√
∆ξ
)) − 2dv + 2d + λ, (81)

u3
3,4(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d− 1
2(v−1)

(
λ +
√

∆
(

tanh
(√

∆ξ
)
± isech

(√
∆ξ
))) − 2dv + 2d + λ, (82)
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u3
5,6(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d− 1
2(v−1)

(
λ +
√

∆
(

coth
(√

∆ξ
)
± csch

(√
∆ξ
))) − 2dv + 2d + λ, (83)

u3
7(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d− 1
4(v−1)

(
2λ +

√
∆
(

tanh
(

1
4

√
∆ξ
)
+ coth

(
1
4

√
∆ξ
))) − 2dv + 2d + λ, (84)

u3
8,9(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d + 1
2(v−1)

(
−λ +

±
√

(A2+B2)∆−A
√

∆ cosh(
√

∆ξ)
A sinh(

√
∆ξ)+B

) − 2dv + 2d + λ, (85)

u3
10,11(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d + 1
2(v−1)

(
−λ− ±

√
(−A2+B2)∆+A

√
∆ sinh(

√
∆ξ)

A cosh(
√

∆ξ)+B

) − 2dv + 2d + λ, (86)

where A and B are two non-zero real constants satisfying the condition B2 − A2 > 0,

u3
12(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d +
2µ cosh( 1

2

√
∆ξ)√

∆ sinh( 1
2

√
∆ξ)−λ cosh( 1

2

√
∆ξ)

− 2dv + 2d + λ, (87)

u3
13(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d− 2µ sinh( 1
2

√
∆ξ)

λ sinh( 1
2

√
∆ξ)−

√
∆ cosh( 1

2

√
∆ξ)

− 2dv + 2d + λ, (88)

u3
14,15(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d +
2µ cosh(

√
∆ξ)√

∆ sinh(
√

∆ξ)−λ cosh(
√

∆ξ)±i
√

∆

− 2dv + 2d + λ, (89)

u3
16,17(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d +
2µ sinh(

√
∆ξ)

−λ sinh(
√

∆ξ)+
√

∆ cosh(
√

∆ξ)±
√

∆

− 2dv + 2d + λ, (90)

u3
18(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d +
4µ sinh( 1

4

√
∆ξ) cosh( 1

4

√
∆ξ)

−2λ sinh( 1
4

√
∆ξ) cosh( 1

4

√
∆ξ)+2

√
∆ cosh( 1

4

√
∆ξ)

2−
√

∆

− 2dv + 2d + λ. (91)

u3
19(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d + 1
2(v−1)

(
−λ +

√
−∆ tan

(
1
2

√
−∆ξ

)) − 2dv + 2d + λ, (92)

u3
20(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d− 1
2(v−1)

(
λ +
√
−∆ cot

(
1
2

√
−∆ξ

)) − 2dv + 2d + λ, (93)

u3
21,22(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d + 1
2(v−1)

(
−λ +

√
−∆

(
tan

(√
−∆ξ

)
± sec

(√
−∆ξ

))) − 2dv + 2d + λ, (94)

u3
23,24(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d− 1
2(v−1)

(
λ +
√
−∆

(
cot
(√
−∆ξ

)
± csc

(√
−∆ξ

))) − 2dv + 2d + λ, (95)

u3
25(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d + 1
4(v−1)

(
−2λ +

√
−∆

(
tan

(
1
4

√
−∆ξ

)
− cot

(
1
4

√
−∆ξ

))) − 2dv + 2d + λ, (96)

u3
26,27(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d + 1
2(v−1)

(
−λ +

±
√
−(A2−B2)∆−A

√
−∆ cos(

√
−∆ξ)

A sin(
√
−∆ξ)+B

) − 2dv + 2d + λ, (97)

u3
28,29(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d + 1
2(v−1)

(
−λ− ±

√
−(A2−B2)∆+A

√
−∆ cos(

√
−∆ξ)

A sin(
√
−∆ξ)+B

) − 2dv + 2d + λ, (98)
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where A and B are two non-zero real constants satisfying the condition A2 − B2 > 0,

u3
30(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d− 2µ cos( 1
2
√
−∆ξ)√

−∆ sin( 1
2
√
−∆ξ)+λ cos( 1

2
√
−∆ξ)

− 2dv + 2d + λ, (99)

u3
31(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d +
2µ sin( 1

2
√
−∆ξ)

−λ sin( 1
2
√
−∆ξ)+

√
−∆ cos( 1

2
√
−∆ξ)

− 2dv + 2d + λ, (100)

u3
32,33(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d− 2µ cos(
√
−∆ξ)√

−∆ sin(
√
−∆ξ)+λ cos(

√
−∆ξ)±

√
−∆

− 2dv + 2d + λ, (101)

u3
34,35(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d + 2µ sin(
√
−∆ξ)

−λ sin(
√
−∆ξ)+

√
−∆ cos(

√
−∆ξ)±

√
−∆

− 2dv + 2d + λ, (102)

u3
36(x, t) =

2d2v− 2d2 − 2dλ + 2µ

d +
4µ sin( 1

4
√
−∆ξ) cos( 1

4
√
−∆ξ)

−2λ sin( 1
4
√
−∆ξ) cos( 1

4
√
−∆ξ)+2

√
−∆ cos( 1

4
√
−∆ξ)

2−
√
−∆

− 2dv + 2d + λ. (103)

Family 3: When µ = 0 and λ(v− 1) 6= 0, Equation (15) has the hyperbolic function solutions as follows,

u3
37(x, t) =

2d2v− 2d2 − 2dλ

d− λc1
(v−1)c1+cosh(λξ)−sinh(λξ)

− 2dv + 2d + λ, (104)

u3
38(x, t) =

2d2v− 2d2 − 2dλ

d− λ(cosh(λξ)+sinh(λξ))
(v−1)(c1+cosh(λξ)+sinh(λξ))

− 2dv + 2d + λ, (105)

where c1 is an arbitrary constant.
Family 4: When µ = λ = 0 and v− 1 6= 0, the exact solution of Equation (15) expressed as the rational
function is

u3
39(x, t) =

2d2v− 2d2

d− 1
(v−1)ξ+c2

− 2dv + 2d, (106)

where c2 is an arbitrary constant.

3.2. Obtaining Exact Solutions of Equation (15) Using the Generalized Kudryashov Method

Substituting solution form (11) into (18) and then applying the homogeneous balance principle to
the resulting equation, we have

N −M + 2 = 3N − 3M. (107)

If we choose M = 1, then N = 2. Using Equation (11) in Section 2.2.2, the exact solution of
Equation (18) takes the form

U(ξ) =
a0 + a1Q + a2Q2

b0 + b1Q
, (108)

where Q = Q(ξ) satisfies Equation (12). The parameters a0, a1, a2, b0, and b1 are determined at the
next step. Substituting Equation (108) into Equation (18), and utilizing Equation (12) and then setting
all coefficients of the functions Qk to zero, we get



Symmetry 2020, 12, 644 15 of 25

Q0 : −Va0b2
0 + ρa3

0 = 0,

Q1 : − 2Va0b0b1 −Va1b2
0 + 3ρa2

0a1 + 3ρa2
0b1 − 3ρa0a1b0 − ρa0b0b1 + ρa1b2

0 = 0,

Q2 : −Va0b2
1 − 2Va1b0b1 −Va2b2

0 + 3ρ a2
0a2 − 3ρ a2

0b1 + 3ρ a0a2
1 + 3ρ a0a1b0

+ 3ρ a0a1b1 − 6ρ a0a2b0 + 3ρ a0b0b1 + ρa0b2
1 − 3ρ a2

1b0 − 3 ρ a1b2
0 − ρ a1b0b1

+ 4ρ a2b2
0 = 0,

Q3 : −Va1b2
1 − 2Va2b0b1 + 6ρ a0a1a2 − 3ρ a0a1b1 + 6ρ a0a2b0 − 2ρ a0b0b1

− ρ a0b2
1 + ρa3

1 + 3ρ a2
1b0 − 9ρ a1a2b0 + 2ρ a1b2

0 + ρ a1b0b1 − 10ρ a2b2
0

+ 3ρ a2b0b1 = 0,

Q4 : −Va2b2
1 + 3ρ a0a2

2 + 3ρ a2
1a2 + 9ρ a1a2b0 − 3ρ a1a2b1 − 6ρ a2

2b0 + 6ρ a2b2
0

− 9ρ a2b0b1 + ρa2b2
1 = 0,

Q5 : 3ρ a1a2
2 + 3ρ a1a2b1 + 6ρ a2

2b0 − 3ρ a2
2b1 + 6ρ a2b0b1 − 3ρ a2b2

1 = 0,

Q6 : ρ a3
2 + 3ρ a2

2b1 + 2ρ a2b2
1 = 0.

(109)

Solving the above algebraic system with the aid of the Maple package program, we get the
following results.
Case 1:

a0 = 0, a1 = 0, a2 = −b1, b0 = − b1

2
, b1 = b1, V = 4ρ, (110)

where b1 is an arbitrary constant. From Equations (13), (108), and (110), we obtain the simplified exact
solution of Equation (15) as follows,

u(x, t) =
2

C2e2ξ − 1
, (111)

where ξ = xβ

β −
4ρtα

α .
Case 2:

a0 = b0, a1 = −2b0, a2 = −b1, b0 = b0, b1 = b1, V = ρ, (112)

where b0, b1 are arbitrary constants. From Equations (13), (108), and (112), the simplified exact solution
of Equation (15) can be obtained as

u(x, t) =
b0C2e2 ξ − b0 − b1(

1 + Ceξ
) (

b0Ceξ + b0 + b1
) , (113)

where ξ = xβ

β −
ρtα

α .
Case 3:

a0 =
b0

2
, a1 = −b0 +

b1

2
, a2 = −b1, b0 = b0, b1 = b1, V =

ρ

4
, (114)

where b0, b1 are arbitrary constants. From Equations (13), (108), and (114), the simplified exact solution
of Equation (15) can be expressed as

u6(x, t) =
Ceξ − 1

2C eξ + 2
. (115)

where ξ = xβ

β −
ρtα

4α .
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Case 4:

a0 = b0, a1 = −2b0 + b1, a2 = −2b1, b0 = b0, b1 = b1, V = ρ, (116)

where b0, b1 are arbitrary constants. From Equations (13), (108), and (116), we obtain the simplified
exact solution of Equation (15) as follows,

u3(x, t) =
Ceξ − 1
1 + Ceξ

, (117)

where ξ = xβ

β −
ρtα

α .
Case 5:

a0 = −b1, a1 = 2b1, a2 = −2b1, b0 = − b1

2
, b1 = b1, V = 4ρ, (118)

where b1 is an arbitrary constant. From Equations (13), (108), and (118), the simplified exact solution of
Equation (15) can be obtained as follows,

u4(x, t) =
2 C2e2ξ + 2
C2e2ξ − 1

(119)

where ξ = xβ

β −
4ρtα

α .
Case 6:

a0 = 2b0, a1 = −4b0, a2 = 2b0, b0 = b0, b1 = −2b0, V = 4ρ, (120)

where b0 is an arbitrary constant. From Equations (13), (108), and (120), we get the simplified exact
solution of Equation (15) as follows,

u8(x, t) =
2C2e2¸

C2e2ξ − 1
, (121)

where ξ = xβ

β −
4ρtα

α .

4. Graphical Representations of Some Exact Solutions and Their Physical Explanations

In this section, we will give some graphical representations of the above-determined exact
solutions of the conformable space-time Sharma–Tasso–Olver Equation (15), which were obtained
using the novel (G′

G )-expansion method and the generalized Kudryashov method in Section 3. Here,
we take ρ = 2, and use the following sets of the fractional orders, {β = 1, α = 1}, {β = 0.8, α = 0.2},
and {β = 0.5, α = 0.5}, for the equation. Some selected explicit exact solutions will be plotted as
two- and three-dimensional graphs in which the used domain is 0 ≤ x ≤ 100 and 0 ≤ t ≤ 10.
Their corresponding contours are drawn as well. Furthermore, their physical explanations of the
solutions are included.

Figures 1–3 demonstrate the graphical representations of some chosen exact solutions of the
problem obtained using the novel (G′

G )-expansion method. They are described below. In Figure 1,
we show different plots of the exact solution u1

9(x, t) in Equation (28) using the following parameter
values, µ = 0.5, λ = 1, v = 0.5, d = 1, A = 0.5, and B = 1. In particular, Figure 1a–c shows the
3-D plot, the 2-D plot with t fixed at t = 1, and the contour plot of solution (28), respectively, when
the set of the fractional orders {β = 1, α = 1} is used. Using the same parameter values as shown
above except using {β = 0.8, α = 0.2}, the 3-D graph, the 2-D graph while t is held fixed at t = 1 and
the contour graph of solution (28) are plotted in Figure 1d–f, respectively. Proceeding in a manner
analogous to the above plots except using the fractional order set {β = 0.5, α = 0.5}, we obtain the
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3-D plot, the 2-D plot with t = 1, and the contour plot of solution (28) in Figure 1g–i, respectively.
By characterizing the shapes of the plots in Figure 1, solution (28) behaves as a singular kink-type
solution.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Associated plots of u1
9(x, t) in Equation (28): (a–c) 3-D plot, 2-D plot, and contour plot,

respectively, when {β = 1, α = 1}; (d–f) 3-D plot, 2-D plot, and contour plot, respectively, when
{β = 0.8, α = 0.2}; (g–i) 3-D plot, 2-D plot, and contour plot, respectively, when {β = 0.5, α = 0.5}.

Distinct plots of the exact solution u2
27(x, t) in Equation (69) are portrayed in Figure 2 using the

following parameter values, µ = 1, λ = 0.5, v = 1.5, A = 1, and B = 0.5. Specifically, Figure 2a–c
describes the 3-D plot, the 2-D plot as t is fixed at t = 1, and the contour plot of solution (69),
respectively, when the set of the fractional orders {β = 1, α = 1} is used. Utilizing the same parameter
values as shown above, except using {β = 0.8, α = 0.2}, the 3-D graph, the 2-D graph when t is
held fixed at t = 1, and the contour graph of solution (69) are plotted in Figure 2d–f, respectively.
Proceeding in a like manner to the above plots, except using the fractional order set {β = 0.5, α = 0.5},
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we have the 3-D plot, the 2-D plot with t = 1, and the contour graph of solution (69) in Figure 2g–i,
respectively. By characterizing the shapes of the plots in Figure 2, solution (69) displays the behavior
of a singularly periodic traveling wave solution.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Associated plots of u2
27(x, t) in Equation (69): (a–c) 3-D plot, 2-D plot, and contour plot,

respectively, when {β = 1, α = 1}; (d–f) 3-D plot, 2-D plot, and contour plot, respectively, when
{β = 0.8, α = 0.2}; (g–i) 3-D plot, 2-D plot, and contour plot, respectively, when {β = 0.5, α = 0.5}.

The selected exact solution u3
38(x, t) in Equation (105) is plotted in Figure 3 using the three sets of

the fractional orders and the following parameter values, λ = 0.5, v = 1.6, d = c1 = 1. In particular,
Figure 3a–c shows the 3-D plot, the 2-D plot when t = 1, and the contour plot of solution (105),
respectively, when we use {β = 1, α = 1}. Employing the same parameter values as shown above
except using {β = 0.8, α = 0.2}, the 3-D graph, the 2-D graph as t is held fixed at t = 1, and the contour
graph of solution (105) are plotted in Figure 3d–f, respectively. Proceeding in a manner analogous to
the above plots, except using the fractional order set {β = 0.5, α = 0.5}, we obtain the 3-D plot, the
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2-D plot with t = 1, and the contour graph of solution (105) in Figure 3g–i, respectively. From these
plots, solution (105) is characterized as a kink-type solution.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Associated plots of u3
38(x, t) in Equation (105): (a–c) 3-D plot, 2-D plot, and contour plot,

respectively, when {β = 1, α = 1}; (d–f) 3-D plot, 2-D plot, and contour plot, respectively, when
{β = 0.8, α = 0.2}; (g–i) 3-D plot, 2-D plot, and contour plot, respectively, when {β = 0.5, α = 0.5}.

Figures 4 and 5 display graphical representations of some chosen exact solutions of Equation (15)
obtained using the generalized Kudryashov method. The following details graphically explain the
obtained outcomes. Distinct plots of the exact solution (113) are depicted in Figure 4 using the following
parameter values, b0 = b1 = C = 1. Particularly, Figure 4a–c describes the 3-D graph, the 2-D graph
with t = 2, and the contour graph of solution (113), respectively, when the set of the fractional orders
{β = 1, α = 1} is employed. Using the same parameter values as mentioned above, except utilizing
{β = 0.8, α = 0.2}, the 3-D plot, the 2-D plot as t is held fixed at t = 2, and the contour plot of
solution (113) are plotted in Figure 4d–f, respectively. Proceeding in like manner to the above plots,
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except using the fractional-order set {β = 0.5, α = 0.5}, we have the 3-D plot, the 2-D plot with t = 2,
and the contour graph of solution (113) in Figure 4g–i, respectively. By characterizing the shapes of the
plots in Figure 4, solution (113) shows the behavior of a kink-type solution.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Associated plots of u(x, t) in Equation (113): (a–c) 3-D plot, 2-D plot, and contour plot,
respectively, when {β = 1, α = 1}; (d–f) 3-D plot, 2-D plot, and contour plot, respectively, when
{β = 0.8, α = 0.2}; (g–i) 3-D plot, 2-D plot, and contour plot, respectively, when {β = 0.5, α = 0.5}.

Using the second method, the exact solution u(x, t) in Equation (119) is graphically shown in
Figure 5 with the three different sets of the fractional orders and the constant C = 1. In particular,
Figure 5a–c displays the 3-D plot, the 2-D plot with t = 2, and the contour plot of solution (119),
respectively, when {β = 1, α = 1} is used. Employing the same parameter values above, except using
{β = 0.8, α = 0.2}, the 3-D graph, the 2-D graph with t = 2, and the contour graph of solution (119)
are plotted in Figure 5d–f, respectively. Proceeding in a manner analogous to the previous plots, except
using the fractional-order set {β = 0.5, α = 0.5}, we obtain the 3-D plot, the 2-D plot with t = 2, and
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the contour graph of solution (119) in Figure 5g–i, respectively. By observing the shapes of the plots in
Figure 5, solution (119) is classified into a singular multiple-soliton solution.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Associated plots of u(x, t) in Equation (119): (a–c) 3-D plot, 2-D plot, and contour plot,
respectively, when {β = 1, α = 1}; (d–f) 3-D plot, 2-D plot, and contour plot, respectively, when
{β = 0.8, α = 0.2}; (g–i) 3-D plot, 2-D plot, and contour plot, respectively, when {β = 0.5, α = 0.5}.

5. Conclusions

In this article, we have constructed explicit exact solutions of the (1+1)-dimensional conformable
space-time Sharma–Tasso–Olver equation expressed in Equation (15) using the novel

(
G′
G

)
-expansion

method and the generalized Kudryashov method with the help of the fractional complex transform
and the symbolic computation package Maple 17. The obtained results have revealed that the
methods are straightforward, reliable, and powerful. In particular, the novel

(
G′
G

)
-expansion

method gives hyperbolic, trigonometric, and rational function solutions for the equation; however,
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the generalized Kudryashov method provides fractional solutions of the exponential functions,
which are possibly converted into hyperbolic function solutions. Some of these obtained exact
solutions have been graphically characterized into a variety of various physical structures such as the
single-kink wave solution, the singular periodic wave solution, and the singular multiple-soliton
solution. The applications of these exact solutions have been discovered in several physical
phenomena such as plasma waves and optical fibers. All calculations in this investigation have
been made and verified using the Maple package program. Previously, many authors had tackled
the fractional Sharma–Tasso–Olver equation in different approaches. For example, finding exact
solutions of the fractional Sharma–Tasso–Olver equation in the sense of the modified Riemann-Liouville
derivative using the (G′/G, 1/G)-expansion method [56], the tanh ansatz method [57], the exp(−Φ(ξ))

method [58], the sub-equation method [59], and the improved extended tanh-coth method [13].
In addition, constructing exact solutions of the nonlinear conformable time Sharma–Tasso–Olver
equation via conformable derivatives was done using the simplest equation method [60] and the direct
algebraic method [61]. The Sharma–Tasso–Olver equation as shown in the above articles involves with
both of only the conformable time derivative and the conformable space-time derivatives. However, in
this paper, we construct exact solutions of Equation (15) in the sense of conformable derivatives with
respect to x and t. To the best of our knowledge, in [62], the authors analytically solved (15) using the
Exp-function method and only two exact solutions, which are expressed in terms of the exponential
function solutions and characterized as kink-type solutions, were constructed. Comparing our results
obtained using the novel

(
G′
G

)
-expansion method with the results in [62], not only the number of

our exact solutions is considerably more than the number of their results, but our solutions are also
classified into more different types. This is because the novel

(
G′
G

)
-expansion method is generalized

from many similar methods such as the
(

G′
G

)
-expansion method, improved

(
G′
G

)
-expansion method,

and the generalized and improved
(

G′
G

)
-expansion method. In consequence, some of our exact

solutions of (15) via the two methods are novel and reported here for the first time. According to the
mentioned advantages of the methods for obtaining exact traveling wave solutions, they could be
applied efficiently for a wide range of nonlinear conformable partial differential equations or other
fractional-order PDEs, which appear in several branches of the applied sciences and engineering.
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