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Abstract: The hidden danger is the direct cause of coal mine accidents, and the number of hidden
dangers in a certain area not only reflects the current safety situation, but also determines the
development trend of safety production in this area to a large extent. By analyzing the formation and
development law of the hidden dangers and hidden danger accident-induced mechanism in coal
mines, it is concluded that there are some objective laws in the process of occurrence, development,
weakening, and even stabilization of hidden dangers in a certain area. The development of the
number of hidden dangers for a coal mine generally presents the law of similar normal distribution
curve, with a certain degree of partial symmetry. Many years of hidden danger elimination in coal
mines will accumulate large-scale hidden danger data. In this paper, by using the average value of
hidden danger quantity in consecutive months to weaken the oscillation of hidden danger quantity
sequence, and combining with gray model (1,1) and the neural network of extreme learning machine,
and employing big data of hidden dangers available, a hidden danger quantity prediction model
based on the gray neural network was established, and the experimental analysis and verification
carried out. The results show that the model can achieve good prediction effect on the number of
hidden dangers in a coal mine, which not only reflects the complex gray system behavior of hidden
dangers of a coal mine, but also can predict dynamically. The safety management efficiency and
emergency capacity of the coal mine enterprise will be greatly improved.

Keywords: hidden dangers; coal mine; neural networks; gray model (GM); particle swarm
optimization (PSO); extreme learning machine (ELM); prediction

1. Introduction

Identification and control of hidden dangers is an effective way to prevent and control accidents
in a coal mine [1,2]. The coal mines across China have established hidden danger identification system,
and made hidden danger identification daily work. Such hidden dangers identified are enormous.
According to statistics, the industrial and mining enterprises in 2013 alone had identified five million
hidden dangers [3]. As coal mines intensify their efforts in work safety, the quantity of hidden dangers
to be identified is ever-increasing, and big data has come into existence. However, after its inspection of
the coal mines across China, the State Administration of Work Safety pointed out that identification and
elimination was far below expectation, given that underreporting and false reporting were common,
and the safety situation in the coal mines is still severe [4,5].

Research on the hidden dangers of coal mines presently focuses on statistical analysis on the
quantity and features of the hidden dangers in different months or varieties. Regarding hidden dangers
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data extraction in the literature, [6] used the association rule and analyzed the rule of association of
the responsible department for hidden dangers, hidden danger variety, hidden danger grade, and
hidden danger scene. In [7], they applied 5W1H analysis approach and transformed loopholes into
eight dimensions, including hidden danger time and space, and used the log-linear model to dig the
relationship among the dimensions. In [8], they managed to predict the hidden danger quantity by the
least square method and extreme learning machine. The purpose and essence of all these studies make
use of big data to predict the features of hidden dangers to allow coal mine managers to make good
preparations. Qualitative or quantitative research of those hidden dangers is of some applicational
value, but prediction precision is not high and the operability is not strong. The hidden dangers largely
determine the safety situation of a coal mine, and they play a decisive role in work safety.

Any accident is the result of the interaction of hidden dangers in time and in space. Hidden
dangers cover four aspects: human, machine, environment, and management. The quantity of hidden
dangers in a system shows a nonlinear relationship with influential factor, and is hard to be predicted
by traditional classical mathematical models due to its randomness and volatility [9]. Hidden dangers
are the result of the interaction of all risk factors in a system, and the hidden danger quantity features
gray and uncertainty [10,11]. The gray prediction model is characterized by simple computation and
only a few samples. Hence, prediction of hidden danger quantity can be considered as a gray system to
be predicted. According to the characteristics of the gray system, it can be known that gray prediction
is suitable for exponential growth. Therefore, prediction precision is yet to be improved. However,
neural network is a nonlinear, self-adaptable system, and is fault-tolerant, but needs more samples and
complex computation [12–15].

In order to further utilize the existing big data of hidden dangers and adopt scientific data
processing algorithms to predict the number of hidden dangers in different areas of the coal mine
and improve the shortcomings of the existing models, this paper combines the advantages of gray
prediction and neural networks. We predict and then use the neural network to correct the residuals
of the gray prediction model, which improves the accuracy and practicability of the model, and is of
great significance for improving the level of coal mine safety production management.

2. Methodology

2.1. Principle of Hidden Danger Quantity Prediction

Hidden dangers represent unsafe human behavior, unsafe condition of the environment, unsafe
condition of equipment, or defective management during work activity [16]. They evolved from
hazards, which interact and eventually trigger accidents, as illustrated in Figure 1 [16,17]. If a workplace
is considered as a system, each of its components is in continuous motion. The hidden dangers in the
system are the middle status of motion, and accidents are the worst results of motion. Occurrence
of accidents will produce new or secondary hidden dangers. The quantity of the hidden dangers
in the system are the result of mutual restriction and interaction between the status and quantity
at the previous moment and hidden danger identification and control capability. Hidden danger
development has its objective regularity. A hidden danger cannot appear or disappear out of thin air.
Its status value at any time is related to the status value at a previous time or previous timeframe.
The majority of hidden dangers in a system do not appear alone, rather, they are induced by the
available hidden dangers or the resulting accidents. Hence, the quantity of hidden dangers, on the
one hand, reflects the level of hidden danger identification and control capability in the previous
timeframe, and on the other hand, determines the development trend of hidden danger in future time.
Although, due to the error of artificial examination, the hidden danger quantity identified every month
shows a volatility. On the whole, the hidden danger quantity will increase, decrease, or stabilize along
with the hidden danger control capability of the coal mine. Hidden dangers are hidden, latent, and
inductive, so once appearing, they cannot be identified and eliminated in time. Plus, considering
artificial reason and technical level, there is an error between the hidden dangers identified every
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month and actual ones in a coal mine. However, they are consistent on the whole, namely, hidden
dangers quantity will increase, decrease, or stabilize along with the hidden danger identification,
control capability, and geological condition. The development of the number of hidden dangers for a
coal mine generally presents the law of similar normal distribution curve, with a certain degree of
partial symmetry. Consequently, it is feasible to use the big data of historical hidden dangers to predict
the hidden danger quantity in the coal mine.
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Figure 1. Hidden danger induced accident mechanism in coal mines.

From the formation and development mechanism of hidden dangers, it can be known that, hidden
dangers appear random, uncertain, and sudden, but they are by nature regular and predictable. Due to
their uncertainty, this paper at first employs the gray system theory to probe into the time law of
hidden danger quantity, and to predict their change trend. Subsequently, a gray prediction model for
hidden danger quantity is established. Then, as to their randomness, the paper adopts the extreme
learning machine to correct the residual error of the gray prediction model. The prediction principle is
illustrated in Figure 2.
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2.2. GM (1,1) Model Predicting Hidden Danger Quantity

2.2.1. Mean GM (1,1) Prediction Model

The gray system was proposed by a Chinese scholar named Deng Julong in 1982. It is a mathematical
tool that explores uncertain problem of not having much data and information. The approach functions
to extract valuable information from some known information, and realizes correct description and
effective monitoring of system behaviors and evolution law [18]. By raw data processing and gray
model establishment, gray prediction extracts, reveals, and knows the evolution law of the system,
and makes quantitative prediction of the future status of the system. GM (1,1) model is the underlying
model of gray prediction theory, and also the most popular gray prediction model. The model is further
divided into GM (1,1) even gray model (EGM), GM (1,1) original differential gray model (ODGM), GM
(1,1) even differential gray model (EDGM), and GM (1,1) discrete gray model (DGM). Relative to other
three models, EGM is more suitable for an oscillating sequence [19–21]. Because there exists a lot of
influential factors behind hidden dangers in each coal mine area, and are affected by technical and
managerial aspects in the capability of identifying and screening them, the sequence formed by the
quantity of loopholes identified in a coal mine every month is an oscillating sequence. Therefore, this
paper chooses GM (1,1) EGM. Its underlying principle is [22–25]:

Suppose the original sequence is:

X(0)(t) =
{
x(0)(1), x(0)(2), · · · x(0)(m)

}
(1)

m is the size of samples.
For X(0)(t), for X, do first-order accumulation to get first-order accumulation to generate a

sequence of sequences (1-AGO) and obtain X(1)(t), and

X(1)(t) =
t∑

i=1

x(0)(i) (2)

Figure out the nearest neighbor mean Z(1)(t) of X(1)(t), and

Z(1)(t) =
1
2

(
x(1)(t) + x(1)(t− 1)

)
t = 1, 2, · · · , m− 1 (3)

Then,
x(1)(t) + az(1)(t) = b (4)

The whitening differential equation of the above equation is

dx(1)

dt
+ ax(1)(t) = b (5)

The vector â = [a, b]T in the equation can be determined by least squares method, namely,

â =
[
BTB

]−1
BT, and

Y =


x(0)(2)
x(0)(3)

...
x(0)(n)

, B =


−z(1)(2) 1 1
−z(1)(3) 1 1

... 1 1
−z(1)(n) 1 1

 (6)

In the equation, a is known as development coefficient, which reflects the development status of a
variable. b is known as gray actuating quantity.

Once each coefficient is figured out, gray GM (1,1) prediction model is determined

x̂(1)(t) =
(
x(0)(t) −

b
a

)
e−a(t−1) +

b
a

(7)
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Then, inverse accumulation is made for the above equation, and the prediction value of any given
input is worked out

x̂(0) = (1− ea)

(
x(0)(1) −

b
a

)
e−a(k−1) k = 1, 2, · · · , n (8)

2.2.2. Buffer Operator Improvement GM (1,1)

The hidden dangers in a coal mine are artificially identified and entered. The quantity of each
month shows a significant volatility and randomness according to the feature analysis of the hidden
dangers and the difference of individuals’ hidden dangers identification capability. Though the data
are scattered, they always possess an overall function according to the characteristics of the hidden
dangers in the system of each area. In order to weaken the randomness of the sequence, the sequence,
formed by the mean of the hidden danger quantity of each N consecutive months, is considered as
a new gray sequence according to the identification characteristics. That is to say, the initial hidden
danger quantity sequence in Equation (1) is generated the operator D by using the mean, that is,
through the operation of formula (10) and a new sequence X′(0)(t) is obtained.

X′(0)(t) =
{
x′(0)(1), x′(0)(2), · · · x′(0)(n− 4)

}
(9)

And

x′(0)(t) =
1
4

t+4∑
i−t

x(0)(i) t = 1, 2, . . . , n− 4 (10)

Then use mean GM (1,1) model for prediction.

2.3. Residual Error Modified Model for Hidden Danger Prediction Based on PSO-RELM

2.3.1. ELM

Neural network has strong nonlinear fitting capability. It can better establish the quantitative relation
of all factors in the system even if the qualitative relation of all the factors remains unknown [26–29].
Extreme learning machine in the neural network has been extensively used in the past years due to its
simple structure, short training time, and high prediction precision. Hence, this paper adopts ELM to
correct the residual error of gray GM (1,1) hidden danger quantity prediction.

Suppose there are N training samples Sn =
{
(Xi, ti)

n
i=1

}
, where Xi = [xi1, xi1, · · · xin]T

∈ Rn is the
input value, and ti = [ti1, ti1, · · · tin]T

∈ Rn is the output value, then the regression model of the neuron
function f (x) of which the hidden node number is L can be expressed as [30]:

L∑
i=1

βi f
(
Wi ·X j + bi

)
= o j, j = 1, 2, · · · , N (11)

where, f (x) is hidden activation function, Wi = [wi1, wi1, · · ·win]
T is input weight, βi is output weight,

and bi is the biased value of the ith hidden node.
The solving objective of the neural network is to obtain the least error output, namely, to make

L∑
j−1

‖ oi − ti ‖= 0 (12)

That is, there exists βi, Wi and bi, which make

L∑
i=1

βi f
(
WiX j + bi

)
= t j, j = 1, 2, · · · , N (13)
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Rewrite the above equation into a matrix form

Hβ = T (14)

Where, H is the output of hidden node, and

H =


f (W1X1 + b1) f (W2X1 + b2) . . . f (WLX1 + bL)

f (W1X2 + b1) f (W2X2 + b2) . . . f (WLX2 + b.L)
...

f (W1X2 + b1) f (W2X2 + b2) . . . f (WLXN + bL)


N×L

(15)

β is the weight of output layer, and

β = [β1,β2, . . . , βL]
T (16)

T is expected output vector, and

T = [t1,t2, . . . , tN]
T (17)

In order to give the minimal error between input value and target value, the equivalent minimal
loss function is

E =
∑L

j=1

(∑L

i=1
βi f

(
WiX j + bi

)
− ti

)2
(18)

Among ELM neural network algorithm, once input weight and hidden biased value are determined
at random, the solution of the hidden output matrix is exclusively determined. Then the question is
translated to solve = T. According to the mathematical theory, obtain

β = H+T (19)

Where H+ is the generalized inverse of matrix H, and

H+ =
(
HTH

)−1
HT (20)

Moreover, we can prove that the norm of the solution obtained is minimal and exclusive. Hence,
for given input value x, its prediction value can be obtained

t =
∑L

i=1
βi f (WiXx + bi) (21)

2.3.2. Regular Learning Machine RELM

Extreme learning machine (ELM) has the advantages of fast learning speed, etc. The solution
obtained in Section 2.3.1 is the model established according to the least squares loss function, which
only takes into account the least training error, namely, empirical risk. In statistics, the risk of the
model consists of empirical risk and structural risk. Empirical risk reflects the training precision of the
model, while structural risk reflects the generalization performance. The two combined determine the
prediction precision of the model [31]. A sound model can not only obtain the training precision with
better correctness, but satisfactory testing and prediction precision. That is to say, the model should
avoid under-learning and over-learning. A study revealed that the smaller the weighted norm of feed
forward neural network is, the more stable its network is, and the better its generalization performance
is. As a result, the loss function of ELM neural network is translated into [32,33]. This method can
overcome the above disadvantages, that is, the regular learning machine (RELM).
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 E(H) = argmin
(
ε2 + λβ2

)
εi =

∑L
i=1 βi f

(
WiX j + bi

)
− Ti, i = 1, 2 . . .N

(22)

where, ||ε||2 is empirical risk,
∣∣∣∣∣∣β∣∣∣∣∣∣2 is structural risk, and λ is weight coefficient. The above problem is

transformed into resolving the extremum by Lagrange.

L(ε, β,α) = ε2 + λ2
− α(Hβ− T − ε) (23)

It is known that 
∂L
∂ε = 2εT + α
∂L
∂β = 2λβT

− αH
∂L
∂α = Hβ− T − ε

(24)

Resolve

β =


(
λI + HTH

)−1
HTH HTH is nonsingular matrix

HT
(
λI + HHT

)−1
T HHT is nonsingular matrix

(25)

2.3.3. PSO-RELM

The initial weight and hidden deviation of the extreme learning machine are determined at
random, so the resulting model is just the optimal prediction model at given initial weight and hidden
deviation. Therefore, this paper adopts particle swarm optimization (PSO) to optimize the initial
weight and hidden deviation.

PSO was first proposed by Eberhart and Kennedy in 1995, which was intended to study the
foraging behavior of bird swarm. Namely, in a specific scenario, a bird swarm is searching for food at
random, each of the birds can be considered as a particle, neither of the birds knows where the food is,
but they know how far their location is to the food. Then, all the birds will search toward the bird
currently nearest to the food and also toward their position historically nearest to the food [34].

In PSO, each particle is the feasible solution of the problem. Each particle owns an adaptive value
determined by the target function and the velocity value determining the flight direction and distance
of the particle [35,36]. In D-dimensional space, suppose the number of particles is M, and suppose the
global optimal position at t is

pt
g =

(
p t

g1, p t
g2, . . . , p t

gd

)T
(26)

Then, the historical optimal position of ith particle at t is

pt
i =

(
p t

i1 , p t
i2 , . . . , p t

id

)T
(27)

Then, the velocity of the ith particle at t+1 is

vid
t+1 = ωvid

t + c1r1
(
pid

t
− xid

t
)
+ c2r2

(
pgd

t
− xid

t
)

(28)

where, ω is inertial weight, c1, c2 are acceleration factor, normally 2, r1, r2 are random number between
0 and 1.

The position of the ith particle at t+1 is

xid
t+1 = xid

t + vid
t+1 (29)

This paper adopts PSO to optimize the initial weight and hidden deviation of ELM. The process
is [37].

Step 1: A swarm is produced and maximal iterations are set. This paper sets the swarm at 20, and
maximal iterations at 50. Each particle is composed of input weight and hidden deviation.
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Step 2: For each individual particle, its output matrix is worked out by RELM algorithm. Then the
root-mean-square error is obtained. The error is treated as fitness function. Each particle’s fitness value
is computed. The individual and global optimal fitness particle’s parameter values are reserved.

Step 3: According to Equations (28) and (29), update the velocity and parameters of each particle.
Step 4: If maximal iterations are reached, computation ceases. The global optimal particle’s

parameter values are considered as the parameters of the initial weight value and hidden deviation
value of ELM. Otherwise, jump to Step 2.

3. Results and Analysis

This paper chooses the loophole quantity of a coal mine in seventeen consecutive months since
January 2014 for the experiment. The original sequence is: X(0) =(777, 681, 715, 500, 762, 759, 627, 609,
392, 730, 690, 643, 550, 602, 604, 629, 611, 649, 493, 510, 466, 603, 581, 621). The first 22 numbers are
training sample data, and the last 2 ones are testing sample data.

3.1. Predicting the Hidden Danger Quantity by GM (1,1) with Weakened Buffer Operator

According to artificial hidden danger identification characteristics and hidden danger development
law, the mean of hidden danger quantity of every four months is treated as a new sequence value and
a buffer operator sequence is generated according to Equation (10). The fitted values and errors of the
original sequence and buffer operator sequence are listed in Table 1. The prediction values and errors
of the original sequence and buffer operator sequence are listed in Table 2.

Table 1. The GM (1,1) fitted value of original sequence and buffer operator sequence.

No.
Original Sequence Buffer Operator Sequence

Actual
Value

Fitted
Value

Residual
Error

Relative
Error

Actual
Value

Fitted
Value

Residual
Error

Relative
Error

1 777 — — — — — — — — — — — — — —
2 681 680.68 −0.32 0.05% — — — — — — — —
3 715 673.19 −41.81 5.85% — — — — — — —- –
4 500 665.78 −165.78 33.16% 668.25 — — — — — —
5 762 658.45 −103.55 14.20% 664.5 673.303 8.803 1.325%
6 759 651.20 −107.80 14.20% 684 665.669 −18.331 2.680%
7 627 644.03 −17.03 2.72% 662 658.122 −3.878 0.586%
8 609 636.94 27.94 4.59% 689.25 650.660 −38.590 5.599%
9 392 629.93 237.93 60.70% 596.75 643.283 46.533 7.798%

10 730 623.00 −107.00 14.66% 589.5 635.989 46.489 7.886%
11 690 616.14 −73.86 10.70% 605.25 628.779 23.529 3.887%
12 643 609.36 −33.64 5.23% 613.75 621.650 7.900 1.287%
13 550 602.65 52.65 9.57% 653.25 614.601 −38.649 5.916%
14 602 596.02 −5.98 0.99% 621.25 607.633 −13.617 2.192%
15 604 589.46 −14.54 2.41% 599.75 600.744 0.994 0.166%
16 629 582.97 −46.03 7.32% 596.25 593.933 −2.317 0.389%
17 611 576.55 −34.45 5.64% 611.5 587.199 −24.301 3.974%
18 649 570.21 −78.79 12.14% 623.25 580.541 −42.709 6.853%
19 493 563.93 70.93 14.39% 595.5 573.959 −21.54 3.617%
20 510 557.72 47.72 9.36% 565.75 567.451 1.701 0.301%
21 466 551.59 85.59 18.37% 529.5 561.018 31.518 5.952%
22 603 545.51 −57.49 9.53% 518 554.657 36.657 7.077%

The main parameters of GM (1,1) prediction model established by the original sequence are:
development coefficient a = 0.011; gray actuation quantity b = 693.052; average relative error is 12.150%.

The main parameters of GM (1,1) prediction model established by the buffer operator sequence
are: development coefficient a = 0.011; gray actuation quantity b = 684.769; average relative error is
3.749%.
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The computation results show that, compared with the original sequence, the precision of the
fitted values of the GM (1,1) prediction model established by the buffer operator sequence is obviously
improved, and the oscillation is markedly weakened.

Table 2. GM (1,1) prediction values of original sequence and buffer operator sequence.

No.
Prediction Value of Original Sequence Prediction Value of Buffer Operator Sequence

Actual
Value

Fitted
Value

Residual
Error

Relative
Error

Actual
Value

Fitted
Value

Residual
Error

Relative
Error

1 581 539.51 −41.49 7.14% 540 548.37 8.37 1.55%
2 621 533.57 −87.43 14.08% 567.75 542.15 −25.6 4.51%

3.2. Modification of Residual Error Based on PSO-ELM

The experimental environment is Matlab2016b. Hidden set function is Sig. Regularization
parameter uses 0.01. At first, we adopted RELM to optimize the hidden layer node. Then, we used
RELM to optimize the initial swarm and maximal iterations of particle swarm algorithm. Finally, we
employed PSO-RELM for experimental analysis.

(1) Determination of particle swarm parameters
The larger the number of swarms is, the more the iterations it takes, the smaller the resulting error

is, the more complex the training devoted, and the longer the time it takes. A good model should be
simple as far as possible while the precision is met. RELM is used to test the error of the model with
different swarm numbers. The trained mean square error of the model is considered as an adaptive
function. Table 3 and Figure 3 list the favorable errors and consumed time in case of different swarm
numbers. (The errors are normalized errors.)

Table 3. Time consumed and ultimate errors of the model with different swarm numbers.

Swarm number 15 20 25 30 35

Ultimate error 0.0658 0.0717 0.0579 0.0608 0.0573

Time consumed (s) 3.028 3.905 4.207 4.862 6.067
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It is observed from Figure 3 and Table 3 that when the initial swarms are increased to a given
number, the increased precision slows down, but the time consumed for the training of the model is
largely linearly increased. Meanwhile, when the number of iterations reaches 20, the precision remains
basically unchanged. Therefore, this paper chooses initial swarm number at 25, and maximal iteration
number at 25.

(2) Optimization of hidden layer node parameters
Generally speaking, the more the hidden layer nodes, the more extract the fitted values, and

the more complex the network. However, excessive hidden layer nodes may cause over-learning of
the network, worsening its normalization capability. Table 4 separately tests the training error and
consumed time of different hidden layer nodes.

Table 4. Errors and consumed time of the model with different hidden layer nodes.

Number of Hidden
Layer Nodes

Mean Square Error of
Training

Predicted Mean Square
Error Consumed Time

5 23.28 2.44 2.924s
6 23.22 2.35 2.928s
7 22.88 2.46 2.931s
8 22.43 2.68 2.938s
9 21.78 2.36 2.938s
10 21.48 2.546 3.233s
11 21.01 2.40 3.499s
12 21.02 2.52 3.067s

It is shown in Table 4 that with an increasing number of hidden layer nodes, the errors of the
training generally becomes smaller and smaller, and time consumed longer and longer, suggesting that
the more complex the network is, the longer the computation takes. However, the prediction precision
does not improve continuously with the increasing of the number of hidden layer nodes. This indicates
that more hidden layer nodes will not necessarily bring about improved precision of the model.

(3) Experiments
According to the analysis above, the number of initial swarms is set at 25, the number of maximal

iterations is set at 25, and the data of the residual errors of every three months slide to generate the
sample. The experimental environment is Matlab2016b. SIG is chosen as the hidden layer aggregation
function. Normalization parameter is chosen as 0.01, and the number of hidden layer nodes is chosen
as 7. After a lot of experiments, the mean of any ten prediction models is taken as the correction value
of residual error. Table 5 lists the fitted values of the combination model. Table 6 lists the prediction
values of the combination model. Table 7 lists the prediction values recovered as the hidden danger
quantity of every month.

From Table 5, it can be known that GM (1,1) prediction model using buffer operator optimization
largely fits the law of average hidden danger quantity of the mine for every four months. However,
the stability of the hidden danger quantity is poor, and fitting precision is not sound, and some errors
are even more than 7%. The precision is obviously improved after PSO-ELM model is used to correct
the residual error. From Table 6 it is evident that the precision of the prediction values obtained by the
model is high. As indicated in Table 7, when the mean of hidden danger quantity is translated to the
hidden danger quantity of every month, the prediction precision somewhat decreases, but the error is
still below 5%. Hence, using gray neural network to optimize the combination model is more suitable
for the hidden danger quantity of a coal mine.
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Table 5. Fitted values of average hidden danger quantity of a coal mine.

No. Actual
Value

Fitted
Value of

GM

Residual
Error

Optimized
ELM

Fitted Value of
Combination

Model

Residual Error
of Combination

Model

Relative
Error

1 668.25 — — — — — — — — — — — —
2 664.5 673.303 8.803 — — — — — — — —
3 684 665.669 −18.331 — — — — — — — —
4 662 658.122 −3.878 — — — — — — — —
5 689.25 650.660 −38.590 32.80 683.46 −5.79 0.84%
6 596.75 643.283 46.533 −27.01 616.27 19.52 3.27%
7 589.5 635.989 46.489 −44.16 591.83 2.33 0.39%
8 605.25 628.779 23.529 −20.96 607.82 2.57 0.42%
9 613.75 621.650 7.900 −9.71 611.94 −1.81 0.29%
10 653.25 614.601 −38.649 39.46 654.06 0.81 0.12%
11 621.25 607.633 −13.617 9.76 617.39 −3.86 0.62%
12 599.75 600.744 0.994 8.48 609.22 9.47 1.58%
13 596.25 593.933 −2.317 −9.00 584.93 −11.32 1.90%
14 611.5 587.199 −24.301 24.49 611.69 0.19 0.03%
15 623.25 580.541 −42.709 24.54 605.08 −18.17 2.92%
16 595.5 573.959 −21.54 18.22 592.18 −3.32 0.56%
17 565.75 567.451 1.701 −4.06 563.39 −2.36 0.42%
18 529.5 561.018 31.518 −13.80 547.22 17.72 3.35%
19 518 554.657 36.657 −34.95 519.71 1.71 0.33%

Table 6. Prediction value of average hidden danger quantity of a coal mine.

No. Actual
Mean

GM(1,1)
Prediction

Value

Correction Value
of Optimized

ELM

Prediction Value
of Combination

Model

Residual
Error

Relative
Error

1 540 548.37 −4.07 544.3 4.3 0.79%
2 567.75 542.15 20.14 562.29 −5.46 0.96%

Table 7. Prediction values of hidden danger quantity of a coal mine.

No. Actual Value Prediction Value Residual Error Relative Error

1 581 598.2 17.2 2.96%
2 621 599.16 −21.84 3.52%

4. Discussion

On the one hand, the accurate prediction of the number of hidden dangers can reveal the overall
safety status of the mine, on the other hand, it can guide the formulation and implementation of
the hidden trouble detection plan, which is of great significance to the coal mine safety production
control. For the forecast model and its prediction results in this article, we will discuss from the
following aspects:

First of all, from the above experimental results, we can see that the relative error of the prediction
results is 12.5% when mean GM (1,1) prediction model is adopted, the relative error of the prediction
results is 3.749% when buffer operator improvement GM (1,1) is adopted, and the relative error of the
prediction results is 3.24% when the buffer operator improvement GM (1,1)+PSO-RELM model is used.
The relative error of the last two prediction models is less than 5%, which shows that the two models
can better predict the number of coal mine hazards.

Secondly, hidden danger is the unsafe state of human, material, environment, and management,
which exists objectively, but it is found out manually. Therefore, the number of hidden dangers found
out every month in the coal mine is limited by management level and other factors, and there is a
certain subjectivity, which brings great difficulties to the prediction. As shown in Table 7, taking
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the average number of hidden dangers for three consecutive months as the prediction quantity, the
relative error of the prediction result is reduced to 0.875%, which shows that it can weaken the random
influence of the number of hidden dangers caused by human factors to a certain extent.

Finally, the number of hidden dangers on the one hand is affected by the development law of the
hidden danger itself, on the other hand, it is also affected by other external factors, such as the change
of geological conditions, the transformation of coal mining technology [38–40], etc. The model adopted
in this paper belongs to the scope of the time series prediction model. The time series prediction model
only shows good results in the simulation of the sequence itself. In other words, the prediction model
used in this study cannot reflect the impact of other factors on the system in time. Ignoring the changes
of internal factors may lead to inaccurate prediction. For example, when the mine is shut down for
rectification, the number of hidden dangers will sharply reduce and when an accident occurs in a coal
mine, the number of hidden dangers will increase significantly, which needs to be overcome in the
future research.

5. Conclusions

(1) Prediction of the number of hidden dangers in coal mines plays an important role in the
management of coal mine enterprises to better understand the situation of production safety in each
area of the coal mine. It can judge the authenticity of the number of hidden dangers and reduce the
number of hidden dangers. According to the mechanism analysis of the formation and development
of hidden dangers, this paper knows that its essence is regular and predictable.

(2) The combination model of gray system theory and artificial neural network was used to
predict the number of hidden dangers in coal mines. The model is based on the mean GM (1,1) model,
which requires fewer samples, and is simple to calculate. The number of hidden dangers of average
consecutive months is used as a buffer operator to weaken the oscillation of the original sequence,
which improves the accuracy of model prediction.

(3) The regularization parameter term is used to optimize the ELM to improve the generalization
ability of the model. Besides, the PSO is used to optimize the initial weight and hidden layer deviation
of the ELM, so as to obtain a better training model, make the model more stable, and have higher
prediction accuracy.

(4) The gray neural network prediction model is adopted, which has low requirements for data
samples. It combines the advantages of two prediction methods, that is, it reflects the complex gray
system behavior of hidden dangers in coal mines, and can dynamically predict.
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