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Abstract: The fundamental motivation of this research is to investigate the effect of flexoelectricity on
a piezoelectric nanobeam for the first time involving internal viscoelasticity. To date, the effect of
flexoelectricity on the mechanical behavior of nanobeams has been investigated extensively under
various physical and environmental conditions. However, this effect as an internal property of
materials has not been studied when the nanobeams include an internal damping feature. To this end,
a closed-circuit condition is considered taking converse piezo–flexoelectric behavior. The kinematic
displacement of the classical beam using Lagrangian strains, also applying Hamilton’s principle,
creates the needed frequency equation. The natural frequencies are measured in nanoscale by the
available nonlocal strain gradient elasticity model. The linear Kelvin–Voigt viscoelastic model here
defines the inner viscoelastic coupling. An analytical solution technique determines the values of the
numerical frequencies. The best findings show that the viscoelastic coupling can directly affect the
flexoelectricity property of the material.

Keywords: flexoelectricity effect; internal viscoelasticity; closed circuit

1. Introduction

Flexoelectricity can be described as a general electromechanical linear coupling effect between the
electric polarization and the strain gradient and, conversely, the electric field gradient and the elastic
strain. This phenomenon can be considered as a higher-order effect than piezoelectricity, which is the
polarization response to the strain. The flexoelectric effect can be understood from the piezoelectric
effect. In piezoelectric material, when the material is bent, compressed, or tensioned, it gives the electric
field itself, and vice versa. In flexoelectric material, also by mechanical deformation of the material,
the electric field can be obtained, and vice versa. This effect can be applied to next-generation sensors,
actuators, and MEMS/NEMS (micro-/nanoelectromechanical systems). Nonetheless, at the nanoscale
where large strain gradients are expected, the flexoelectric effect is significant. The gradient effect
shows that the importance of the flexoelectric effect on micro- and nanosystems is comparable to that of
piezoelectricity and even beyond it. In addition, unlike piezoelectricity, flexoelectricity is found in any
material with any symmetry. This means that unlike piezoelectricity, which is invalid and inefficient
in materials with central symmetry, there are effects of flexoelectricity in all biological materials and
systems. In fact, the superiority of this effect over the piezoelectric effect is that piezoelectricity can
occur in only 20 types of crystal structures, but the flexoelectric effect is not limited. These features
have led to a growing interest in flexoelectricity in the last decade [1–3].

Currently, studies on the role of flexoelectricity in dielectric physics have been performed and
have shown promising practical applications. On the other hand, the discrepancy between theoretical

Symmetry 2020, 12, 643; doi:10.3390/sym12040643 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-7356-2168
https://orcid.org/0000-0002-8128-3262
http://dx.doi.org/10.3390/sym12040643
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/4/643?type=check_update&version=2


Symmetry 2020, 12, 643 2 of 21

and empirical results indicates limited understanding in this area. A homogeneous deformation or
a strain gradient induces flexoelectricity; on the other side, an inhomogeneous deformation induces
piezoelectricity. Accordingly, the effects of flexoelectricity on nanoscale systems are significantly higher
than those on macroscale systems in light of the fact that the strain gradient fits inversely to the
element size [1–8].

Lately, in both theoretical and experimental studies, a surge of scientific interest has been stimulated
concerning flexoelectricity, particularly for small-scale piezoelectric materials. Estimation of the physics
of piezo–flexoelectric coupling factors has been performed with success in some experiments [4–13].

In addition to studying the physics of piezoelectric–flexoelectric nanomaterials, another aspect
of assessing piezoelectric–flexoelectric effects in nanostructures is the prediction of the mechanical
behavior of a nanoscale material while it contains piezoelectricity or flexoelectricity or even both effects
simultaneously. Piezoelectric effects alone have been estimated based on the mechanical behavior
of nanostructures in the current decade [14–23]. However, the combination of the flexoelectricity
effect and piezoelectricity influence is a new physical composition. In the literature on the mechanical
behavior of nanostructures, the influences of flexoelectric phenomena have been investigated based on
the mechanical response of piezoelectric nanobeam structures. In terms of the static deflections and
bending problems of a nanobeam, Liang et al. [24] developed a piezoelectric cantilever nanobeam based
on the flexoelectricity and surface effects. The proposed beam model used Euler–Bernoulli to implement
electromechanical coupling in a bending analysis for which the piezoelectricity, dielectricity, and surface
elasticity, particularly flexoelectricity, were considered. Zhang et al. [25] modeled a higher-order beam
as a dielectric piezoelectric beam and studied the influences of flexoelectricity, while the static deflections
were given for hinged–hinged and cantilever beams. Qi et al. [26] investigated a double-layered
piezoelectric nanobeam regarding flexoelectric coupling under static bending conditions. The achieved
equations were established based on the Euler–Bernoulli beam and solved on the basis of open- and
closed-circuit cases. Sneha Rupa and Ray [27], based on the nonlocality of Eringen, analyzed the
flexoelectricity behavior of pivot–pivot piezoelectric nanobeams. They worked on both direct and
indirect flexoelectric influences and extracted the numerical outcomes of linear static bending with
regard to an exact solution. Xiang and Li [28] derived an exact elasticity solution to analyze the
bending of a nanosize beam, including piezoelectricity and flexoelectricity, by using strain gradient
elasticity. Zarepour et al. [29] studied nonlinearity based on the geometrical phenomenon in order
to consider flexoelectricity in a nanosize piezoelectric beam. The beam hypothesis was Timoshenko,
and the treatment of a small scale was shown by the nonlocal elasticity theory. The formulated
theoretical relations were solved by utilizing the Galerkin method for fixed–fixed and pivot–pivot
edge conditions. Yang et al. [30] employed the finite element method to develop flexoelectricity effects
for a piezoelectric nanobeam. According to the strain gradient elasticity model, based on the linear
Lagrangian strains and by means of the classic beam approach, the static deflections of the cantilever
beam were determined. Zhao et al. [31] nonlinearly investigated the bending analysis of a nanoscale
piezoelectric beam involving flexoelectricity impacts and incorporating surface influences on the basis
of the strain gradient elasticity model. They adjusted the Timoshenko beam model to derive the
required equilibrium equations and discretized the equations by means of the generalized differential
quadrature (GDQ) method. Thereafter, an iteration method was applied to solve the discretized
equations. Basutkar et al. [32] produced an analysis of the static bending of a piezoelectric nanobeam
that possesses flexoelectricity influences and incorporated surface effects based on the element-free
Galerkin method.

In the case of the bending of piezoelectric–flexoelectric nanostructures with plate-like shapes,
Ghobadi et al. [33] evaluated the effect of nano size with the help of classical plate theory to study the
static bending of a nanoplate exposed to thermal, electric, and magnetic fields, assuming piezoelectricity
and flexoelectricity properties.

Moreover, in terms of static instability and buckling of piezoelectric–flexoelectric nanobeams,
Ebrahimi and Karimiasl [34] calculated the stability capacity of a sandwich nanobeam system by taking
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the piezoelectricity–flexoelectricity effects into account on the basis of the stress nonlocality hypothesis
and considering surface effects. The Navier method was applied to solve the equations which resulted
from the Euler–Bernoulli kinematic model.

On the other hand, in the discussion of specific piezoelectric–flexoelectric nanostructures, e.g.,
nanoshells, Zeng et al. [35] analytically analyzed the static instability situation of a piezoelectric
nanoshell while examining the flexoelectric property. Study of the small scale was captured via the
couple stress model, and the kinematic displacement was estimated according to the shear deformable
shell model.

Further, in the field of dynamic analyses of piezoelectric nanobeams under the flexoelectricity
phenomenon, Barati [36] nonlinearly studied the frequencies of a piezoelectric nanobeam involving
flexoelectric effects subjected to thermal surroundings. The surface effect was placed in the constitutive
equations which originated from the classical beam approach, and He’s variational method was used
to derive the equations. Generally, the natural frequencies of the problem were computed by the use of
the Galerkin method. Arefi et al. [37] investigated the effects of residual stress, surface, small scale,
and flexoelectricity on a Timoshenko piezoelectric nanobeam while considering functionality in
different cases, i.e., simple, sigmoid, and exponential power indices. A cubically nonlinear foundation
was modeled and placed. The differential quadrature (DQ) method discretized the equations of
frequency, and a direct iterative process computed the values of the frequencies. Ebrahimi and
Barati [38] analytically researched the vibration response of a piezoelectric nanobeam embedded on
the Winkler–Pasternak foundation. They considered classical beam theory and took flexoelectricity
and surface effects together in the frequency equations. The vibration relations were combined with
nonlocal continuum theory. Furthermore, Amiri et al. [39], based on the Euler–Bernoulli beam and
nonlocal strain gradient size-dependent model, simulated the instability and free vibrations of a
piezoelectric nanotube, taking surface and flexoelectric influences into consideration in the evaluation.
Parsa and Mahmoudpour [40] assumed an initial curvature for a piezoelectric nanobeam to study
the effect of flexoelectricity on such a specimen. The classic beam model was used, and the nonlocal
strain gradient was combined into the equations of motion to survey the small scale. A foundation
which included the linear and nonlinear transverse effects and a shear coefficient was bridged for
the system. Vaghefpour and Arvin [41] modeled a nanobeam as a cantilever beam and studied
its natural frequencies with respect to the thin beam model by applying both piezoelectricity and
flexoelectricity. Different solution procedures were employed, namely, the Galerkin projection and
Lindstedt–Poincaré technique.

In addition to the above literature, Fattahian Dehkordi and Tadi Beni [42], by use of a consistent
couple stress model, investigated analytically the natural frequencies of a nanocone based on the
piezoelectric–flexoelectric coupling. The nanocone was modeled with single wall. The governing
equations were attained on the basis of Love’s thin shell theory and linear Lagrangian strains.

Also, a special investigation can be found in [43], in which double cantilever piezoelectric
nanobeams were analyzed, for which the flexoelectricity property was also taken into account. A crack
was assumed in the beam, and the strain gradient elasticity theory was employed to capture the
size dependency.

Another type of material property is internal viscoelasticity by which an unsteady outer excitation
frequency can be damped [44–46]. Unlike the many kinds of research done on piezoelectric nanobeams
by studying flexoelectric influence, there are no reports about piezoelectric–flexoelectric nanobeams
considering inner viscoelasticity. However, in the category of the combination of piezoelectricity with
internal viscoelasticity, there can be seen a few published papers. Li et al. [47] inspected the buckling
and vibrations of axially moving nanoplates considering piezoelectricity and viscoelasticity coupling.
They considered the thermal environment as well. Nonlocal framework was done using nonlocal
elasticity theory. The attained values of the buckling and natural frequency on the basis of a Galerkin
numerical solution technique. Zenkour and Sobhy [48] studied the nonlocal natural frequencies of
a piezoelectric nanoplate assuming viscoelastic coupling based on the Kelvin–Voigt model and also
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embedding the plate on a viscoelastic matrix. The hygral and thermal effects of the environment
were also investigated. The governing equations were gained on the basis of a two-variable refined
higher-order shear deformation approach in combination with nonlocal elasticity. Tadi Beni et al. [49]
analyzed the nonlinear resonance frequencies of a piezoelectric Euler–Bernoulli nanobeam by taking
the viscoelasticity effect. The nanoscale size influence was considered on the basis of a coupled stress
approach. The obtained nonlinear frequency relation was solved using the Galerkin method.

Since viscoelastic coupling may affect the role of flexoelectricity in a piezoelectric material,
understanding this effect can be important. It should be kept in mind that viscoelastic coupling
is not limited to considering this property in the material; it can also be investigated in the
boundary conditions [50,51]. This research examines the current knowledge of flexoelectricity
in piezoelectric nanobeams, whilst the Kelvin–Voigt viscoelastic model is investigated for the material.
The closed-circuit condition is applied for a reverse flexoelectric status. The combined flexoelectric
and viscoelastic terms are implemented in the Euler–Bernoulli beam estimated in the nanoscale using
the nonlocal strain gradient model. The analytical solution procedure is demonstrated to numerically
present the results. A validation section was prepared to illustrate the precision and accuracy of the
present formulation. A conclusion section is also provided to give the significant findings in brief.

2. The Visco–Piezo–Flexoelectric Model

The visco–piezo–flexoelectric nanobeam analyzed in this research is illustrated in Figure 1. In the
figure, the length and height of the beam are denoted L and h, respectively.
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Figure 1. A dielectric hinged–hinged nanobeam’s configuration (designed in a CAD program
(SolidWorks)).

2.1. Piezo–Flexoelectricity

To introduce the flexoelectricity influence, it should be noted that the electric field gradient produces
an elastic strain field (converse effect) and the elastic strain gradient induces electric polarization (direct
effect). The density of total internal energy of a bulk piezo–flexoelectric material is [29,36]

∏
b =

1
2 aklPkPl +

1
2 Ci jklεi jεkl + di jkPkεi j +

1
2 bi jkl

∂Pi
∂x j

∂Pk
∂xl

+ fi jkl
∂εi j
∂xl

Pk

− fi jklεi j
∂Pk
∂xl
·

(1)
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The constitutive equations based on Equation (1) can be derived as

σi j =
∂Πb
∂εi j

= Ci jklεkl + di jkPk − fi jkl
∂Pk
∂xl
· (2)

ξi jl =
∂Πb

∂
(
∂εi j
∂xl

) = fi jklPk· (3)

Ei =
∂Πb
∂Pi

= ai jP j + d jkiε jk + fkl ji
∂εkl
∂x j
· (4)

qi j =
∂Πb

∂
(
∂Pi
∂x j

) = bi jkl
∂Pk
∂xl
− fkli jεkl· (5)

in which εkl are the elastic strains, Ci jkl are the elastic coefficients, Ek is the electric field, σi j is the
so-called equilibrium stress tensor, fi jkl denotes the fourth-order flexoelectric tensor related to the direct
flexoelectric effect, ai j represents the reciprocal dielectric susceptibility (second-order dielectric tensor),
Pi is electric polarization, di jk is the piezoelectric modulus, bi jkl is the coupling between polarization
gradients, ξi jl is the induction of the converse flexoelectric effect and called the higher-order moment
stress tensor, and qi j is the electric quadrupole density due to flexoelectricity.

The chosen beam theory for this study is Euler–Bernoulli [52,53]:

u1(x, z, t) = −z
∂w(x, t)
∂x

, (6)

u3(x, z, t) = w(x, t)· (7)

where ui (i = 1,3) represents the points’ displacements in the x and z directions, and w is the lateral
displacement of the midplane. To show the thickness coordinate, the z parameter is used, and t is
demonstrative of time.

As the problem considered in this research is linear vibration analysis, the linear Lagrangian strain
can be presented as

εi j =
1
2

(
ui, j + u j,i

)
· (8)

Applying Equation (8) to Equations (6) and (7) gives the elastic strains in the case of displacements
as follows:

εxx = −z
∂2w
∂x2 , (9)

ηxxx =
∂εxx

∂x
= −z

∂3w
∂x3 , (10)

ηxxz =
∂εxx

∂z
= −

∂2w
∂x2 · (11)

As ηxxx is small relative to ηxxz, it can be neglected. The transverse direction was chosen for the
direction of polarization. Thus, the relationship between the electric field and electric potential based
on the Maxwell electric field relation in the transverse direction is as follows:

Ez +
∂Φ
∂z

= 0 (12)

in which Φ denotes the electric potential. Inserting Equation (11) into Equation (4) yields the effective
local electric field equation as below:

Ez = a33Pz + d31

(
−z
∂2w
∂x2

)
− f31

∂2w
∂x2 · (13)
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Gauss’s law is expressed as follows, where the free electric body charges are ignored [29]:

− κ
∂2Φ
∂z2 +

∂Pz

∂z
= 0· (14)

Here, κ = κ1κ2 is the permittivity (electric polarizability measure for a dielectric material), κ1 exhibits
the background permittivity of the piezo–flexoelectric material, and κ2 denotes the permittivity of
the air. Physically, permittivity directly affects the polarization, which means that in response to an
external electric field, a material with higher permittivity polarizes further.

In a converse effect and for a closed-circuit condition, the electric boundary conditions can be
defined as

Φ
(

h
2

, t
)
= V, Φ

(
−

h
2

, t
)
= 0· (15)

in which V denotes the external electric voltage. Combining Equation (12), Equation (13), and Equation
(15) into Equation (14), we present the electrical polarization, electric field component, and electric
potential as [36]

Pz = −
V

a33h
+

(
κd31z

(1 + a33κ)
+

f31(1 + 2a33κ)

a33(1 + a33κ)
−

f31h
2λb33

eλz + e−λz

ehλ/2 − e−hλ/2

)
∂2w
∂x2 , (16)

Ez = −
V
h
+

(
a33κ f31

(1 + a33κ)
−

d31z
(1 + a33κ)

−
a33 f31h
2λb33

eλz + e−λz

ehλ/2 − e−hλ/2

)
∂2w
∂x2 , (17)

Φ =
(

d31
2(1+a33κ)

(
z2
−

1
4 h2

)
+

f31
(1+a33κ)

z− f31h
2(1+a33κ)

eλz
−e−λz

ehλ/2−e−hλ/2

)
∂2w
∂x2

+V
h z + V

2 ,
(18)

where

λ =

√
(1 + a33κ)

b33κ
·

There is now a possibility to gain the stress field as

σxx = (α−C11z)
∂2w
∂x2 −

Vd31

ha33
(19)

in which

α =
d31 f31

a33
+

d2
31κz

1 + a33κ
−

d31 f31h

2λb33

eλz + e−λz

ehλ/2 − e−hλ/2
+

f 2
31h

2b33

eλz
− e−λz

ehλ/2 − e−hλ/2
·

By means of the extended Hamilton’s principle, for the whole volume of the piezoelectric–
flexoelectric nanobeam, one obtains

δ
∣∣∣∣t2
t1

(
−

∫
Ω

HdΩ + ΠK + ΠW

)
= 0 (20)

in which H, ΠW , and ΠK are, respectively, the electric enthalpy, performed work by external loads,
and kinetic energy. The electric enthalpy of the system can be expressed as follows (note that for an
electromechanical coupling, the traditional mechanical potential energy is collected with the electrical
potential energy as electric enthalpy):

H = σi jεi j −
1
2
κΦ,iΦ,i + Φ,iPi. (21)
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The variational technique gives [36]

δH =
1
2

[
σxxδεxx + ξxxzδηxxz − κ

(
∂Φ
∂z

∂
∂z
δΦ

)
+ Pz

∂
∂z
δΦ

]
· (22)

By using the variational principle and also combining Equation (1) and Equations (12)–(19), (21),
and (22), the electromechanical internal energy can be obtained as

δw = 0 : −
∫ L

0

(
Mxx

∂2δw
∂x2 + Pxxz

∂2δw
∂x2

)
dx = 0, (23)

where

Mx =

∫
A
σxxzdA, (24)

Pxxz =

∫
A
ξxxzdA. (25)

Thereby, one can obtain Equation (14) as a result of Equation (22) as the electric governing equation:

δΦ = 0 : −
∫ L

0

(
κ
∂2Φ
∂z2 −

∂Pz

∂z

)
dx = 0· (26)

Therefore, based on the Equations (3) and (19), Equations (24) and (25) are expanded to

Mx = (γ−C11Iz)
∂2w
∂x2 , (27)

Pxxz = −
V f31

a33
+ β

∂2w
∂x2 , (28)

in which

γ =

∫
A
αzdA,

Iz =

∫
A

z2dA,

β =
f 2
31h(1 + 2a33κ)

a33(1 + a33κ)
−

f 2
31h

2b33λ

h/2∫
−h/2

eλz + e−λz

ehλ/2 − e−hλ/2
dz·

The kinetic energy is defined in the form

ΠK =
1
2

∫ ∫
A
ρ(z)

(∂u1

∂t

)2

+

(
∂u3

∂t

)2dAdz· (29)

The kinetic energy by the first variation is derived as

δΠK =

∫
A

[
I2

∂4w
∂x2∂t2 δw− I0

∂2w
∂t2 δw

]
dA (30)

where

I0, I2 =

∫ h/2

−h/2
ρ(z)

(
1, z2

)
dz

are the mass moments of inertia.
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The performed work by outer nonconservative factors is expressed as

ΠW =
1
2

∫ L

0
N0

x

(
∂w
∂x

)2

dx· (31)

Its variational relation is

δΠW =

∫ L

0
N0

x

(
∂δw
∂x

∂w
∂x

)
dx (32)

in which N0
x is the membrane load that can be a result of axial compression, thermal motion, electric or

magnetic motion, etc. In this research we consider the below axial membrane force which is a result of
external electric voltage (V) applied on the top surface (Figure 1) of the nanobeam:

N0
x =

∫ h/2

−h/2
d31

2V
h

dz· (33)

Embedding Equations (23)–(32) into Equation (20) gives the frequency equation of the
flexoelectric–piezoelectric nanobeam on the basis of the Euler–Lagrange beam as

δw = 0 :
∂2Mx

∂x2 +
∂2Pxxz

∂x2 + N0
x
∂2w
∂x2 = I0

∂2w
∂t2 − I2

∂4w
∂x2∂t2 · (34)

2.2. Size-Dependent Model

The nanoscale atomic interactions can be pictured in a continuum space by means of nonlocal
strain gradient elasticity theory (NSGT) [54]:

(
1− µ∇2

)
σNL

xx =
(
1− l2∇2

)[
(α−C11z)

∂2w
∂x2 −

Vd31

ha33

]
(35)

in which µ
(
nm2

)
shows the stiffness softening effect based on the nonlocality phenomenon (nonlocal

parameter); it depends on the different conditions and cannot be a constant value [55]. l(nm) is
associated with the stiffness hardening effect based on the size deduction (strain gradient length scale
parameter (SGLP)); it also depends on the different conditions and cannot be constant for a material [56].
Moreover, ∇2

(
∇

2 = ∂2

∂x2

)
is the Laplace operator. Additionally, the NL index introduces the nonlocal

component of stress.
Inserting Equation (27) into Equation (35), the moment stress resultant in nanoscale is developed

as [57–62]

Mx − µ
∂2Mx

∂x2 = (γ−C11Iz)

(
1− l2

∂2

∂x2

)
∂2w
∂x2 · (36)

Meanwhile, Equation (36) can be rewritten based on Equation (34) as

Mx = −µ
(
∂2Pxxz
∂x2 + N0

x
∂2w
∂x2 − I0

∂2w
∂t2 + I2

∂4w
∂x2∂t2

)
+(γ−C11Iz)

(
1− l2 ∂2

∂x2

)
∂2w
∂x2 ·

(37)

Then, Equation (34) in combination with Equation (37) is re-derived as below:(
1− µ ∂2

∂x2

)(
∂2Pxxz
∂x2 + N0

x
∂2w
∂x2 − I0

∂2w
∂t2 + I2

∂4w
∂x2∂t2

)
+(γ−C11Iz)

(
1− l2 ∂2

∂x2

)
∂4w
∂x4 = 0·

(38)
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2.3. Internal Viscoelasticity Coupling

To implement the viscoelastic behavior in the dedicated relation of the vibration of the smart
beam (Equation (38)), the relation below is employed [63–65] (The superscript v means the stress and
strain fields are in the viscoelastic forms):

σv
xx = Cvεv

xx =

[(
α−C11z

(
1 + g

∂
∂t

))
∂2w
∂x2 −

Vd31

ha33

]
(39)

in which g is the internal viscoelasticity parameter and has the physical meaning of retardation time.
As a result of the formulation, the frequency equation of the visco-piezo–flexoelectric nanobeam

can be achieved as follows: (
1− µ ∂2

∂x2

)(
∂2Pxxz
∂x2 + N0

x
∂2w
∂x2 − I0

∂2w
∂t2 + I2

∂4w
∂x2∂t2

)
+

[
γ−C11Iz

(
1 + g ∂

∂t

)](
1− l2 ∂2

∂x2

)
∂4w
∂x4 = 0·

(40)

Consequently, the free vibration relation of the visco–piezo–flexoelectric nanoscale beam in terms
of transverse displacement is finalized as(

1− µ ∂2

∂x2

)[
β∂

4w
∂x4 + 2d31V ∂2w

∂x2 − I0
∂2w
∂t2 + I2

∂4w
∂x2∂t2

]
+

[
γ−C11Iz

(
1 + g ∂

∂t

)](
1− l2 ∂2

∂x2

)
∂4w
∂x4 = 0·

(41)

3. The Solution Process

With respect to the analytical solution, application of the following sinusoidal deflection equation
is required:

w(x, t) =
∞∑

m=1

AmXm(x) exp(iωt) (42)

in which Xm demonstrates an admissible function for the transverse deflection that satisfies boundary
conditions, Am is a constant coefficient, and ω is the natural frequency.

Note that here, S defines the hinged edge condition. The conditions in Table 1 are satisfied by the
admissible function given [66,67]

SS : Xm(x) = sin(αmx) (43)

in which
αm =

mπ
L
·

Based on Equation (42), Equation (41) can be rewritten as follows:

Aω2 + Bω+ C = 0 (44)

in which
A = I0 + (µI0 + I2)α2

m + µI2α4
m,

B = −iC11Izg
(
α4

m + l2α6
m

)
,

C =
(
µβ−C11Izl2 − γl2

)
α6

m + (β− γ−C11Iz − µN0)α4
m −N0α2

m·
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Now, by using Equation (44), one can obtain the numerical results for natural frequencies of the
visco–piezo–flexoelectric nanobeam as follows (only the positive solution is extracted):

ω =

iC11Izg
(
α4

m + l2α6
m

)
+

√√√√√√√√√ [
−iC11Izg

(
α4

m + l2α6
m

)]2
− 4

(
I0 + (µI0 + I2)α2

m

+µI2α4
m

) (
µβ−C11Izl2 − γl2

)
α6

m+

(β− γ−C11Iz − 2µd31V)α4
m − 2d31Vα2

m


2
[
I0 + (µI0 + I2)α2

m + µI2α4
m

] . (45)

It should be noted that in this paper, only the real part of the frequency is presented, although the
formulas are in complex form.

Table 1. Essential boundary conditions.

Configuration Conditions

S w(0, L) = 0, Mx(0, L) = 0, Nx(0, L) = 0

4. Result Validation

Examination of the results’ precision before plotting is necessary. In this respect, the priority
in choosing from among the literature is given to the studies closest to the present one. However,
based on the best knowledge of the authors, there is no published research in which a visco–flexoelectric
nanobeam is investigated. Hereby, Tables 2 and 3 were prepared. In the first table, the simplest manner
was considered for which we removed the flexoelectricity, strain gradient effect, and viscoelastic
coupling to show a frequency analysis for a nonlocal Euler–Bernoulli beam with a square shape [68].
As can be seen, our results are completely matched with those from the literature. Table 3 shows the
results of a carbon nanotube (CNT) that was studied according to NSGT by [69] in a shell-like structure
and by [70] in a beam-like structure. As can be observed, our results match well with those of both
pieces of literature.

Table 2. Nondimensional natural frequency result comparison for a square nanobeam.

L/h (e0a)2 Present Euler–Bernoulli [68]

5

0 9.7112 9.7112
1 9.2647 9.2647
2 8.8747 8.8747
3 8.5301 8.5301
4 8.2228 8.2228

10

0 9.8293 9.8293
1 9.3774 9.3774
2 8.9826 8.9826
3 8.6338 8.6338
4 8.3228 8.3228

20

0 9.8595 9.8595
1 9.4062 9.4062
2 9.0102 9.0102
3 8.6604 8.6604
4 8.3483 8.3483
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Table 3. Natural frequency (THz) result comparison for a nanotube/shell.

L/D [69] (MD-Armchair CNT)
Nonlocal Strain Gradient Theory

[69] (FSDT, Navier) [70] (OVFSDT, Navier) Present

4.86 1.138 1.209 1.25535 1.23117
8.47 0.466 0.448 0.43207 0.49103
13.89 0.190 0.192 0.19004 0.21306
17.47 0.122 0.126 0.12431 0.13213

The abbreviated words in Table 3 are as follows: MD (Molecular Dynamics Simulation), CNT (Carbon Nanotubes),
FSDT (First-Order Shear Deformation Theory), OVFSDT (One-Variable First-order Shear Deformation Theory).

5. Frequency Analysis

Assessing the flexoelectricity in a viscoelastic nanostructure is the main scope of this research.
To this end, lead zirconate titanate (PZT-5H) nanoceramic was considered as a flexoelectric–piezoelectric
nanomaterial, with properties shown in Table 4.

Table 4. Material properties of the visco–piezo–flexoelectric nanobeam [36,39,71].

Pb(Zr, Ti)O3 or PZT-5H

C11 = 102 GPa, ρ = 7500 kg/m3,
f31 = 10−7 C/m, d31 = 17.05 C/m2,

a33 = 1.76 × 10−8 C/V.m, b33 = 10−9 J.m3/C,

κ1 = 6.62 C/V.m, κ2 = 8.85 × 10−12 C/V.m

In choosing a value for the nonlocal parameter, we used 0.5 nm < e0a < 0.8 nm [72] and 0 < e0a
≤ 2 nm [73,74], and on the other side, the SGLP could be chosen arbitrarily. Regardless of time
dependency and on the basis of Equation (45), the natural frequencies of the beam were extracted

nondimensionally to be better plotted in an illustration as Ω = ωL2

h

√
ρ

C11
and X = x

L .
In terms of predicting the static and dynamic responses of piezoelectric–flexoelectric nanostructures,

the previous published research studied many conditions, e.g., the effect of nonlocal parameter [29,34,38],
different edge conditions [31], thermal environment [36], surface effect [36,37], elastic substrate [39],
etc.; therefore, the present study focuses on the influence of flexoelectricity on a nanobeam with internal
viscoelasticity. To this end, Figure 2 illustrates the variation in the viscoelastic parameter against
changes in the nonlocal parameter and the upper surface voltage. According to the diagrams, there are
two cases: when the SGLP is larger than the nonlocal parameter, and vice versa. The upper surface
voltage is also taken in two values. As the figure shows, first, it should be stated that the larger the
viscoelasticity, the greater the natural frequencies. On the other side, increasing the voltage results
in a lower frequency. It can also be seen that l > e0a produces larger frequencies compared to e0a > l.
Moreover, by looking carefully at the figure, it can be seen that the further decreasing impact of the
voltage is related to the case e0a > l.

By means of Figure 3, one can make a simple comparison between the two states of the material:
when we have only the piezo effect, and when we have both the piezo and flexo effects. It is worth
mentioning that because polarization by flexoelectricity is far less than polarization with piezoelectricity,
as flexoelectricity occurs due to the strain gradient and piezoelectricity happens due to strain itself,
the piezo influence should be much greater than the flexo effect. Based on the figure, one can observe
that the results of the case having both piezo and flexo impacts are more remarkable in smaller
thicknesses compared to those neglecting the flexo effect. However, this figure proves that when the
thickness of the nanobeam is sufficiently large, the effect of flexoelectricity is not noticeable.
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Figure 3. Thickness parameter vs. flexoelectricity effect on the nondimensional natural frequency
(e0a = 0.5 nm, l = 1 nm, V = 0.5 Volt, L = 10h, g = 100 N.s/m).

Figure 4a–c pictorially exhibits the variations of SGLP versus two states for the material, namely,
that considering the internal viscoelasticity and that avoiding such a property for the piezoelectric and
piezo–flexoelectric nanobeams. By reference to Figure 4a, one can see that by increasing the SGLP, the
effect of flexoelectricity is subsequently reduced. It is clear mathematically that when g = 0 N.s/m or
g = 100 N.s/m for both cases of material (piezo vs. piezo–flexo) and when the value of the gradient
parameter is increased, the numerical results are closer to each other. This means that if the value of
this parameter increases, the flexoelectricity effect is diminished. Thereby, on the basis of Figure 4b,
one can obtain the conclusion of the previous figure. In this figure, the length scale quantity is further
magnified (0 ≤ l ≤ 10 nm), and as can be observed, the results are inclined to be closer to each other.
This is true for both piezo and piezo–flexo materials with an increase in the SGLP value. Furthermore,
with regard to Figure 4c, for which greater values of gradient length scale factor were chosen and the
piezo–flexo material was selected in two cases (with viscoelasticity and without it), one can see that the
growth of the SGLP highlights the role of inner viscoelasticity. As a matter of fact, a sufficiently large
value for length scale strain gradient parameter is very effective for analyzing internal viscoelastic
coupling in a piezo–flexoelectric nanobeam exposed to dynamic conditions.
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Figure 4. (a) Strain gradient length scale parameter vs. flexoelectricity effect and viscoelastic parameter
effect on the nondimensional natural frequency (e0a = 0.5 nm, h = 2 nm, L = 10h, V = 0.5 Volt). (b) Strain
gradient length scale parameter vs. flexoelectricity effect on the nondimensional natural frequency (e0a
= 0.5 nm, h = 2 nm, L = 10h, V = 0.5 Volt, g = 100 N.s/m). (c) Strain gradient length scale parameter
vs. viscoelastic effect on the nondimensional natural frequency (e0a = 0.5 nm, h = 2 nm, L = 10h,
V = 0.5 Volt).
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Figure 5 presents the role of larger lengths and their effect on the substance when it is piezo–flexo
and when it is piezo only. In addition to these, the figure also contains different nonlocal parameters.
With the help of the figure, one can see that an increase in the length-to-thickness ratio will result
in a decline in the nonlocal parameter effect. This means that the results of cases piezo-e0a = 0 and
piezo-e0a = 0.5 nm approach each other and are identical for large lengths. However, the most serious
and marked result of this figure is the significance of flexoelectricity for larger lengths of the beam.
Indeed, the results of piezo-e0a = 0 versus piezo–flexo-e0a = 0 and also piezo-e0a = 0.5 nm versus
piezo–flexo-e0a = 0.5 nm become farther from one another after enlarging the length of the beam.
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To provide further knowledge on the effect of viscoelasticity on flexoelectricity in a piezoelectric
nanobeam, the mode shapes of frequency are here considered. The deformation resulting from
frequency modes of beams is extremely small in an elastic condition (recoverable). To our knowledge,
the Navier solution method is unable to give the deformations originating from eigenvalue problems
and is only able to give values of natural frequencies. However, in a linear bending analysis and
based on the static condensation, the Navier method can help to find linear deflections resulted
from transverse loading. To plot the frequency mode shapes, we should solve the attained equation
(Equation (41)). To this end, here, we employ an exact solution process. First, we should rewrite
Equation (41) by simplifying it as

a
d6w
dx6 + b

d4w
dx4

+ c
d2w
dx2 − j = 0 (46)

in which
a = −µβ− l2[γ−C11Iz(1− igω)],
b = β+ µ

(
ω2I2 − 2d31V

)
+ γ−C11Iz(1− igω),

c = 2d31V −ω2(µI0 + I2),
j = I0ω2

·

Equation (46) is a sixth-order ordinary differential equation, and we can guess an exponential
solution form as follows.

w(x) = exp(λx) (47)

Imposing Equation (47) on Equation (46), one can find a sextic equation as follows:(
aλ6 + bλ4 + cλ2

− j
)

exp(λx) = 0 (48)
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which implies a characteristic equation of

aλ6 + bλ4 + cλ2
− j = 0.

Now the solution to Equation (46) will depend upon the solution to the above algebraic polynomial
equation. If we suppose that all the roots for Equation (48) are real and distinct and ignore the imaginary
part, we can guess the general solution for Equation (46) to be

w(x) =
6∑

i=1

Ci exp(λix) (49)

in which Ci(i = 1, . . . , 6) terms are the constants that should be determined based on the boundary
conditions in Table 1.

Now, in order to display the effect of inner viscoelasticity versus flexoelectricity, Figure 6a–f
was plotted. This figure was drawn based on the mode shapes of nanobeams in two states;
a piezo–flexoelectric nanobeam and a piezoelectric nanobeam. Figure 6a,b present the case of
the first mode shape and Figure 6c,d show the third mode shape, and Figure 6e,f show the fifth
mode shape. It should also be emphasized that only the real parts of the mode shapes are portrayed.
For Figure 6a,c,e, the internal viscoelasticity is eliminated, and Figure 6b,d,f include the viscoelastic
coupling by adopting g = 100 N.s/m. In Figure 6b,d,f, the percent difference of the results of the two
kinds of materials is greater than that in Figure 6a,c,e. For example, for Figure 6c, WPF/WP = 1.238,
while for Figure 6d, WPF/WP = 1.293. In other words, when a material, in addition to piezoelectricity,
also includes the flexoelectricity effect, it is further affected by the internal damping. In addition,
this conclusion was observed to be clearer for higher mode shapes. Furthermore, it is worth noting
that whenever the viscoelastic parameter’s value increased, the deflections decreased. Moreover,
as flexoelectricity makes the material more flexible, the deflection by a piezo–flexoelectric nanomaterial
would be higher than that by a piezoelectric one. It should be pointed out that all the mode shapes
are symmetric. Consequently, these diagrams convey the noteworthy finding that a higher inner
viscoelasticity parameter value strengthens the role of flexoelectricity in the nanomaterial.
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Figure 6. (a) First mode shape for two cases: the presence of flexoelectricity and its absence without
inner damping (e0a = 0.5 nm, l = 1 nm, h = 2 nm, V = 0.5 Volt, g = 0 N.s/m). (b) First mode shape for two
cases: the presence of flexoelectricity and its absence including internal viscoelasticity (e0a = 0.5 nm,
l = 1 nm, h = 2 nm, V = 0.5 Volt, g = 100 N.s/m). (c) Third mode shape for two cases: the presence of
flexoelectricity and its absence without inner damping (e0a = 0.5 nm, l = 1 nm, h = 2 nm, V = 0.5 Volt,
g = 0 N.s/m). (d) Third mode shape for two cases: the presence of flexoelectricity and its absence with
inner damping (e0a = 0.5 nm, l = 1 nm, h = 2 nm, V = 0.5 Volt, g = 100 N.s/m). (e) Fifth mode shape for
two cases: the presence of flexoelectricity and its absence without inner damping (e0a = 0.5 nm, l = 1 nm,
h = 2 nm, V = 0.5 Volt, g = 0 N.s/m). (f) Fifth mode shape for two cases: the presence of flexoelectricity
and its absence with inner damping (e0a = 0.5 nm, l = 1 nm, h = 2 nm, V = 0.5 Volt, g = 100 N.s/m).

6. Conclusions

This research, for the first time, incorporated viscoelasticity into a piezoelectric–flexoelectric
Euler–Bernoulli nanobeam, while Kelvin–Voigt linear viscoelastic coupling was applied to the dynamic
analysis. To convert achieved dynamic equations to nano size, an effective way can be to use nonlocal
continuum theories. Hence, this paper was concerned with the use of a nonlocal model based on the
second strain and stress gradients. The boundary condition taken into consideration was pivot–pivot on
the basis of an analytical approach. The mode shapes, for the first time, were drawn for a piezoelectric
nanobeam, while NSGT contributed. We produced some substantial findings, as given below.
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∗ The smaller the thickness, the larger the impact of flexoelectricity.
∗ The lesser the SGLP values, the greater the flexoelectric effect.
∗ The larger the length of the nanobeam, the larger the influence of flexoelectricity.
∗ The greater the inner viscoelastic values, the greater the role of flexoelectricity.
∗ The larger the SGLP values, the greater the inner viscoelastic impact.
∗ The higher the mode number, the larger the influence of flexoelectricity.
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