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Abstract: Considering the characteristics such as fuzziness and greyness in real decision-making, the
interval grey triangular fuzzy number is easy to express fuzzy and grey information simultaneously.
And the partition Bonferroni mean (PBM) operator has the ability to calculate the interrelationship
among the attributes. In this study, we combine the PBM operator into the interval grey triangular
fuzzy numbers to increase the applicable scope of PBM operators. First of all, we introduced the
definition, properties, expectation, and distance of the interval grey triangular fuzzy numbers, and
then we proposed the interval grey triangular fuzzy numbers partitioned Bonferroni mean (IGTFPBM)
and the interval grey triangular fuzzy numbers weighted partitioned Bonferroni mean (IGTFWPBM),
the adjusting of parameters in the operator can bring symmetry effect to the evaluation results.
After that, a novel method based on IGTFWPBM is developed for solving the grey fuzzy multiple
attribute group decision-making (GFMAGDM) problems. Finally, we give an example to expound
the practicability and superiority of this method.

Keywords: GFMAGDM; interval grey triangular fuzzy number; partitioned Bonferroni mean

1. Introduction

Multiple attribute group decision-making (MAGDM) is the process of comparing and choosing the
best alternative by analyzing the evaluations of multiple attributes aggregated from decision-makers.
And MAGDM problems have a wide application in real life, such as effect evaluation of environmental
protection policies formulated by the government [1], the evaluation of international cooperation plans
for energy development [2], the assessment of the comprehensive strength of different schools [3],
the comparison of various schemes by enterprises in business negotiations [4], and the selection of
enterprises’ purchasing schemes [5]. Most of the MAGDM problems exist fuzziness and uncertainty,
which is because people’s ideology is subjective and complex. Besides, decision-makers may fall
into the predicament of the lack of information when evaluating alternatives, which shows the
characteristics of grey decision making. In practical decision making, fuzziness and greyness are often
existing at the same time, which is called the grey fuzzy multiple attribute group decision-making
(GFMAGDM) problem.
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To solve GFMGADM problems completely and improve the accuracy of decision results, more and
more research has been carried out and expanded from the expression forms of grey information and
fuzzy information [6], the integrated calculation method of grey information and fuzzy information [7],
the construction of decision system based on grey fuzzy information [8], and the application problems
based on grey fuzzy information [9,10]. Bu and Zhang [11] interpreted the grey degree as a level of
uncertainty of information, converted the grey numbers into the three-parameter interval numbers,
and gave an approach of interval numbers to sort all alternatives. However, they did not give a definite
formula when comparing any two alternatives. Based on the literature [11], Luo and Liu [12] used
the optimization theory and the maximum entropy criterion to give the method about GFMGADM
problems under the conditions that the attributes’ weights are known or unknown. Jin and Lou [13,14]
considered the fuzziness and greyness in the decision-making process, calculated the distinctions
between positive and negative ideal solutions of all alternatives and used satisfaction as weights to
adjust the attributes’ ranking order. The above researches mainly introduced a method about the
grey part of grey fuzzy numbers, which can pragmatically handle the problem of lacking information.
However, the fuzzy part shown as exact numbers is difficult to represent the complexity of objective
things and fuzziness of people’s thinking. Zhu et al. [15] tried to express the fuzzy part with interval
numbers and combine with the grey part to express grey fuzzy numbers. Jin and Liu [16] proposed
the interval grey linguistic variables, the fuzzy part was represented by interval grey linguistic
variables and introduced an approach to undertake GFMADM problems. Interval grey trapezoid fuzzy
linguistic variables proposed by Yin et al. [17] can use more information to improve the accuracy of
evaluation. Wang and Wang [18] proposed grey linguistic 2-tuple terms to express the priority option
of a decision-maker in a grey fuzzy environment. The above expressions used to solve GFMADM
problems to reflect fuzzy information and grey information are relatively simple, especially in the
fuzzy part, the fuzzy information is expressed by interval numbers and linguistic variables. Although
the calculation process has the advantage of simplicity and rapidity, the calculation results are often
rough and difficult to be applied to accurate evaluation problems in the military field and medical field.

In recent years, there are extensive researches on decision methods and operators in a grey fuzzy
environment. Jin and Liu [16] constructed the TOPSIS (Technique for Order Preference by Similarity
to an Ideal Solution) method based on interval grey linguistic variables to solve the decision-making
problem in a grey fuzzy environment. Wang et al. [19] extended the traditional SIR ( Superiority
and Inferiority Ranking) model to interval grey linguistic variables and proposed the SIR Choquet
method considering the independence of multi-attribute variables. Liu and Zhang [20] proposed the
interval grey linguistic variables weighted geometric aggregation (IGLWGA) operator, the interval
grey linguistic variables ordered weighted geometric aggregation (IGLOWGA) operator, and the
interval grey linguistic variable hybrid weighted geometric aggregation (IGLHWGA) operator, and
developed a new method referred to IGLHWGA operators. Liu [21] proposed the interval grey
linguistic variables weighted aggregation (IGLWA) operator and the interval grey linguistic variables
weighted aggregation (IGLHWA) operator and applied them to a method of sorting the alternatives.
Liu et al. [22] proposed the interval grey uncertain linguistic generalized ordered weighted averaging
(IGULGOWA) operator and the interval grey uncertain linguistic generalized hybrid averaging
(IGULGHA) operator to solve GFMADM problems according to interval grey uncertain linguistic
information. The above methods and operators do not consider the interrelationship among attribute
variables. However, in the process of evaluation, there may be some correlation among the attribute
variables. Back in 1950, Bonferroni [23] proposed the Bonferroni mean (BM), which were to be judged
alternatives by establishing conjunction between each attribute variable. Yager [24–26] deepened
the understanding of the Bonferroni mean in 2009, firstly it was proposed that BM could be used to
calculate the interrelationship among any pair of attributes and suggested replace the simple weighted
operator with other more complex operators. At present, BM has been widely used in different fuzzy
information and different environments due to its ability to determine the optimal alternative according
to interrelationship [27–32]. Tian et al. [33] proposed the grey linguistic weighted Bonferroni mean
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operator to solve GFMADM problems which exit interrelationship between each attribute. However,
BM assumes that there exists an interrelationship between any two attributes, and it is difficult to
match the actual decision process. Focusing on this problem, Dutta and Guha [29] proposed the
partitioned Bonferroni mean (PBM) which is based on the premise that all attributes are divided
into some classes based on the interrelationship of each attribute variable in the actual decision, any
attribute variable in each class is required to be only related to attribute variables in the same class
and be not related to attribute variables in other classes. For example, when choosing the mobile
phone, we may evaluate mobile phones from the following four aspects: appearance design (A1),
the inner performance (A2), brand influence (A3), and after-sales service (A4). The four attributes
can be divided into two classes: P1 = {A1, A2} and P2 = {A3, A4}. It is not difficult to find that A1

is unrelated to A2, and there is no interrelationship between P1 and P2. After that, more and more
scholars have perfected PBM operators. The intuitionistic uncertain linguistic partitioned Bonferroni
mean (IULPBM) operator [34] and the intuitionistic fuzzy interaction partitioned Bonferroni mean
(IFWIPBM) operator [35] are proposed to calculate the internal correlation of attribute variables in
an intuitionistic fuzzy environment. Yin et al. [36] developed the trapezoidal fuzzy two-dimensional
linguistic partitioned Bonferroni mean (TF2DLPBM) operator for solving MAGDM problems. Liu and
Liu [37] proposed the PBM operator for two-dimensional uncertain linguistic variables (2DULVs) and
developed a new method.

In the actual decision-making process, different decision-makers have different cognition of the
alternatives, and the same decision-maker has different cognition degrees of different attributes of the
same alternative. Therefore, the comparability of the evaluation results of different decision-makers is
weak, and the reliability of the comprehensive results is insufficient. At present, the existing fuzzy
variables are mostly used for the decision-makers subjective evaluation information of the evaluation
program, and there are few pieces of research on the objective cognition degree in the evaluation process.
In this paper, we proposed the interval grey triangular fuzzy numbers which fuzzy part in the form
of triangular fuzzy numbers and the grey part expressed by interval numbers. The fuzzy part of the
interval grey triangular fuzzy numbers is used to express the subjective evaluation of decision-makers
on the attribute variables of alternatives, and the grey part is used to indicate the objective cognition
degree of the decision-maker to the attribute variables of the alternatives. The increase of the grey part
is a supplement to the reliability of the original fuzzy evaluation. When the value of the grey part
is smaller, it means that the decision-maker knows more about the alternatives and his evaluation
result is more convincing, in other words, the reliability of the fuzzy part is higher. Compared with
the existing form of expression of uncertain information, the interval grey triangular fuzzy numbers
can reflect decision-makers’ subjective evaluation and objective cognition of evaluation objects, the
decision-making information is more comprehensive. At the same time, the interval grey triangular
fuzzy numbers can transform with interval grey linguistic variables, interval grey interval number and
other grey fuzzy forms, which has a wide scope of application.

Until now, in the grey fuzzy environment, there is no method considering the internal structure
and interrelationship among the attributes. And then, we extend the PBM operator to the interval
grey triangular fuzzy numbers, partitioned all attributes into several classes and ensured that any
attribute is only interrelated to other attributes in the same class, after all these, we proposed the
interval grey triangular fuzzy numbers partitioned Bonferroni mean (IGTFPBM) and the interval
grey triangular fuzzy numbers weighted partitioned Bonferroni mean (IGTFWPBM). Based on the
IGTFWPBM operators, we introduced an approach for solving GFMAGDM problems. The method
proposed in this paper can consider the interrelationship among attributes, classify and integrate
the calculation of attributes, which is more consistent with the decision logic of practical problems.
The parameters p and q in the operator can reflect the decision maker’s attitude towards the hierarchical
relationship of attributes, and the decision-maker can obtain different decision ordering by adjusting
the parameter size. In addition, symmetric adjustment of parameters p and q will produce a symmetry
effect on the expectation of the alternative.
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The remainder of this paper is organized as follows. We introduce some conception of the
triangular fuzzy number, grey math, and PBM briefly in Section 2. Section 3 gives the definition,
calculation rules, distances, and comparative methods of the interval grey triangular fuzzy numbers.
We proposed the IGTFPBM operators and IGTFWPBM operators by considering the interrelationship
in the fuzzy and grey information in Section 4. In Section 5, we developed an approach for undertaking
the GFMAGDM problems based on IGTFWPBM. In Section 6, we gave an instance to explain the new
method. Finally, we discussed the conclusion in Section 7.

2. Preliminaries

In this section, we recalled the form of the triangular fuzzy numbers and grey math briefly, and
we reviewed the concepts of BM and the PBM, which are foundations of the decision-making methods
we proposed.

2.1. The Triangular Fuzzy Number

Definition 1. [38,39] A triangular fuzzy number f̃ is defined as f̃ = ( f L, f M, f R), which satisfies the condition
0 < f L

≤ f M
≤ f R, and the calculation rules of membership function µ(x) : R→ [0, 1] are shown as follows:

µ(x) =



x− f L

f M− f L x ∈ ( f L, f M )

1 x = f M

x− f R

f M− f R x ∈ ( f M, f R)

0 other

(1)

when f L = f M = f R, the triangular fuzzy number can be transformed into a crisp number.

2.2. Grey Fuzzy Math

Definition 2. [16,40] Let Ã
⊗

be grey fuzzy set in space X. Ã is the fuzzy subset in the space X = {x} and A
⊗

is the

grey subset in the space X = {x}. The membership degree µÃ(x) of x ∈ X is the fuzzy number in the interval
[0, 1], and the grey degree νÃ(x) of x ∈ X is the grey number in the interval [0, 1].

Ã
⊗
=

{
(x,µÃ(x), νÃ(x))

∣∣∣x ∈ X
}

(2)

And the simplified form is:

Ã
⊗
=

(
Ã, A
⊗

)
(3)

where Ã =
{
(x,µÃ(x)

∣∣∣x ∈ X
}

is called the fuzzy part of Ã
⊗

, and A
⊗
=

{
(x, νÃ(x))

∣∣∣x ∈ X
}

is called the grey

part of Ã
⊗

.
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2.3. Partitioned Bonferroni Mean

Definition 3. [23] For any p, q ≥ 0, the BM operator as follows:

BMp,q(a1, a2, · · · , an) =


1

n(n− 1)

n∑
i, j = 1

i , j

ap
i aq

j



1
p+q

(4)

where ai(i = 1, 2, . . . , n) is the set of a non-negative real number, p and q are the parameters of
decision-makers. BM operators can calculate the interrelationship between any attributes. However,
the operator is limited by the assumption that there is an interrelationship among each attribute,
so some independent attributes cannot be included in the calculation. Under the circumstances, Dutta
and Guha [31] proposed PBM.

Definition 4. [29] For any p, q ≥ 0, the PBM operator as follows:

PBMp,q(a1, a2, · · · , an) =
1
e


e∑

h=1


1
|Ph|

∑
i∈Ph

ap
i


1

|Ph|−1

∑
j ∈ Ph
j , i

aq
j





1
p+q


(5)

where ai(i = 1, 2, . . . , n) is the set of a non-negative real number, e is the number of classes and Ph is
number of attributes in the same class.

3. Interval Grey Triangular Fuzzy Numbers

In this section, we built the interval grey triangular fuzzy numbers. After that, we gave
the definition, operation rules, distance, and comparing methods of the interval grey triangular
fuzzy numbers.

3.1. The Definition of Interval Grey Triangular Fuzzy Numbers

Definition 6. Let Ã
⊗
=

(
Ã, A
⊗

)
be any grey fuzzy number, if the fuzzy part Ã is a triangular fuzzy number

( f L
A, f M

A , f U
A ), and its grey part A

⊗
is closed interval [gL

A, gU
A ] in the interval [0, 1], then Ã

⊗
is called an interval

grey triangular fuzzy number.
Ã
⊗
=

(
( f L

A, f M
A , f U

A ), [gL
A, gU

A ]
)

(6)

It is worth emphasizing that the fuzzy part (triangular fuzzy number) and grey part (the interval
grey number) are mutually independent. In the traditional sense, both fuzzy information and grey
information can express uncertain information. Fuzzy information represents the subjective evaluation
of the decision-maker on the alternatives, while grey information represents the incomplete cognition of
decision-makers to the objective existence of certain characteristics of alternatives [41]. The fuzzy part
of the interval grey triangular fuzzy numbers expresses the subjective evaluation of the decision-maker
on the attributes of the alternatives, and the grey part indicates the objective cognition degree of
the decision-maker to the attributes of alternatives, which is to evaluate the alternatives from two
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different dimensions. Therefore, the fuzzy part (triangular fuzzy number) and grey part (the interval
grey number) are mutually independent, and the form used to express grey information and fuzzy
information is also consistent with some research results [16,20–22].

3.2. The Operation Rules of the Interval Grey Triangular Fuzzy Numbers

Let Ã
⊗
=

(
( f L

A, f M
A , f U

A ), [gL
A, gU

A ]
)

and B̃
⊗
=

(
( f L

B , f M
B , f U

B ), [gL
B, gU

B ]
)

be any two-interval grey triangular

fuzzy numbers. The operation rules of interval grey triangular fuzzy numbers are defined as bellows:

Ã
⊗
+ B̃
⊗
=

(
( f L

A + f L
B , f M

A + f M
B , f U

A + f U
B ) , [max(gL

A, gL
B), max(gU

A , gU
B )]

)
(7)

Ã
⊗
− B̃
⊗
=

(
( f L

A − f L
B , f M

A − f M
B , f U

A − f U
B ) , [max(gL

A, gL
B), max(gU

A , gU
B )]

)
(8)

Ã
⊗
× B̃
⊗
=

(
(min( f L

A × f L
B , f L

A × f U
B , f U

A × f L
B , f U

A × f U
B ), f M

A × f M
B ,

max( f L
A × f L

B , f L
A × f U

B , f U
A × f L

B , f U
A × f U

B ), [max(gL
A, gL

B), max(gU
A , gU

B )]
) (9)

Ã
⊗

/B̃
⊗
=

((
min( f L

A/ f L
B , f L

A/ f U
B , f U

A / f L
B , f U

A / f U
B ) , f M

A × f M
B ,

max( f L
A/ f L

B , f L
A/ f U

B , f U
A / f L

B , f U
A / f U

B ), [max(gL
A, gL

B), max(gU
A , gU

B )]
)

f L
B , 0, f M

B , 0, f U
B , 0 (10)

kÃ
⊗

=
(
(k f L

A, k f M
A , k f U

A ) , [gL
A, gU

A ]
)

(k ≥ 0) (11)(
Ã
⊗

)r
=

(
( f L

A)
r
, ( f M

A )
r
, ( f U

A )
r
, [gL

A, gU
A ]

)
(r > 0) (12)

Supposed that Ã
⊗

=
(
( f L

A, f M
A , f U

A ), [gL
A, gU

A ]
)
, B̃

⊗
=

(
( f L

B , f M
B , f U

B ), [gL
B, gU

B ]
)

and

C̃
⊗

=
(
( f L

C , f M
C , f U

C ), [gL
C, gU

C ]
)

be the three interval grey triangular fuzzy numbers. The interval grey

triangular fuzzy numbers satisfied the following properties.

Ã
⊗
+ B̃
⊗
= B̃
⊗
+ Ã
⊗

(13)

Ã
⊗
× B̃
⊗
= B̃
⊗
× Ã
⊗

(14)

Ã
⊗
+ B̃
⊗
+ C̃
⊗
= Ã
⊗
+

(
B̃
⊗
+ C̃
⊗

)
(15)

Ã
⊗
× B̃
⊗
× C̃
⊗
= Ã
⊗
×

(
B̃
⊗
× C̃
⊗

)
(16)

Ã
⊗
×

(
B̃
⊗
+ C̃
⊗

)
= Ã
⊗
× B̃
⊗
+ Ã
⊗
× C̃
⊗

(17)

(λ1 + λ2)Ã
⊗
= λ1Ã

⊗
+ λ2Ã

⊗
(18)

3.3. The Distance between the Two-Interval Grey Triangular Fuzzy Numbers

Definition 7. Let Ã
⊗1

and Ã
⊗2

be any two-interval grey triangular fuzzy numbers. Y is the set of the interval grey

triangular fuzzy numbers, d be the mapping, d : Y ×Y→ R. If d
(
Ã
⊗1

, Ã
⊗2

)
, and satisfied the following formula:

(1) d
(
Ã
⊗1

, Ã
⊗2

)
≥ 0, d

(
Ã
⊗1

, Ã
⊗1

)
= 0

(2) d
(
Ã
⊗1

, Ã
⊗2

)
= d

(
Ã
⊗2

, Ã
⊗1

)
;

(3) d
(
Ã
⊗1

, Ã
⊗2

)
+ d

(
Ã
⊗2

, Ã
⊗3

)
≥ d

(
Ã
⊗1

, Ã
⊗3

)
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Then d
(
Ã
⊗1

, Ã
⊗2

)
is called the distance between the interval grey triangular fuzzy numbers.

Definition 8. Let Ã
⊗1

=
(
( f L

1 , f M
1 , f U

1 ), [gL
1 , gU

1 ]
)

and Ã
⊗2

=
(
( f L

2 , f M
2 , f U

2 ), [gL
2 , gU

2 ]
)

be any two-interval

grey triangular fuzzy numbers variables, then the distance between Ã
⊗1

and Ã
⊗2

is defined as follows:

d
(
Ã
⊗1

, Ã
⊗2

)
= 1

6

(∣∣∣(1− gL
1) f L

1 − (1− gL
2) f L

2

∣∣∣∣
+

∣∣∣(1− gU
1 ) f L

1 − (1− gU
2 ) f L

2

∣∣∣
+

∣∣∣(1− gL
1) f M

1 − (1− gL
2) f M

2

∣∣∣
+

∣∣∣(1− gU
1 ) f M

1 − (1− gU
2 ) f M

2

∣∣∣
+

∣∣∣(1− gL
1) f U

1 − (1− gL
2) f U

2

∣∣∣
+

∣∣∣(1− gU
1 ) f U

1 − (1− gU
2 ) f U

2

∣∣∣)
(19)

The distance measure between the interval grey triangular fuzzy numbers satisfies the
following properties:

(1) Let Ã
⊗1

and Ã
⊗2

be the two-interval grey triangular fuzzy numbers. When d
(
Ã
⊗1

, Ã
⊗2

)
tend to 0,

Ã
⊗1

close to Ã
⊗2

, when d
(
Ã
⊗1

, Ã
⊗2

)
= 0, Ã

⊗1
= Ã
⊗2

.

(2) Let Ã
⊗1

, Ã
⊗2

and Ã
⊗3

be the three interval grey triangular fuzzy numbers. The necessary and

sufficient condition for Ã
⊗1

to be closer to Ã
⊗3

than Ã
⊗2

is that d
(
Ã
⊗1

, Ã
⊗3

)
< d

(
Ã
⊗2

, Ã
⊗3

)
. If d

(
Ã
⊗1

, Ã
⊗3

)
=

d
(
Ã
⊗2

, Ã
⊗3

)
, the distance between Ã

⊗1
and Ã

⊗3
is equal to the distance between Ã

⊗2
and Ã

⊗3
.

3.4. The Comparing Method of Interval Grey Triangular Fuzzy Numbers

Definition 9. Let Ã
⊗
=

(
( f L

A, f M
A , f U

A ), [gL
A, gU

A ]
)

be an interval grey triangular fuzzy numbers variable, then

the expectation of interval grey triangular fuzzy numbers is defined as below:

I
(
Ã
⊗

)
=

1
2(r + 1)

(
r f L + (1 + r) f M + f U

)
×
(1− gU

A) + r(1− gL
A)

r + 1
(20)

Let Ã
⊗1

=
(
( f L

1 , f M
1 , f U

1 ), [gL
1 , gU

1 ]
)

and Ã
⊗2

=
(
( f L

2 , f M
2 , f U

2 ), [gL
2 , gU

2 ]
)

be any two-interval grey

triangular fuzzy numbers variables, We can decide by comparing the expected size of Ã
⊗1

and

Ã
⊗2

, if I
(
Ã
⊗1

)
≥ I

(
Ã
⊗2

)
, then Ã

⊗1
≥ Ã
⊗2

, or vice versa.

The comparison method of a grey part was proposed by Jin and Liu [16], the comparison method
of fuzzy part reference interval number [42], and the solution process of the comparison method of
triangular fuzzy number is as follows:

Let f̃ = ( f L, f M, f R) be the triangular fuzzy number, then the α− cut set of f̃ is defined as
f̃α =

{
x
∣∣∣µ(x) ≥ α},α ∈ [0, 1], f̃α is closed interval

[
f̃αL , f̃αU

]
, then f̃αL = ( f M

− f L)α + f L, and

f̃αU = ( f M
− f U)α+ f U.

Let f̃ = ( f L, f M, f R) be the triangular fuzzy number, then:

φρ( f L, f M, f R) =

∫ 1

0

∫ 1

0

dρ
dy

( f̃αU − y( f̃αU − f̃αL ))dydα (21)

Then φ is called the fuzzy OWA (F-OWA) operator.
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Specially, when ρ(y) = yr (r > 0), then:

φρ( f L, f M, f R) = 1
r+1

(∫ 1
0 f̃αUdα+ r

∫ 1
0 f̃αL dα

)
= 1

r+1

(∫ 1
0 (( f M

− f U)α+ f U)dα+ r
∫ 1

0 (( f M
− f L)α+ f L)dα

)
= 1

2(r+1)

(
r f L + (1 + r) f M + f U

) (22)

Aggregate the fuzzy part of Ã
⊗

by F-OWA operator, transform the triangular fuzzy number

( f L
A, f M

A , f U
A ) into real numbers that calculating the value of φρ( f L, f M, f R).

4. The Interval Grey Triangular Fuzzy Numbers Partitioned Bonferroni Mean Operators and
Interval Grey Triangular Fuzzy Numbers Weighted Partitioned Bonferroni Mean Operators

In this section, we applied the PBM into the fuzzy and grey information and proposed the
IGTFPBM and IGTFWPBM operators.

4.1. The Interval Grey Triangular Fuzzy Numbers Partitioned Bonferroni Mean Operators

Definition 10. Let Ã
⊗ k

=
(
( f L

k , f M
k , f U

k ), [gL
k , gU

k ]
)

(k = 1, 2, · · · , n) be a group of interval grey triangular fuzzy

numbers. For any p, q ≥ 0, the IGTFPBM: Ωn
→ Ω , if

IGTFPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
=

1
e

e∑
h=1


1
|Ph|

∑
i∈Ph


(
Ã
⊗ i

)p
×


1

|Ph|−1

∑
j ∈ Ph
j , i

(
Ã
⊗ j

)q







1
p+q

(23)

where Ω is the set of all interval grey triangular fuzzy numbers variables and |Ph| denotes the cardinality of Ph.

Theorem 1. Let Ã
⊗ k

=
(
( f L

k , f M
k , f U

k ), [gL
k , gU

k ]
)

(k = 1, 2, · · · , n) be a collection of the interval grey triangular

fuzzy number, then the result aggregated by IGTFPBM operators is still an interval grey triangular fuzzy
numbers variable, and also

IGTFPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
=


1
e

e∑
h=1


1
|Ph|

∑
i∈Ph

(
f L
i

)p


1
|Ph|−1

∑
j ∈ Ph
j , i

(
f L
j

)q





1
p+q

, 1
e

e∑
h=1


1
|Ph|

∑
i∈Ph

(
f M
i

)p


1
|Ph|−1

∑
j ∈ Ph
j , i

(
f M
j

)q





1
p+q

,

1
e

e∑
h=1


1
|Ph|

∑
i∈Ph

(
f U
i

)p


1
|Ph|−1

∑
j ∈ Ph
j , i

(
f U
j

)q





1
p+q


,

 max
i, j

j , i

(gL
i , gL

j ), max
i, j

j , i

(gU
i , gU

j )





(24)

Proof. Because of the operational rules of the interval grey triangular fuzzy numbers variables,
we have:

Ã
⊗

p

i
=

(
( f L

i )
p
, ( f M

i )
p
, ( f U

i )
p
, [gL

i , gU
i ]

)
, Ã
⊗

q

j
=

(
( f L

j )
q
, ( f M

j )
q
, ( f U

j )
q
, [gL

j , gU
j ]

)
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and:

1
|Ph|−1

∑
j ∈ Ph

j , i

(
Ã
⊗ j

)q

=




1

|Ph|−1

∑
j ∈ Ph

j , i

( f L
j )

q
,

1
|Ph|−1

∑
j ∈ Ph

j , i

( f M
j )

q
,

1
|Ph|−1

∑
j ∈ Ph

j , i

( f U
j )

q


,
[
max

j
(gL

j ), max
j
(gU

j )

] 

Then:

1
|Ph|

∑
i∈Ph


(
Ã
⊗ i

)p
×


1

|Ph|−1

∑
j ∈ Ph
j , i

(
Ã
⊗ j

)q




=


1
|Ph|

∑
i∈Ph

(
f L
i

)p


1

|Ph|−1

∑
j ∈ Ph
j , i

(
f L
j

)q


,

1
|Ph|

∑
i∈Ph

(
f M
i

)p


1

|Ph|−1

∑
j ∈ Ph
j , i

(
f M
j

)q



1
|Ph|

∑
i∈Ph

(
f U
i

)p


1

|Ph|−1

∑
j ∈ Ph
j , i

(
f U
j

)q




,

 max
i, j

j , i

(gL
i , gL

j ), max
i, j

j , i

(gU
i , gU

j )




and:

1
e

e∑
h=1


1
|Ph|

∑
i∈Ph


(
Ã
⊗ i

)p
×


1

|Ph|−1

∑
j ∈ Ph
j , i

(
Ã
⊗ j

)q







1
p+q

=




1
e

e∑
h=1


1
|Ph|

∑
i∈Ph

(
f L
i

)p


1

|Ph|−1

∑
j ∈ Ph
j , i

(
f L
j

)q





1
p+q

,
1
e

e∑
h=1


1
|Ph|

∑
i∈Ph

(
f M
i

)p


1

|Ph|−1

∑
j ∈ Ph
j , i

(
f M
j

)q





1
p+q

,

1
e

e∑
h=1


1
|Ph|

∑
i∈Ph

(
f U
i

)p


1

|Ph|−1

∑
j ∈ Ph
j , i

(
f U
j

)q





1
p+q


,

 max
i, j

j , i

(gL
i , gL

j ), max
i, j

j , i

(gU
i , gU

j )




which completes the proof. �
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Theorem 2. (Idempotency): Let p, q ≥ 0, Ã
⊗ k

=
(
( f L

k , f M
k , f U

k ), [gL
k , gU

k ]
)
, Ã
⊗
=

(
( f L, f M, f U), [gL, gU]

)
, and all

Ã
⊗ k

(k = 1, 2, · · · , n) is equal, i.e., Ã
⊗ k

= Ã
⊗

,then,

IGTFPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= Ã
⊗

(25)

Proof. Since Ã
⊗ k

= Ã
⊗

, then:

IGTFPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= 1

e

e∑
h=1


1
|Ph|

∑
i∈Ph


(
Ã
⊗

)p
×


1
|Ph|−1

∑
j ∈ Ph

j , i

(
Ã
⊗

)q







1
p+q

=




1
e

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

(
f L

)p+q



1
p+q

, 1
e

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

(
f M

)p+q



1
p+q

,

1
e

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

(
f U

)p+q



1
p+q


, [gL, gU ]


=

 1
e

e∑
h=1

((
f L

)p+q
) 1

p+q
, 1

e

e∑
h=1

((
f M

)p+q
) 1

p+q
, 1

e

e∑
h=1

((
f U

)p+q
) 1

p+q
, [gL, gU ]


=

(
( f L, f M, f U), [gL, gU ]

)
= Ã
⊗

which completes the proof. �

Theorem 3. (Commutativity) Let
(
Ã
⊗

′

1
, Ã
⊗

′

2
, · · · , Ã

⊗

′

n

)
be any permutation of

(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
, then:

IGTFPBMp.q
(
Ã
⊗1

′, Ã
⊗2

′, · · · , Ã
⊗n

′

)
= IGTFPBMp.q

(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
(26)

Proof. Since
(
Ã
⊗

′

1
, Ã
⊗

′

2
, · · · , Ã

⊗

′

n

)
is any permutation of

(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
, then:

IGTFPBMp.q
(
Ã
⊗

′

1
, Ã
⊗

′

2
, · · · , Ã

⊗

′

n

)
=

1
e

e∑
h=1


1
|Ph|

∑
i∈Ph


(
Ã
⊗

′

i

)p
×


1

|Ph|−1

∑
j ∈ Ph

j , i

(
Ã
⊗

′

j

)q







1
p+q

=




1
e

e∑
h=1


1∣∣∣Ph

∣∣∣(∣∣∣Ph
∣∣∣−1)

∑
i, j ∈ Ph

j , i

(
f ′i

L
)p(

f ′Lj
)q



1
p+q

,
1
e

e∑
h=1


1∣∣∣Ph

∣∣∣(∣∣∣Ph
∣∣∣−1)

∑
i, j ∈ Ph

j , i

(
f ′i

M
)p

(
f ′j

M
)q



1
p+q

,
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1
e

e∑
h=1


1∣∣∣Ph

∣∣∣(∣∣∣Ph
∣∣∣−1)

∑
i, j ∈ Ph

j , i

(
f ′i

U
)p

(
f ′j

U
)q



1
p+q


,


max
i, j

j , i

(g′i
L, g′j

L), max
i, j

j , i

(g′Ui , g′Uj )





=




1
e

e∑
h=1


1∣∣∣Ph

∣∣∣(∣∣∣Ph
∣∣∣−1)

∑
i, j ∈ Ph

j , i

(
f L
i

)p
(

f L
j

)q



1
p+q

,
1
e

e∑
h=1


1∣∣∣Ph

∣∣∣(∣∣∣Ph
∣∣∣−1)

∑
i, j ∈ Ph

j , i

(
f M
i

)p
(

f M
j

)q



1
p+q

,

1
e

e∑
h=1


1∣∣∣Ph

∣∣∣(∣∣∣Ph
∣∣∣−1)

∑
i, j ∈ Ph

j , i

(
f U
i

)p
(

f U
j

)q



1
p+q


,


max
i, j

j , i

(gL
i , gL

j ), max
i, j

j , i

(gU
i , gU

j )





=
1
e

e∑
h=1


1
|Ph|

∑
i∈Ph


(
Ã
⊗ i

)p
×


1

|Ph|−1

∑
j ∈ Ph

j , i

(
Ã
⊗ j

)q







1
p+q

= IGTFPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)

which completes the proof. �

Theorem 4. (Monotonicity) If Ã
⊗ k
≤ Ã
⊗ k
′ (k = 1, 2, · · · , n), then:

IGTFPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
≤ IGTFPBMp.q

(
Ã
⊗1

′, Ã
⊗2

′, · · · , Ã
⊗n

′

)
(27)

Proof.

IGTFPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
=

1
e


e∑

h=1


1∣∣∣Ph

∣∣∣(∣∣∣Ph
∣∣∣−1)

∑
i, j ∈ Ph

i , j

((
Ã
⊗ i

)p
×

(
Ã
⊗ j

)q)


1
p+q



≤
1
e


e∑

h=1


1∣∣∣Ph

∣∣∣(∣∣∣Ph
∣∣∣−1)

∑
i, j ∈ Ph

i , j

((
Ã
⊗ i

′

)p
×

(
Ã
⊗ j

′

)q)


1
p+q


= IGTFPBMp.q

(
Ã
⊗1

′, Ã
⊗2

′, · · · , Ã
⊗n

′

)

�
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Theorem 5. (Symmetry) Let p, q ≥ 0, Ã
⊗ k

=
(
( f L

k , f M
k , f U

k ), [gL
k , gU

k ]
)

(k = 1, 2, · · · , n) be a collection of the

interval grey triangular fuzzy number, then

IGTFPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= IGTFPBMq.p

(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
(28)

Proof.

IGTFPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
=

1
e


e∑

h=1


1∣∣∣Ph

∣∣∣(∣∣∣Ph
∣∣∣−1)

∑
i, j ∈ Ph

i , j

((
Ã
⊗ i

)p
×

(
Ã
⊗ j

)q)


1
p+q



=
1
e


e∑

h=1


1∣∣∣Ph

∣∣∣(∣∣∣Ph
∣∣∣−1)

∑
i, j ∈ Ph

i , j

((
Ã
⊗ i

)q
×

(
Ã
⊗ j

)p)


1
p+q


= IGTFPBMq.p

(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)

when e = 1 and P1 = n, then, the IGTFPBM operators reduce to interval grey triangular fuzzy numbers
Bonferroni mean (IGTFBM).

IGTFPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
=


1
|P1 |

∑
i∈P1


(
Ã
⊗ i

)p
×


1

|P1 |−1
∑

j ∈ P1

j , i

(
Ã
⊗ j

)q







1
p+q

=


1
n

n∑
i=1


(
Ã
⊗ i

)p
×


1

n−1

n∑
j = 1
j , i

(
Ã
⊗ j

)q







1
p+q

=


1

n(n−1)

n∑
i=1


(
Ã
⊗ i

)p
×

n∑
j = 1
j , i

(
Ã
⊗ j

)q





1
p+q

= IGTFBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)

(29)

We gave some special cases of the IGTFPBM operators as follows:
Case 1. If q = 0, then, Equations (23) and (24) are transformed as follows:

IGTFPBMp.0
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= 1

e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
Ã
⊗ i

)p


1
p

=


 1

e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
f L
i

)p


1
p

, 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
f M
i

)p


1
p

, 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
f U
i

)p


1
p
,[

max
i

(gL
i ), max

i
(gU

i )
] 

(30)
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Case 2. If p = 1 and q = 0, then, Equations (23) and (24) are transformed as follows:

IGTFPBM1.0
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= 1

e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
Ã
⊗ i

)
=

 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
f L
i

), 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
f M
i

), 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
f U
i

),
[
max

i
(gL

i ), max
i

(gU
i )

] 
(31)

Case 3. If p = 2 and q = 0, then, Equations (23) and (24) are transformed as follows:

IGTFPBM2.0
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= 1

e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
Ã
⊗ i

)2


1
2

=


 1

e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
f L
i

)2


1
2

, 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
f M
i

)2


1
2

, 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
f U
i

)2


1
2
,[

max
i

(gL
i ), max

i
(gU

i )
] 

(32)

Case 4. If p = 1 and q = 1, then, Equations (23) and (24) are transformed as follows:

IGTFPBM1.1
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= 1

e

e∑
h=1


1
|Ph|

∑
i∈Ph


(
Ã
⊗ i

)
×


1
|Ph|−1

∑
j ∈ Ph
j , i

(
Ã
⊗ j

)






1
2

=




1
e

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

(
f L
i f L

j

)


1
2

, 1
e

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

(
f M
i f M

j

)


1
2

,

1
e

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

(
f U
i f U

j

)


1
2

,

 max
i, j

j , i

(gL
i , gL

j ), max
i, j

j , i

(gU
i , gU

j )





(33)

�

4.2. The Interval Grey Triangular Fuzzy Numbers Weighted Partitioned Bonferroni Mean Operator

IGTFPBM can capture the interrelationship, that operator assumes that the attributes are equally
important, however, this is not in line with fact. Therefore, we establish the IGTFWPBM considering the
different attributes have different importance and then, we gave the related properties of new operators.
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Definition 11. Let Ã
⊗ k

=
(
( f L

k , f M
k , f U

k ), [gL
k , gU

k ]
)

(k = 1, 2, · · · , n) be a group of the interval grey triangular

fuzzy numbers variables. For any p, q ≥ 0, the IGTFWPBM: Ωn
→ Ω , if

IGTFWPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
=

1
e


e∑

h=1


1
|Ph|

∑
i∈Ph

(
ωiÃ
⊗ i

)p


1

|Ph|−1

∑
j ∈ Ph
j , i

(
ω jÃ
⊗ j

)q





1
p+q


(34)

where Ω is the set of all interval grey triangular fuzzy numbers, and ωi(i = 1, 2, · · · , n) represents the
importance of each attribute variable and satisfies the conditions: ωi ≥ 0,

∑n
i=1 ωi = 1. Then WIGTFPBM

called WIGTFPBM aggregation operator.

Theorem 5. Let Ã
⊗ k

=
(
( f L

k , f M
k , f U

k ), [gL
k , gU

k ]
)

(k = 1, 2, · · · , n) be a collection of the interval grey triangular

fuzzy numbers variables, and ω = (ω1,ω2, · · · ,ωn)
T is the weight vector of Ã

⊗ k
(k = 1, 2, · · · , n), ωi ≥ 0,∑n

i=1 ωi = 1, then, the result is still an interval grey triangular fuzzy numbers variable, and also:

IGTFWPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
=




1
e

e∑
h=1


1
|Ph|

∑
i∈Ph

(
ωi f L

i

)p


1
|Ph|−1

∑
j ∈ Ph
j , i

(
ω j f L

j

)q





1
p+q

,

1
e

e∑
h=1


1
|Ph|

∑
i∈Ph

(
ωi f M

i

)p


1
|Ph|−1

∑
j ∈ Ph
j , i

(
ω j f M

j

)q





1
p+q

,

1
e

e∑
h=1


1
|Ph|

∑
i∈Ph

(
ωi f U

i

)p


1
|Ph|−1

∑
j ∈ Ph
j , i

(
ω j f U

j

)q





1
p+q


,

 max
i, j

j , i

(gL
i , gL

j ), max
i, j

j , i

(gU
i , gU

j )





(35)

The proof of this theorem is similar to that of Theorem 1, so we left it out here.

Theorem 6. (Commutativity) Let
(
Ã
⊗

′

1
, Ã
⊗

′

2
, · · · , Ã

⊗

′

n

)
be any permutation of

(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
, then

IGTFWPBMp.q
(
Ã
⊗

′

1
, Ã
⊗

′

2
, · · · , Ã

⊗

′

n

)
= IGTFWPBMp.q

(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
(36)

The proof was omitted here, please refer to the proof of Theorem 3.

Theorem 7. (Monotonicity) If Ã
⊗ k
≤ Ã
⊗ k
′ (k = 1, 2, · · · , n), then:

IGTFWPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
≤ IGTFWPBMp.q

(
Ã
⊗

′

1
, Ã
⊗

′

2
, · · · , Ã

⊗

′

n

)
(37)

The proof is omitted here, please refer to the proof of Theorem 4.
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Theorem 8. (Symmetry) Let p, q ≥ 0, Ã
⊗ k

=
(
( f L

k , f M
k , f U

k ), [gL
k , gU

k ]
)

(k = 1, 2, · · · , n ) be a collection of the

interval grey triangular fuzzy number, then:

IGTFWPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= IGTFWPBMq.p

(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
(38)

The proof is omitted here, please refer to the proof of Theorem 5.

In particular, the IGTFPBM operator is one special case of IGTFWPBM operator, the conversion
relationship between IGTFPBM operator and IGTFWPBM operator is shown as follows:

IGTFWPBMp.q
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= 1

e

e∑
h=1


1
|Ph|

∑
i∈Ph


(

1
n Ã
⊗i

)p
×


1
|Ph|−1

∑
j ∈ Ph
j , i

(
1
n Ã
⊗ j

)q







1
p+q

= 1
e

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

((
1
n Ã
⊗i

)p
×

(
1
n Ã
⊗ j

)q)


1
p+q

= 1
e

e∑
h=1


(

1
n

)p+q
×

1
|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

((
Ã
⊗i

)p
×

(
Ã
⊗ j

)q)


1
p+q

= 1
ne

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

((
Ã
⊗i

)p
×

(
Ã
⊗ j

)q)


1
p+q

= 1
n IGTFPBMp.q

(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)

And then, we discussed some special cases of IGTFWPBM as follows:
Case 1. If q = 0, then, Equation (34) and Equation (35) are transformed as follows:

IGTFPBMp.0
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= 1

e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωiÃ
⊗ i

)p


1
p

=


 1

e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωi f L

i

)p


1
p

, 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωi f M

i

)p


1
p

,

1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωi f U

i

)p


1
p
, [max

i
(gL

i ), max
i

(gU
i )

] 
Case 2. If p = 1 and q = 0, then, Equations (34) and (35) are transformed as follows:
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IGTFPBM1.0
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= 1

e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωiÃ
⊗ i

)
=

 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωi f L

i

), 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωi f M

i

), 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωi f U

i

),
[
max

i
(gL

i ), max
i

(gU
i )

] 
Case 3. If p = 2 and q = 0, then, Equations (34) and (35) are transformed as follows:

IGTFPBM2.0
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= 1

e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωiÃ
⊗ i

)2


1
2

=


 1

e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωi f L

i

)2


1
2

, 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωi f M

i

)2


1
2

, 1
e

e∑
h=1

 1
|Ph|

∑
i∈Ph

(
ωi f U

i

)2


1
2
,[

max
i

(gL
i ), max

i
(gU

i )
] 

Case 4. If p = 1 and q = 1, then, Equations (34) and (35) are transformed as follows:

IGTFPBM1.1
(
Ã
⊗1

, Ã
⊗2

, · · · , Ã
⊗n

)
= 1

e

e∑
h=1


1
|Ph|

∑
i∈Ph


(
ωiÃ
⊗ i

)
×


1
|Ph|−1

∑
j ∈ Ph
j , i

(
ω jÃ
⊗ j

)






1
2

=




1
e

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

(
ωi f L

i ω j f L
j

)


1
2

, 1
e

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

(
ωi f M

i ω j f M
j

)


1
2

,

1
e

e∑
h=1


1

|Ph|(|Ph|−1)

∑
i, j ∈ Ph

j , i

(
ωi f U

i ω j f U
j

)


1
2

,

 max
i, j

j , i

(gL
i , gL

j ), max
i, j

j , i

(gU
i , gU

j )




5. A GFMAGDM Method Based on IGTFWPBM

In this section, we introduced a method to solve the GFMAGDM problems in the context of grey
and fuzzy information. In real decision-making, the group of decision-makers {D1, D2, . . .DP} needs
to evaluate the optimal decision from the set of m alternatives X = {X1, X2, . . .Xm} based on the n
attributes G = {G1, G2, . . .Gn}. Because some attributes may be interrelated with other attributes, we
divided n attributes into e classes P = {P1, P2, . . .Pe}, and ensured that each attribute is only interrelated
with other attributes in the same class. The weights of the attributes can be expressed by ω j,ω j ≥ 0,∑n

j=1 ω j = 1. The weights of the decision-makers can be expressed by γk,γk ≥ 0 and
∑n

k=1 γk = 1.

Suppose that R̃
⊗

k
=

[
Ã
⊗

k

i j

]
m×n

is the decision matrix where Ã
⊗

k

i j
=

(
( f L

ijk, f M
ijk, f U

ijk), [g
L
ijk, gU

ijk]
)
(k = 1, 2, · · · , p)

represents the structure of the interval grey triangular fuzzy numbers, which expresses that the decision
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maker Dk evaluate the G j attribute of the Xi attribute. We collected the above information about each
alternative and ranked the order of alternatives. And the specific steps are as follows:

Step 1. Normalizing the interval grey triangular fuzzy numbers.

In general, attributes have directionality, and we changed some attributes’ direction to ensure that
benefit attributes and cost attributes have the same direction. Meanwhile, we should normalize the
attributes because of the differences in evaluation standards from different decision-makers.

Suppose Ṽ
⊗

k
=

(
B̃
⊗

k

i j

)
m×n

is the normalized matrix of decision matrix R̃
⊗

k
=

[
Ã
⊗

k

i j

]
m×n

where

B̃
⊗

k

i j
=

(
( f L

ijk
′, f M

ijk
′, f U

ijk
′), [gL

ijk, gU
ijk]

)
, and the normalization method is as follows:

(1) For benefit attributes:

( f L
ijk
′, f M

ijk
′, f U

ijk
′) =

 f L
ijk

f U
k

,
f M
ijk

f U
k

,
f U
ijk

f U
k

 (39)

where f U
k = max

i, j
( f U

ijk).

(2) For cost attributes:

( f L
ijk
′, f M

ijk
′, f U

ijk
′) =

 f L
k

f L
ijk

,
f L
k

f M
ijk

,
f L
k

f U
ijk

 (40)

where f L
k = min

i, j
( f L

ijk).

Step 2. Aggregating the information from decision-makers.

Suppose Ũ
⊗

=

(
C̃
⊗ i j

)
m×n

is the group decision matrix by aggregating from normalized matrix

Ṽ
⊗

k
=

(
B̃
⊗

k

i j

)
m×n

by weighting method. Where C̃
⊗ i j

=
(
( f L

ij
′′ , f M

ij
′′ , f U

ij
′′ ), [gL

ij, gU
ij ]

)
, as follows:

( f L
ij
′′ , f M

ij
′′ , f U

ij
′′ ) =

 p∑
k=1

γk f L
ijk
′,

p∑
k=1

γk f M
ijk
′,

p∑
k=1

γk f U
ijk
′

 (41)

Step 3. Calculating the comprehensive evaluation value.
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Calculating each alternative’s evaluation value by IGTFWPBM operators. Where C̃
⊗ i

=(
( f L

i , f M
i , f U

i ), [gL
i , gU

i ]
)

as follows:

( f L
i , f M

i , f U
i )= IGTFWPBMp.q

(
C̃
⊗ i1

, C̃
⊗ i2

, · · · , C̃
⊗ in

)

=




1
e

e∑
h=1


1
|Ph|

∑
j1∈Ph

(ω j1 f L
ij1
′′ )

p


1
|Ph|−1

∑
j2 ∈ Ph

j2 , j1

(ω j2 f L
ij2
′′ )

q





1
p+q

,

1
e

e∑
h=1


1
|Ph|

∑
j1∈Ph

(ω j1 f M
ij1
′′ )

p


1
|Ph|−1

∑
j2 ∈ Ph

j2 , j1

(ω j2 f M
ij2
′′ )

q





1
p+q

,

1
e

e∑
h=1


1
|Ph|

∑
j1∈Ph

(ω j1 f U
ij1
′′ )

p


1
|Ph|−1

∑
j2 ∈ Ph

j2 , j1

(ω j2 f U
ij2
′′ )

q





1
p+q


,


max
j1, j2

j2 , j1

(gL
ij1

, gL
ij2
), max

j1, j2
j2 , j1

(gU
ij1

, gU
ij2
)





(42)

Step 4. Calculating the expectation for the alternative’s IGTFWPBM operator.

I
(
C̃
⊗ i

)
=

1
2(r + 1)

(
r f L

i + (1 + r) f M
i + f U

i

)
×
(1− gU

i ) + r(1− gL
i )

r + 1
(43)

Step 5. Ranking the alternatives.

Ranking the alternatives based on the expectation value I
(
C̃
⊗ i

)
and selecting the best alternative.

6. Illustrative Examples

In this section, we gave an example to explain the application of IGTFWPBM operators in solving
GFMGADM problems in Section 6.1. In Section 6.2, the variation of parameters on the evaluation
results and the symmetry effect with the expectations are discussed. Section 6.3 and 6.4 analyze the
effectiveness and advantages of IGTFWPBM operators by adding examples.

6.1. Application of IGTFWPBM Operators

Example 1. A financial institution needs to assess the credit ratings of four small and micro enterprises and
make loans on the best enterprise. Generally speaking, financial institutions provide credit ratings based on the
investigation from the financial information and the no-financial information of small and micro-enterprises. The
financial information is acquired by collecting financial data, on-spot verification, visiting the related business
and other means. For the moment, the four small and micro enterprises have the similar financial information
and little to rank the order of them. Thus, the financial institution set a team of three experts with the weight
vector γ = (0.4, 0.35, 0.25)T to conduct the field survey on the no-financial information of each enterprise and
grade the following aspects.

G1: The leadership qualities
G2: The employees’ qualities
G3: The contract performance
G4: The industry situation
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G5: The product competitiveness

In the process of actual research, it is difficult to get comprehensive information on each small
and micro enterprise, therefore, the assessment process has greyness. Because the peoples’ thinking is
subjective and complicated, the grading process exhibits fuzziness. Considering the interrelationship
among the above five aspects, we part them into two classes. The first class is composed of G1,G2, and
G3 which shows the enterprise strength, and the second class is composed of G4 and G5 which expresses
the external environment of the enterprise. The attribute set: P1 = {G1, G2, G3} and P2 = {G4, G5} with
the weight vector ω = (0.2, 0.25, 0.1, 0.25, 0.2)T.

The decision process for the four companies is as follows:
The three decision matrixes as Tables 1–3.

Table 1. Decision matrix R̃
⊗

1
.

A1 A2 A3 A4 A5

X1 ([4, 5, 6], [0.2, 0.4]) ([1, 2, 3], [0.2, 0.3]) ([4, 5, 6], [0.4, 0.4]) ([2, 3, 4], [0.5, 0.5]) ([4, 5, 6], [0.2, 0.4])
X2 ([3, 4, 5], [0.1, 0.2]) ([4, 5, 6], [0.5, 0.5]) ([2, 3, 4], [0.4, 0.5]) ([3, 4, 5], [0.4, 0.4]) ([4, 5, 6], [0.3, 0.4])
X3 ([2, 3, 4], [0.2, 0.3]) ([3, 4, 5], [0.3, 0.3]) ([3, 4, 5], [0.2, 0.3]) ([4, 5, 6], [0.2, 0.3]) ([2, 3, 4], [0.2, 0.4])
X4 ([4, 6, 6], [0.3, 0.4]) ([1, 2, 3], [0.2, 0.3]) ([2, 3, 4], [0.2, 0.4]) ([2, 3, 4], [0.5, 0.6]) ([2, 3, 4], [0.3, 0.5])

Table 2. Decision matrix R̃
⊗

2
.

A1 A2 A3 A4 A5

X1 ([3, 4, 5], [0.2, 0.3]) ([2, 3, 4], [0.4, 0.5]) ([2, 3, 4], [0.1, 0.3]) ([4, 5, 6], [0.2, 0.2]) ([2, 3, 4], [0.3, 0.4])
X2 ([4, 5, 6], [0.3, 0.4]) ([2, 3, 4], [0.2, 0.3]) ([3, 4, 5], [0.4, 0.5]) ([2, 3, 4], [0.2, 0.4]) ([1, 2, 3], [0.2, 0.4])
X3 ([3, 4, 5], [0.2, 0.3]) ([3, 4, 5], [0.3, 0.3]) ([1, 2, 3], [0.2, 0.4]) ([2, 3, 4], [0.4, 0.4]) ([1, 2, 3], [0.2, 0.2])
X4 ([4, 5, 6], [0.4, 0.5]) ([3, 4, 5], [0.2, 0.4]) ([1, 2, 3], [0.3, 0.4]) ([1, 2, 3], [0.3, 0.4]) ([3, 4, 5], [0.2, 0.3])

Table 3. Decision matrix R̃
⊗

3
.

A1 A2 A3 A4 A5

X1 ([4, 5, 6], [0.4, 0.5]) ([2, 3, 4], [0.2, 0.3]) ([3, 4, 5], [0.3, 0.3]) ([3, 4, 5], [0.2, 0.4]) ([3, 4, 5], [0.2, 0.3])
X2 ([3, 4, 5], [0.1, 0.2]) ([4, 5, 6], [0.1, 0.2]) ([1, 2, 3], [0.3, 0.4]) ([2, 3, 4], [0.3, 0.3]) ([4, 5, 6], [0.2, 0.4])
X3 ([3, 4, 5], [0.1, 0.2]) ([4, 5, 6], [0.2, 0.3]) ([0, 0, 1], [0.3, 0.4]) ([3, 4, 5], [0.2, 0.3]) ([4, 5, 6], [0.3, 0.4])
X4 ([2, 3, 4], [0.3, 0.4]) ([2, 3, 4], [0.4, 0.5]) ([3, 4, 5], [0.1, 0.3]) ([4, 5, 6], [0.2, 0.3]) ([3, 4, 5], [0.2, 0.4])

Calculating the normalized matrixes based on Equations (40) and (41) as Tables 4–6.

Table 4. Normalized decision matrix Ṽ
⊗

1
.

A1 A2 A3 A4 A5

X1

(
[0.667, 0.833, 1.0],

[0.2, 0.4]

) (
[0.167, 0.333, 0.5],

[0.2, 0.3]

) (
[0.667, 0.833, 1.0],

[0.4, 0.4]

) (
[0.333, 0.5, 0.667],

[0.5, 0.5]

) (
[0.5, 0.667, 0.833],

[0.4, 0.5]

)
X2

(
[0.5, 0.667, 0.833],

[0.1, 0.2]

) (
[0.667, 0.833, 1.0],

[0.5, 0.5]

) (
[0.333, 0.5, 0.667],

[0.4, 0.5]

) (
[0.5, 0.667, 0.833],

[0.4, 0.4]

) (
[0.667, 0.833, 1.0],

[0.3, 0.4]

)
X3

(
[0.333, 0.5, 0.667],

[0.2, 0.3]

) (
[0.5, 0.667, 0.833],

[0.3, 0.3]

) (
[0.5, 0.667, 0.833],

[0.2, 0.3]

) (
[0.667, 0.833, 1.0],

[0.2, 0.3]

) (
[0.333, 0.5, 0.667],

[0.2, 0.4]

)
X4

(
[0.833, 1.00, 1.00],

[0.3, 0.4]

) (
[0.167, 0.333, 0.5],

[0.2, 0.3]

) (
[0.5, 0.667, 0.833],

[0.2, 0.3]

) (
[0.333, 0.5, 0.667],

[0.6, 0.6]

) (
[0.333, 0.5, 0.667],

[0.3, 0.5]

)
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Table 5. Normalized decision matrix Ṽ
⊗

2
.

A1 A2 A3 A4 A5

X1

(
[0.5, 0.667, 0.833],

[0.2, 0.3]

) (
[0.333, 0.5, 0.667],

[0.4, 0.5]

) (
[0.333, 0.5, 0.667],

[0.1, 0.3]

) (
[0.833, 1.00, 1.00],

[0.2, 0.2]

) (
[0.333, 0.5, 0.667],

[0.3, 0.4]

)
X2

(
[0.667, 0.833, 1.0],

[0.3, 0.4]

) (
[0.333, 0.5, 0.667],

[0.2, 0.3]

) (
[0.5, 0.667, 0.833],

[0.4, 0.5]

) (
[0.333, 0.5, 0.667],

[0.2, 0.4]

) (
[0.167, 0.333, 0.5],

[0.2, 0.4]

)
X3

(
[0.5, 0.667, 0.833],

[0.2, 0.3]

) (
[0.5, 0.667, 0.833],

[0.3, 0.3]

) (
[0.167, 0.333, 0.5],

[0.2, 0.4]

) (
[0.333, 0.5, 0.667],

[0.4, 0.4]

) (
[0.167, 0.333, 0.5],

[0.2, 0.2]

)
X4

(
[0.667, 0.833, 1.0],

[0.4, 0.5]

) (
[0.5, 0.667, 0.833],

[0.2, 0.4]

) (
[0.167, 0.333, 0.5],

[0.3, 0.4]

) (
[0.5, 0.667, 0.833],

[0.3, 0.4]

) (
[0.5, 0.667, 0.833],

[0.2, 0.3]

)

Table 6. Normalized decision matrix Ṽ
⊗

3
.

A1 A2 A3 A4 A5

X1

(
[0.667, 0.833, 1.0],

[0.4, 0.5]

) (
[0.333, 0.5, 0.667],

[0.2, 0.3]

) (
[0.5, 0.667, 0.833],

[0.3, 0.3]

) (
[0.5, 0.667, 0.833],

[0.2, 0.4]

) (
[0.5, 0.667, 0.833],

[0.2, 0.3]

)
X2

(
[0.5, 0.667, 0.833],

[0.1, 0.2]

) (
[0.667, 0.833, 1.0],

[0.1, 0.2]

) (
[0.167, 0.333, 0.5],

[0.3, 0.4]

) (
[0.333, 0.5, 0.667],

[0.3, 0.3]

) (
[0.667, 0.833, 1.0],

[0.2, 0.4]

)
X3

(
[0.5, 0.667, 0.833],

[0.1, 0.2]

) (
[0.667, 0.833, 1.0],

[0.2, 0.3]

) (
[0.00, 0.00, 0.167],

[0.3, 0.4]

) (
[0.5, 0.667, 0.833],

[0.2, 0.3]

) (
[0.667, 0.833, 1.0],

[0.3, 0.4]

)
X4

(
[0.333, 0.5, 0.667],

[0.3, 0.4]

) (
[0.333, 0.5, 0.667],

[0.4, 0.5]

) (
[0.5, 0.667, 0.833],

[0.1, 0.3]

) (
[0.667, 0.833, 1.0],

[0.2, 0.3]

) (
[0.5, 0.667, 0.833],

[0.2, 0.4]

)

We get an aggregated matrix Ũ
⊗

by aggregating the assessment information which is shown

in Table 7:

Table 7. Aggregated matrix Ũ
⊗

.

A1 A2 .. A4 A5

X1

(
[0.617, 0.783, 0.950],

[0.4, 0.5]

) (
[0.267, 0.433, 0.600],

[0.4, 0.5]

) (
[0.517, 0.683, 0.850],

[0.4, 0.4]

) (
[0.533, 0.700, 0.817],

[0.5, 0.5]

) (
[0.450, 0.617, 0.783],

[0.4, 0.5]

)
X2

(
[0.550, 0.717, 0.883],

[0.3, 0.4]

) (
[0.567, 0.733, 0.900],

[0.5, 0.5]

) (
[0.333, 0.500, 0.667],

[0.4, 0.5]

) (
[0.399, 0.567, 0.733],

[0.4, 0.4]

) (
[0.383, 0.550, 0.717],

[0.3, 0.4]

)
X3

(
[0.433, 0.600, 0.767],

[0.2, 0.3]

) (
[0.550, 0.717, 0.883],

[0.3, 0.3]

) (
[0.250, 0.367, 0.533],

[0.3, 0.4]

) (
[0.517, 0.683, 0.850],

[0.4, 0.4]

) (
[0.517, 0.683, 0.850],

[0.3, 0.4]

)
X4

(
[0.633, 0.800, 0.900],

[0.4, 0.5]

) (
[0.550, 0.717, 0.883],

[0.3, 0.3]

) (
[0.333, 0.500, 0.667],

[0.3, 0.4]

) (
[0.483, 0.650, 0.817],

[0.6, 0.6]

) (
[0.433, 0.600, 0.767],

[0.3, 0.5]

)

Utilizing the IGTFWPBM operators to aggregate the comprehensive information of all alternatives.
Suppose p = 1 and q = 1, the computed result is as follows:

C̃
⊗
=


[0.0935, 0.1275, 0.1586], [0.50, 0.50]
[0.0885, 0.1220, 0.1555], [0.50, 0.50]
[0.0960, 0.1284, 0.1620], [0.40, 0.40]
[0.0887, 0.1226, 0.1543], [0.60, 0.60]


And then, calculate the expectation of all alternatives c̃

⊗i
(i = 1, 2, . . . , 4) based on Equation (43), for

example, the calculative process of expectation I
(
C̃
⊗1

)
is shown as follows:

I
(
C̃
⊗1

)
=

0.0935 + 2× 0.1275 + 0.1586
4

×
(1− 0.5) + 2× (1− 0.5)

3
= 0.0634

And the other alternatives’ expectations are as below:

I
(
C̃
⊗2

)
= 0.0609, I

(
C̃
⊗3

)
= 0.0772, I

(
C̃
⊗4

)
= 0.0488
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Scince I
(
C̃
⊗3

)
> I

(
C̃
⊗1

)
> I

(
C̃
⊗2

)
> I

(
C̃
⊗4

)
, the final ranking of all alternatives is that X3 � X1 � X2 � X4.

The best alternative is X3.

6.2. Discussion

In the above calculation process, parameters p and q represent the subjective preferences of
decision-makers. Decision-makers can rise p and q to show their positive preferences. Similarly,
decision-makers can reduce p and q to express negative preferences. To explain the effect of changing
parameters on the sorting results of alternatives, we utilized the different parameters in the IGTFWPBM
operators and the ranking results calculated by different p and q are shown in Table 8.

Table 8. The expectation obtained with interval grey triangular fuzzy numbers weighted partitioned
Bonferroni mean (IGTFWPBM) and rankings of the alternatives.

p,q E(
~
z
⊗i

) ranking

p = 1, q = 0 E
(

z̃
⊗1

)
= 0.0647, E

(
z̃
⊗2

)
= 0.0628, E

(
z̃
⊗3

)
= 0.0798, E

(
z̃
⊗4

)
= 0.0501 X3 � X1 � X2 � X4

p = 0, q = 1 E
(

z̃
⊗1

)
= 0.0647, E

(
z̃
⊗2

)
= 0.0628, E

(
z̃
⊗3

)
= 0.0798, E

(
z̃
⊗4

)
= 0.0501 X3 � X1 � X2 � X4

p = 1, q = 2 E
(

z̃
⊗1

)
= 0.0643, E

(
z̃
⊗2

)
= 0.0629, E

(
z̃
⊗3

)
= 0.0800, E

(
z̃
⊗4

)
= 0.0499 X3 � X1 � X2 � X4

p = 2, q = 1 E
(

z̃
⊗1

)
= 0.0643, E

(
z̃
⊗2

)
= 0.0629, E

(
z̃
⊗3

)
= 0.0800, E

(
z̃
⊗4

)
= 0.0499 X3 � X1 � X2 � X4

p = 2, q = 2 E
(

z̃
⊗1

)
= 0.0641, E

(
z̃
⊗2

)
= 0.0634, E

(
z̃
⊗3

)
= 0.0804, E

(
z̃
⊗4

)
= 0.0501 X3 � X1 � X2 � X4

p = 1, q = 5 E
(

z̃
⊗1

)
= 0.0684, E

(
z̃
⊗2

)
= 0.0679, E

(
z̃
⊗3

)
= 0.0868, E

(
z̃
⊗4

)
= 0.0536 X3 � X1 � X2 � X4

p = 5, q = 5 E
(

z̃
⊗1

)
= 0.0659, E

(
z̃
⊗2

)
= 0.0675, E

(
z̃
⊗3

)
= 0.0853, E

(
z̃
⊗4

)
= 0.0526 X3 � X2 � X1 � X4

p = 1, q = 10 E
(

z̃
⊗1

)
= 0.0731, E

(
z̃
⊗2

)
= 0.0723, E

(
z̃
⊗3

)
= 0.0929, E

(
z̃
⊗4

)
= 0.0570 X3 � X1 � X2 � X4

p = 10, q = 10 E
(

z̃
⊗1

)
= 0.0671, E

(
z̃
⊗2

)
= 0.0696, E

(
z̃
⊗3

)
= 0.0875, E

(
z̃
⊗4

)
= 0.0539 X3 � X2 � X1 � X4

We can adjust p and q from the IGTFWPBM operators to change the preference of decision-makers.
From Table 8, the best alternative is always X3 and the worst alternative is always X4. The ranking of
alternatives X1 and X2 may be different with the change of the parameters.

For p = 5 or q = 5, if we take different values of q(p) from 0 to 20, the ranking sort is changed
which shown in Figures 1 and 2.
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Figure 1. The expectation of all alternatives when p = 5 and q ∈ [0, 20].
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Figure 2. The expectation of all alternatives when q = 5 and p ∈ [0, 20].

Observing Figures 1 and 2. It is not difficult to see that when p = 5 or q = 5, changing another
parameter from 0 to 20, the expectation curves of all attributes first drop and then rise. We can find
the alternative X3 is the best one and alternative X4 is the worst one. When p ≤ 1.92 (q ≤ 1.92) the
alternative X1 is better than alternative X2. And when p > 1.92(q > 1.92), the alternative X2 is the
better one between X1 and X2.

If we select different parameters, and change of expectation of each alternative’s IGTFWPBM
operators are drawn in Figures 3–6.

Figure 3. Change of expectation of X1 when p, q ∈ [0, 20].

Figure 4. Change of expectation of X2 when p, q ∈ [0, 20].
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Figure 5. Change of expectation of X3 when p, q ∈ [0, 20].
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By comparing Figures 3–6, we find that the overall expectation level of X3 is the highest and the
overall expectation level of X4. The overall expectation level of X1 and X2 is roughly the same, but the
overall fluctuation of X1 is smaller than X2. In general, the parameters are larger, the decision-makers’
attitude is more positive, and the expectation of an alternative’s IGTFWPBM operator is greater.

According to Figures 3–6, the change of expectation of four selected alternatives is symmetrical.
For example, when p = 1 and q = 0, the expectation of four selected alternatives are

E
(

z̃
⊗1

)
= 0.0647, E

(
z̃
⊗2

)
= 0.0628, E

(
z̃
⊗3

)
= 0.0798,E

(
z̃
⊗4

)
= 0.0501, which is consistent with the

evaluation results when p = 0 and q = 1. Therefore, in order to distinguish the differences in the
hierarchical relationships among the attributes, we can adjust the unilateral parameter (p or q).

6.3. Verification of the Effectiveness

In order to further illustrate the method in more cases of applicability, new Examples 2 and
3 are used to interpret how the IGTFWPBM operators solve GFMGADM problems in the case of
no relationship among attribute variables and the case of the existing relationship among attribute
variables. In this section, we explain the calculation process in detail and verify the effectiveness of the
decision method based on IGTFWPBM operators by comparing it with other achievements.

Example 2. [16]: To evaluate the technological innovation ability of the four enterprises {A1, A2, A3, A4} and
there are four evaluating attributes which are the ability of innovative resources investment (C1), the ability of
innovation management (C2), the ability of innovation tendency (C3), and the ability of research and development
(C4). There are three experts to evaluate four enterprises. Suppose that γ = (0.4, 0.32, 0.28)T is the expert
weight vector, and ω = (0.3, 0.2, 0.2, 0.3)T is attribute weight vector, and the attribute values given by the



Symmetry 2020, 12, 628 24 of 30

experts take the form of interval grey triangular fuzzy numbers shown in Tables 9–11. It is worth emphasizing
that in literature [16], the fuzzy part is represented by linguistic variables, we transformed linguistic variables
into triangular fuzzy numbers through the transformation method [42].

Table 9. The attribute values of each attribute to four enterprises given by expert e1.

C1 C2 C3 C4

A1 ([0.667, 0.833, 1.000], [0.2, 0.3]) ([0.167, 0.333, 0.500], [0.4, 0.4]) ([0.667, 0.833, 1.000], [0.5, 0.5]) ([0.333, 0.500, 0.667], [0.2, 0.4])
A2 ([0.500, 0.667, 0.833], [0.4, 0.4]) ([0.667, 0.833, 1.000], [0.4, 0.5]) ([0.333, 0.500, 0.667], [0.1, 0.2]) ([0.500, 0.667, 0.833], [0.5, 0.5])
A3 ([0.333, 0.500, 0.667], [0.2, 0.3]) ([0.500, 0.667, 0.833], [0.3, 0.3]) ([0.500, 0.667, 0.833], [0.3, 0.3]) ([0.667, 0.833, 1.000], [0.2, 0.3])
A4 ([0.833, 1.000, 1.000], [0.5, 0.6]) ([0.000, 0.167, 0.333], [0.2, 0.2]) ([0.333, 0.500, 0.667], [0.2, 0.4]) ([0.333, 0.500, 0.667], [0.3, 0.4])

Table 10. The attribute values of each attribute to four enterprises given by expert e2.

C1 C2 C3 C4

A1 ([0.500, 0.667, 0.833], [0.1, 0.3]) ([0.333, 0.500, 0.667], [0.2, 0.3]) ([0.333, 0.500, 0.667], [0.2, 0.2]) ([0.833, 1.000, 1.000], [0.4, 0.5])
A2 ([0.667, 0.833, 1.000], [0.4, 0.5]) ([0.333, 0.500, 0.667], [0.3, 0.4]) ([0.500, 0.667, 0.833], [0.2, 0.4]) ([0.333, 0.500, 0.667], [0.2, 0.3])
A3 ([0.500, 0.667, 0.833], [0.2, 0.4]) ([0.500, 0.667, 0.833], [0.2, 0.3]) ([0.000, 0.167, 0.333], [0.4, 0.4]) ([0.333, 0.500, 0.667], [0.3, 0.3])
A4 ([0.667, 0.833, 1.000], [0.3, 0.4]) ([0.500, 0.667, 0.833], [0.4, 0.5]) ([0.000, 0.167, 0.333], [0.3, 0.4]) ([0.500, 0.667, 0.833], [0.2, 0.4])

Table 11. The attribute values of each attribute to four enterprises given by expert e3.

C1 C2 C3 C4

A1 ([0.667, 0.833, 1.000], [0.2, 0.4]) ([0.333, 0.500, 0.667], [0.3, 0.3]) ([0.500, 0.667, 0.833], [0.4, 0.5]) ([0.500, 0.667, 0.833], [0.2, 0.3])
A2 ([0.500, 0.667, 0.833], [0.3, 0.3]) ([0.667, 0.833, 1.000], [0.3, 0.4]) ([0.000, 0.167, 0.333], [0.1, 0.2]) ([0.333, 0.500, 0.667], [0.1, 0.2])
A3 ([0.500, 0.667, 0.833], [0.2, 0.3]) ([0.667, 0.833, 1.000], [0.3, 0.4]) ([0.000, 0.000, 0.000], [0.1, 0.2]) ([0.500, 0.667, 0.833], [0.2, 0.3])
A4 ([0.333, 0.500, 0.667], [0.2, 0.3]) ([0.333, 0.500, 0.667], [0.1, 0.3]) ([0.500, 0.667, 0.833], [0.3, 0.4]) ([0.667, 0.833, 1.000], [0.4, 0.5])

We get an aggregated matrix by aggregating the assessment information which is shown in
Table 12:

Table 12. The aggregated information of each attribute to four enterprises.

C1 C2 C3 C4

A1 ([0.614, 0.780, 0.947], [0.2, 0.4]) ([0.267, 0.433, 0.600], [0.4, 0.4]) ([0.513, 0.680, 0.847], [0.5, 0.5]) ([0.540, 0.707, 0.820], [0.4, 0.5])
A2 ([0.553, 0.720, 0.886], [0.4, 0.5]) ([0.560, 0.726, 0.893], [0.4, 0.5]) ([0.340, 0.507, 0.673], [0.2, 0.4]) ([0.400, 0.567, 0.733], [0.5, 0.5])
A3 ([0.433, 0.600, 0.767], [0.2, 0.4]) ([0.547, 0.714, 0.880], [0.3, 0.4]) ([0.253, 0.373, 0.540], [0.4, 0.4]) ([0.513, 0.680, 0.847], [0.3, 0.3])
A4 ([0.640, 0.807, 0.907], [0.5, 0.6]) ([0.253, 0.420, 0.587], [0.4, 0.5]) ([0.327, 0.493, 0.660], [0.3, 0.4]) ([0.480, 0.647, 0.813], [0.4, 0.5])

Because in this case, the attribute variables are independent from each other, we divided the
attribute variables into four groups, each group has only one attribute variable. Utilizing the
IGTFWPBM operators to aggregate the comprehensive information of all alternatives. Suppose p = 1,
q = 1, the computed result as follows:

Ã
⊗
=


[0.1255, 0.1672, 0.2048], [0.50, 0.50]
[0.1165, 0.1582, 0.1998], [0.50, 0.50]
[0.1110, 0.1504, 0.1920], [0.40, 0.40]
[0.1130, 0.1547, 0.1913], [0.50, 0.60]


And then, the expectation of all enterprises Ã

⊗i
(i = 1, 2, . . . , 4) are shown as follows:

I
(
Ã
⊗1

)
= 0.0831, I

(
Ã
⊗2

)
= 0.0791, I

(
Ã
⊗3

)
= 0.0906, I

(
Ã
⊗4

)
= 0.0665

Therefore, the ranking order of the four enterprises is that A3 � A1 � A2 � A4. Enterprise 3 is
more innovative, while enterprise 4 is less innovative. In order to demonstrate the effectiveness of this
method in solving the decision-making problem where there is no interrelationship among attribute
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variables, we selected the existing decision method with the grey fuzzy environment [16,19–22], and
the comparison results are shown in Table 13.

Table 13. Comparison of the proposed operators with other aggregation operators/methods in cases
where there is no relationship among attributes.

Methods Aggregation
Operator/Method

Whether Captures the
Relationship among Attributes Ranking

Jin and Liu [16] Topsis No X3 � X1 � X2 � X4
Liu [20] IGLOWA No X3 � X1 � X2 � X4
Liu [21] IGLHWA No X3 � X1 � X2 � X4

Liu et al. [22] IGULGHA No X3 � X2 � X1 � X4
Wang et al. [19] SIR Choquet Yes X3 � X1 � X2 � X4

Proposed method IGTFWPBM Yes X3 � X1 � X2 � X4

In methods [16,19–22], the fuzzy parts are represented by linguistic variables or uncertain linguistic
variables. Compared with linguistic variables and interval numbers, the fuzzy part expressed by
triangular fuzzy numbers can measure the fuzziness of natural linguistic variables, which is the main
distinction of a new method from existing methods. For ensuring the consistency of expert evaluation
information, we used a method proposed by Liu [43] to transform the linguistic variables into the
triangular fuzzy numbers. As shown in Table 13, it is not difficult to find that when there is no
interrelationship among attributes, the method proposed in this paper is consistent with the decision
results of the other five methods. It indicates that the IGTFWPBM operator is effective in solving
the decision problem where there is no interrelationship among attribute variables. At this time,
IGTFWPBM is simplified to an IGTFWBM operator, and the calculation process is relatively simple.

Example 3. [33] ABC Nonferrous Metals Co. Ltd. is a largely state-owned company whose main business is the
deep processing of nonferrous metals. In order to expand its main business, the overseas investment department
decided to select a pool of alternatives from several foreign countries based on preliminary surveys. Five countries
{a1, a2, a3, a4, a5} were evaluated through surveys and screening. Many factors affect the investment environment
and four factors are chosen based on the experience of the department personnel, including c1: resources (such as
the suitability of the minerals and their exploration); c2: politics and policy (such as corruption and political
risks); c3: economy (such as development vitality and the stability); and c4: infrastructure (such as railway and
highway facilities). The weight vector of the factors is ω = (0.25, 0.22, 0.35, 0.18). The evaluation information
is shown in Table 14. There is a close correlation among the four evaluation factors. The energy reserve can
influence the direction of policy formulation, and economic development depends on the resource reserve and
related policies and regulations. The infrastructure depends on economic development, and the completeness
of infrastructure is more conducive to the rapid development of the economy. Therefore, we classify the four
attribute variables into one class for discussion.

Table 14. The attribute values of each attribute to five countries.

c1 c2 c3 c4

a1 ([0.500, 0.667, 0.833], 0.6, [0.6, 0.6])([0.333, 0.500, 0.667], 0.7, [0.4, 0.4])([0.500, 0.667, 0.833], 0.8, [0.5, 0.5])([0.500, 0.667, 0.833], 0.8, [0.3, 0.3])
a2 ([0.333, 0.500, 0.667], 0.7, [0.5, 0.5])([0.500, 0.667, 0.833], 0.6, [0.4, 0.4])([0.000, 0.167, 0.333], 0.6, [0.2, 0.2])([0.333, 0.500, 0.667], 0.7, [0.4, 0.4])
a3 ([0.500, 0.667, 0.833], 0.5, [0.1, 0.1])([0.667, 0.833, 1.000], 0.6, [0.5, 0.5])([0.333, 0.500, 0.667], 0.7, [0.6, 0.6])([0.333, 0.500, 0.667], 0.5, [0.5, 0.5])
a4 ([0.333, 0.500, 0.667], 0.4, [0.5, 0.5])([0.333, 0.500, 0.667], 0.5, [0.3, 0.3])([0.500, 0.667, 0.833], 0.6, [0.8, 0.8])([0.500, 0.667, 0.833], 0.9, [0.3, 0.3])
a5 ([0.333, 0.500, 0.667], 0.6, [0.4, 0.4])([0.500, 0.667, 0.833], 0.8, [0.3, 0.3])([0.333, 0.500, 0.667], 0.7, [0.5, 0.5])([0.333, 0.500, 0.667], 0.6, [0.5, 0.5])

Transform the assessment values into interval grey triangular fuzzy numbers, and the grey
linguistic numbers

(
hθi, j ,µi, j, νi, j

)
[33] is replaced by

((
f L
a , f M

a , f U
a

)
,µi, j, νi, j

)
, where the lower and upper

bounds are equal. As µi, j independent of
(

f L
a , f M

a , f U
a

)
and νi, j, so in the process of computing µi, j

and interval grey triangular fuzzy numbers can be calculated independently. And the calculation
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method of µi, j can be referred to the literature [16]. Utilizing the IGTFWPBM operators to aggregate the
comprehensive information of all alternatives. Suppose p = 1 and q = 1, the computed result as follows:

ã
⊗
=


[0.2406, 0.3344, 0.4276], 0.2288, [0.60, 0.60]
[0.1409, 0.2633, 0.3608], 0.1875, [0.50, 0.50]
[0.2339, 0.3283, 0.4220], 0.1654, [0.60, 0.60]
[0.2292, 0.3229, 0.4161], 0.1704, [0.50, 0.50]
[0.2142, 0.3080, 0.4015], 0.1944, [0.50, 0.50]


And then, we calculate the expectation of all alternatives {a1, a2, a3, a4, a5}, for example, the

calculative process of expectation I
(
ã
⊗1

)
is shown as follows:

I
(
ã
⊗1

)
=

0.2406 + 2× 0.3344 + 0.4276
4

×
(1− 0.6) + 2× (1− 0.6)

3
× 0.2288 = 0.0306

And the other alternatives’ expectations are as shown below:

I
(
ã
⊗2

)
= 0.0241, I

(̃
a3

)
= 0.0217, I

(
ã
⊗4

)
= 0.0110I

(
ã
⊗5

)
= 0.0299

Therefore, the ranking of all countries is that a1 � a5 � a2 � a3 � a4. By comparison, we find the
ranking calculated by IGTFWPBM operator is consistent with methods [16,19,33], which illustrates the
effectiveness of the GFMAGDM method based on the IGTFWPBM operator. To better illustrate the
superiority of the method based on the IGTFWPBM operator, we compared the existing methods in a
grey fuzzy environment in Section 6.4.

6.4. Comparative Analysis

To elaborate on the validity and superiority of a new method based on the IGTFWPBM operators,
we selected three examples and compared them with various methods of decision-making in the
existing grey fuzzy environment [16,19–22,33]. It is not difficult to find that IGTFWPBM operators
are valid in cases where there is no relation among attributes (Example 2) and a case where a simple
relationship among attributes (Example 3).

To demonstrate the superiority of the proposed method, we took advantage of the decision-making
problem that how to evaluate the economic development of the five countries (Example 3) to compare it
with five existing grey fuzzy methods [16,19–21,33]. The ranking orders calculated by existing methods
are represented as Table 15.

Table 15. Comparison of the proposed operators with other aggregation operators/methods where
there exits relationship among attributes.

Methods Aggregation
Operator/Method

Whether Captures the
Relationship among Attributes Ranking

Jin et al. [16] Topsis No X1 � X5 � X2 � X3 � X4
Liu [20] IGLOWA No X1 � X5 � X3 � X2 � X4
Liu [21] IGLHWA No X5 � X1 � X3 � X2 � X4

Wang et al. [19] SIR Choquet Yes X1 � X5 � X2 � X3 � X4
Tian et al. [33] GLWBM Yes X1 � X5 � X2 � X3 � X4

Proposed method IGTFWPBM Yes X1 � X5 � X2 � X3 � X4

It is worth emphasizing that to ensure the comparability of calculation methods, linguistic
variables are transformed into triangular fuzzy numbers through the transformation method [43].
As shown in Table 15, the method proposed in this paper is consistent with the method that takes into
account the relationship among attributes, and slightly different from the other three methods that do
not capture the relationship among the attributes. This is because none of the aggregated operators
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consider the relationship among the attributes in methods [16,20,21], which does not conform to the
decision logic in this example. The method proposed in this paper and methods [19,33] can overcome
this defect and improve the accuracy of decision making.

To further illustrate the superiority of IGTFWPBM operators, two methods [19,30] that take
account of attribute relationships are compared with the method in this paper according to Example 1.
Furthermore, new attributes are added based on the original example, which further complicates the
decision-making process. The comparison results are shown in Table 16.

Table 16. Comparison of the proposed operators with other aggregation operators/methods where
there exits interrelationship among attributes.

Aggregation
Operator/Method

The Number of Attributes

5 6 7 8

IGTFWPBM X3 � X1 � X2 � X4 X3 � X1 � X2 � X4 X3 � X1 � X2 � X4 X3 � X1 � X2 � X4
GLWBM X3 � X1 � X2 � X4 X3 � X2 � X1 � X4 X3 � X2 � X1 � X4 X3 � X2 � X4 � X1

SIR Choquet X3 � X1 � X2 � X4 X3 � X1 � X2 � X4 X3 � X2 � X1 � X4 X3 � X1 � X2 � X4

As shown in Table 16, when the number of attributes is 5 in the original case, the sorting results
of the three methods are consistent. However, with the increasing number of attributes, the order of
the SIR Choquet method [19] and GLWBM operator [33] changes. The order of the GLWBM operator
fluctuates greatly. When the number of GLWBM operators increases to six attributes, the calculated
order becomes X3 � X2 � X1 � X4; when the attribute variable reaches eight, the permutation order
becomes X3 � X2 � X4 � X1. The order of the SIR Choquet method changes when the number of
attributes is seven, and when the number of attributes is eight, the order changes back to the original
order. However, the order of IGTFWPBM operator has not changed, because IGTFWPBM operator
can fully consider the interrelationship among attributes variables through classifying attributes for
calculation, which greatly improves the accuracy and stability of the decision-making process. At the
same time, in the calculation of IGTFWPBM operator, the decision-maker can adjust the parameters p
and q to show his or her attitude towards the internal grouping relationship among attributes, which is
more consistent with the actual decision-making process.

To sum up, we compare the IGTFWPBM operator with the six methods. Under the condition
that the attributes are independent of each other, the calculated results of the IGTFWPBM operator
are consistent with those of other methods applied in the grey fuzzy environment, indicating that
the IGTFWPBM operator is effective. When there are internal relations among attributes, the method
proposed in this paper considering the correlation among attributes is more accurate than the
traditional grey fuzzy operator and method. When faced with more attribute variables and more
complex relationships, The IGTFWPBM operator’s ability to calculate internal relationships and the
setting of regulating parameters can help improve the accuracy and stability of the decision-making
process, which are the notable advantages of a new method.

7. Conclusions

In this study, considering the fuzziness and greyness in real decision-making, we developed
a new method for solving GFMAGDM problems. There are three main contributions to this study.
In the first phase, we proposed the interval grey triangular fuzzy numbers which the grey part
expressed by interval numbers and the fuzzy part in the form of triangular fuzzy numbers, after
that, we gave the definitions, properties, distance, and expectations of the interval grey triangular
fuzzy numbers. In the second phase, we proposed the IGTFPBM operators, combined the interval
grey triangular fuzzy numbers with PBM, and gave the weighted form IGTFWPBM. The proposed
operators can build the partition structure and calculate the interrelationship among the attributes.
In the third phase, we developed a novel method based on IGTFWPBM. We applied the method to
the example that an investment institution made decision-making to choose the best one from four
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small and micro-enterprises. And then, we showed the ranking results under the different parameters.
The adjustment of parameters will have a symmetrical effect on the expectation of the alternative, so
the importance of the variable groups can be distinguished by the unilateral adjustment of parameters.
Finally, we compared the proposed method with five existing methods to illustrate the effectiveness
and superiority of the new method.

In future work, we will improve the decision-making accuracy of grey fuzzy variables and apply
it to high-precision medical and military fields. In terms of theoretical research, we hope to choose
a more complex form to express fuzzy parts, such as Gaussian fuzzy number [44,45], intuitionistic
fuzzy sets [46,47], and rough sets [48]. At the same time, BPM operators can be simplified to improve
computational efficiency. On the application side, we will apply the IGTFPBM operators into more
complex real-world decision cases [49,50] and further explore the application of the IGTFPBM operators
in a big data environment [51].
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