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Abstract: This paper analyzes the operation principle and predicted value of the recurrent-neural-
network (RNN) structure, which is the most basic and suitable for the change of time in the structure
of a neural network for various types of artificial intelligence (AI). In particular, an RNN in which
all connections are symmetric guarantees that it will converge. The operating principle of a RNN is
based on linear data combinations and is composed through the synthesis of nonlinear activation
functions. Linear combined data are similar to the autoregressive-moving average (ARMA) method
of statistical processing. However, distortion due to the nonlinear activation function in RNNs causes
the predicted value to be different from the predicted ARMA value. Through this, we know the limit
of the predicted value of an RNN and the range of prediction that changes according to the learning
data. In addition to mathematical proofs, numerical experiments confirmed our claims.
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1. Introduction

Artificial intelligence (AI) with machines are coming into our daily lives. In the near future,
there will be no careers in a variety of fields, from driverless cars becoming commonplace, to personal-
routine assistants, automatic response system (ARS) counsellors, and bank clerks. In the age of
machines, it is only natural to let machines do the work [1–5], aiming for the operation principle of
the machine and the direction of a machine’s prediction. In this paper, we analyzed the principles of
operation and prediction through a recurrent neural network (RNN) [6–8].

The RNN is an AI methodology that handles incoming data in a time order. This methodology
learns about time changes and predicts them. This predictability is possible because of the recurrent
structure, and it produces similar results as the time series of general statistical processing [9–12].
We calculate the predicted value of a time series by calculating the general term of the recurrence
relation. Unfortunately, the RNN calculation method is very similar to that of the time series,
but the activation function in a neural-network (NN) structure is a nonlinear function, so nonlinear
effects appear in the prediction part. For this reason, it is very difficult to find the predicted
value of a RNN. However, due to the advantages of the recurrent structure and the development
of artificial-neural-network (ANN) calculation methods, the accuracy of predicted values is improving.
This led to better development and greater demand for artificial neural networks (ANNs) based on RNNs.
For example, long short-term memory (LSTM), gated recurrent units (GRU), and R-RNNs [13–16] start
from a RNN and are used in various fields. In other words, RNN-based artificial neural networks are
used in learning about time changes and the predictions corresponding to them.
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There are not many papers attempting to interpret the structure of recurrent structures, and results
are also lacking. First, the recurrent structure is used to find the expected value by using it iteratively
according to the order of data input over time. This is to predict future values from past data.
In a situation where you do not know a future value, it is natural to use the information you know
to predict the future. These logical methods include the time-series method in statistical processing,
which is a numerical method. The RNN structure is very similar to the combination of these two
methods. Autoregressive moving average (ARMA) in time series is a method of predicting future
values by creating a recurrence relation by the linear combination of historical data. More details can
be found in [17,18]. Taylor’s expanding RNN under certain constraints results in linear defects of
historical data, such as the time series. More details are given in the text. From these results, this paper
describes the range of the predicted value of a RNN.

This paper is organized as follows. Section 2 introduces and analyzes the RNN, and correlates it
with existing methods. Section 3 explains the change of the predicted value through the RNN. Section 4
confirms our claim through numerical experiments.

2. RNN and ARMA Relationship

In this section, we explain how a RNN works by interpreting it. In particular, the RNN is based
on the ARMA format in statistical processing. More details can be found in [19–21]. This is explained
through the following process.

2.1. RNN

In this section, we explain RNN among various modified RNNs. For convenience, RNN refers to
the basic RNN. The RNN that we deal with is

yt = w1ht + by, (1)

where t represents time, yt is a predicted value, w1 is a real value, and ht is a hidden layer. The hidden
layer is computed by

ht = tanh(w2xt + w3ht−1 + bh), (2)

where xt is input data, w2 and w3 are real values, and ht−1 is the previous hidden layer. For machine
learning, let LS be the set of learning data, and let κ > 2 be the number of the size of LS. In other words,
when the first departure time of learning data is 1, we can say that LS = {x1, x2, ..., xκ}. Assuming that
the initial condition of the hidden layer is 0 (h0 = 0), we can compute yt for each time t. xt is data
on time and yt is a predicted value, so we want to satisfy yt = xt+1. Because unhappiness does not
establish the equation, an error occurs between yt and xt+1. So, let Et = (yt − xt+1)

2 and E = ∑κ−1
t=1 Et.

Therefore, machine learning based on RNN is the process of finding w1, w2, and w3 that can minimize
error value E. We used x1, x2,...,xκ−1 in learning data LS to find w1, w2, and w3 that minimize error E,
and used them to predict the values (yκ , yκ+1,...) after time κ. More details can be found in [22–25].

2.2. ARMA in Time Series

People have long wanted to predict stocks. This required predictions from historical data on
stocks, and various methods have been studied and utilized. In particular, the most widely and
commonly used is the ARMA method, which was developed on the basis of statistics. This method
simply creates a linear combination of historical data for the value to be predicted and calculates it on
this basis.

x̂κ+1 = C0xκ + C1xκ−1 + C2xκ−2+, · · · , Cl x0 + C∗e, (3)
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where x0,· · · ,xκ are given data, and we can calculate predicted value x̂l+1 by calculating the values
of C0, · · · , Cκ , and C∗. In order to obtain the values of C0, · · · , Cκ , and C∗, there are various methods,
such as optimization by numerical data values, Yule–Walker estimation, and corelation calculation.
This equation is used to predict future values through the calculation of general terms of the recurrence
relation. More details can be found in [17].

2.3. RNN and ARMA

In RNN, the hidden layer is constructed by the hyperbolic tangent function that is

tanh(x) =
ex − e−x

ex + e−x . (4)

Function tanh is expanded:

tanh(x) = x− 1
3

x3 +
2

15
x5 − 17

315
x7 + ...., (5)

where x is in [−π/2, π/2]. Using this fact and expanding ht,

ht = tanh(w2xt + w3ht−1) = w2xt + w3ht−1 + et, (6)

where et is an error. Therefore, yt = w1w2xt + w1w3ht−1 + w1et.
Since the same process is repeated for ht−1,

yt = w1w2xt + w1w3ht−1 + w1et (7)

= w1w2xt + w1w3 (w2xt−1 + w3ht−2 + et−1) + w1et (8)

= w1w2xt + w1w2w3xt−1 + w1w2
3ht−2 + w1et + w1w3et−1. (9)

Repeatedly,

yt = w1w2xt + w1w2w3xt−1 + w1w2w2
3xt−2 + w1w3

3ht−3 + w1et + w1w3et−1 + w1w2
3et−2. (10)

Therefore,

yt =
t−1

∑
k=0

(
w1w2wk

3xt−k + w1wk
3et−k

)
+ w1wt

3h0. (11)

If w3 is less than 0.1, the terms after the fourth order (w4
3) are too small to affect the value to

be predicted. Conversely, if w3 is greater than 1, the value to be predicted increases exponentially.
Under the assumption that we can expand hyperbolic tangent function (tanh), condition w3 must be
less than 1. Since we can change only w1, w2, and w3, the RNN can be written as

yt = w1w2xt + w1w2w3xt−1 + w1w2w2
3xt−2 + w1w2w3

3xt−3 + w1w2w4
3xt−4 (12)

+w1w2et + w1w3et−1 + w1w2
3et−2 + w1w3

3et−3 + w1w4
3et−4. (13)

This equation is an ARMA of order 5. More details can be found in [18]. This development
method was developed on the premise that the variable part of the tanh function is smaller than
a specific value (tanh(x) and |x| < π/2), and is limited in terms of utilization.

3. Analysis of Predicted Values

From the above section, w1, w2, w3, by, and bh are fixed. Then, we obtained sequence {yκ} by the
following equality:



Symmetry 2020, 12, 615 4 of 15

yκ+1 = w1hκ + by = w1 tanh (w2yκ + w3hκ−1 + bh) + by,

hκ = tanh (θhκ−1 + b) , (14)

where θ = w1w2 + w3 and b = bh + w2by.

Theorem 1. Sequence {hκ} is bounded and has a converging subsequence.

Proof. Since |tanh| ≤ 1, |hκ | ≤ 1 for all l. Using the Arzela–Ascoli theorem, there exists a converging
subsequence. More details can be found in [26].

In order to see the change in the value of hκ , if the limit of hκ is h, Equation (14) is written as
h = tanh (θh + b). Therefore, as the values of θ and b, the value of h that satisfies this equation changes.

3.1. Limit Points of Prediction Values

We now analyze the convergence value of the sequence. In order to see the convergence of the
sequence, we introduced the following functions:

y = x (15)

y = tanh (θx + b) . (16)

For calculation convenience, this equation changes as follows.

z = tanh (θz + b) . (17)

where z0 is an initial condition, the convergence of zκ is z∗, and z∗ satisfies Equation (17) (z∗ =

tanh (θz∗ + b)). Therefore, we have to look at the roots that satisfy the expression in Equation (17).

Theorem 2. There should be at least one solution to Equation (17)

Proof. Let g(z) = tanh (θz + b)− z. Function g is continuous and differentiable. If z < −2, then g(z) >
0; If z > 2, then g(z) < 0. Therefore, there exists at least one solution.

Theorem 3. If θ ≤ 1, then the equation has just one solution.

Proof. If θ ≤ 1, then g′(z) = θsech2(θz + b) − 1 ≤ 0. Therefore, g is a monotonically decreasing
function. As a result of this, there exists only one solution satisfying g = 0.

Under the assumption that the value of θ > 1, two values satisfying g′(z) = 0 necessarily exist.
Therefore, assuming θ > 1, we find zl and zr satisfying θsech2(θzl + b)− 1 = θsech2(θzr + b)− 1 = 0,
and have g(zl) < g(zr) assuming zl < zr. Therefore, g′(z) < 0 on z < zl , g′(z) > 0 on zl <

z < zr, and g′(z) on zr < z from computing g. Assuming g(zl) = 0 and g(zr) = 0, we have

b = bl = θ tanh
((

sech2
)−1

(1/θ)

)
−

(
sech2

)−1
(1/θ) and b = br = θ tanh

((
sech2

)−1
(1/θ)

)
−(

sech2
)−1

(1/θ), respectively. From computing sech2, br < bl is obtained.

Theorem 4. Assuming θ > 1, If b = bl or b = br then, g has two solutions. If br < b < bl , then g has three
solutions. If bl < b or b < br, then g has one solution.

Proof. This proof assumes that θ > 1. If b < br, then we know g(zr) < 0. Therefore, we have
g(zl) < g(zr) < 0. Since g(z) is a monotonically decreasing function on z < zl , there exists a unique
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solution, such that g(z) = 0. If b = br, then we know g(zr) = 0. Therefore, we know g(zl) < g(zr) = 0,
and there exists a unique solution, such that g(z) = 0 on z < zl for the same reason. So, if b = br,
we have two solutions. One is g(z) = 0 on z < zl and the other is g(zr) = 0. If br < b < bl , we have
g(zl) < and g(zr) > 0. There are three solutions, such that g(z) = 0 on z < zl , g(z) = 0 on zl < z < zr,
and g(z) = 0 on zl < z. If b = bl , we know that g(zl) = 0. Therefore, since g(zr) > 0, and g is
a monotonically decreasing function on zr < z, there is a solution satisfying g(z) = 0. So, if b = bl ,
we have two solutions, such that g(zl) = 0 and g(z) = 0 on zr < z. If bl < b, then g(zl) > 0.
Since g(zr) > g(zl) and g is a decrease function, there is a solution, such that g(z) = 0 on z > zr.

In this section, we see the change in the number of solutions that satisfy Equation (17) as the
values of θ and b change. The change of the sequence according to the initial condition of the sequence
and according to the number of each solution of Equation (17) is explained.

Figure 1 shows the graph of zl and zr. If point (θ, b) is contained in the white region, there is one
solution. If point (θ, b) lies in the red curve, there are two solutions. If point (θ, b) is contained in the
blue region, there are three solutions. In Section 4, we plot point (a, b) in the solution number region to
check for the number of solutions of each case.

Figure 1. Solution number region.

3.2. Change of Prediction Values (Sequence)

We examined the number of the solutions of g depending on the values of θ and b. In order to see
the change of the predicted value according to the change of θ and b, Equation (14) was changed to
zi+1 = tanh (θzi + b), and sequence {zi} was obtained. Sequences {zi}, g, and hκ have the following
relationship: zi+1 = zi + g(zi) and z0 = hκ . Therefore, the predicted value yκ+m+1 was obtained
by yκ+m+1 = w1hκ+m + by and hκ+m = zm. The solutions of g are the limit points of sequence {zi}
by using zi+1 = zi + g(zi). One of the reasons we interpreted the predictions was to identify the
movement condensation (the changing value) of the predictions. We saw various cases that made
function g zero from the previous theorem. The change of the sequence according to initial condition
z0 in each case is explained.

Theorem 5. Assuming θ > 1 and bl < b, sequence {zi} converged to z∗, where z∗ satisfies g(z∗) = 0.

Proof. Under condition θ > 1 and bl < b, g(z) > 0 on z < z∗ and g(z) < 0 on z∗ < z. If z0 < z∗
then g(z0) > 0. From computing, {zi} is a monotonically increasing sequence. So, sequence {zi}
converges to z∗. If z∗ < z0 then g(z0) < 0. From computing, {zi} is a monotonically decreasing
sequence. Therefore, sequence {zi} converged to z∗.
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Theorem 6. Assuming θ > 1 and bl = b, there exist two solutions zl and z∗ that satisfy g(z) = 0. If z0 < zl ,
sequence {zi} converges to zl . If zl < z0, sequence {zi} converges to z∗,

Proof. 0 ≤ g(z) on z < z∗. So {zi} is a monotonically increasing sequence from computing. If z0 < zl ,
{zi} converges to zl ; if zl < z0 < z∗, {zi} converges to z∗. On z

Theorem 7. Assuming θ > 1 and br < b < bl , if z0 < z∗, {zi} converges to zl ; if z0 > z∗, {zi} converges to
zr, where z0 is an initial condition.

Proof. From computing g′(z), we have g(z) > 0 on z < zl , and tanh(θzi + b) > zi on z0 < zl . Therefore
sequence {zi} is a monotonically increasing sequence, and {zi} converges to zl . From g′(z) > 0, g is
convex, and g(zl) = g(z∗) = 0 on zl < z < z∗, we have g(z) < 0 on zl < z < z∗. On zl < z0 < z∗
we have g(zi) < 0 and g(zi) = tanh(θzi + b)− zi < 0. Sequence {zi} is a monotonically decreasing
sequence, and the convergence value is zl . With the same calculation, g is concave, and g(z∗) =

g(zr) = 0. Therefore, g(z) > 0 on z∗ < z < zr and g(zi) = tanh(θzi + b)− zi > 0 on z∗ < z0 < zr.
Sequence {zi} is a monotonically increasing sequence, and the convergence value is zr. If z > zr,
g(z) < 0. Therefore, g(zi) = tanh(θzi + b)− zi > 0 on z0 > zr. Sequence {zi} is a monotonically
decreasing sequence, and the convergence value is zr.

Theorem 8. Assuming θ > 1 and b = br, there exist two solutions zr and z∗ that satisfy g(z) = 0. If zr < z0,
sequence {zi} converges to zr. If z∗ < z0 < zr, sequence {zi} converges to z∗. If z0 < z∗, sequence {zi}
converges to z∗,

Proof. If zr < z0, g(z0) < 0. Therefore, sequence {zi} is a monotonically decreasing sequence. So,
sequence {zi} converges to zr. If z∗ < z0 < zr, g(z0) < 0. Therefore, sequence {zi} is a monotonically
decreasing sequence. So, sequence {zi} converges to z∗. If z0 < z∗, g(z0) > 0. Therefore, sequence {zi}
is a monotonically increasing sequence. So, sequence {zi} converges to z∗.

Theorem 9. Assuming θ > 1 and b < br, sequence {zi} converges to z∗, where z∗ satisfies g(z∗) = 0.

Proof. Under conditions (θ > 1 and b < br), g(zr) < 0. Therefore if z∗ < z0 then g(z0) < 0. Therefore,
sequence {zi} is a monotonically decreasing sequence. So, sequence {zi} converges to z∗. If z0 < z∗,
g(z0) > 0. Therefore, sequence {zi} is a monotonically increasing sequence. So, sequence {zi}
converges to z∗.

Theorem 10. Assuming 0 ≤ θ ≤ 1, sequence {zi} converges to z∗, where z∗ satisfies g(z∗) = 0.

Proof. Under condition (0 ≤ θ ≤ 1), g(z) has a unique solution satisfying g(z) = 0. If z0 < z∗,
g(z0) > 0. Therefore, sequence {zi} is a monotonically increasing sequence. So, sequence {zi}
converges to z∗. If z∗ < z0, g(z0) < 0. Therefore, sequence {zi} is a monotonically decreasing sequence.
So, sequence {zi} converges to z∗.

In condition θ > 0, function tanh(θz + b) is an increasing function, and there is no change of the
sign of θz. However, in condition θ < 0, function tanh(θz + b) is a decreasing function, and there is
change of the sign of θz.

Theorem 11. Assuming −1 < θ < 0, sequence {zi} converges to z∗, where z∗ satisfies g(z∗) = 0.

Proof.

zi+1 − zi = tanh(θzi + b)− tanh(θzi−1 + b) = θ sec2(ζ) (zi − zi−1) , (18)
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where ζ is between zi−1 and zi. Therefore,

|zi+1 − zi| ≤ θ |zi − zi−1| . (19)

Sequence {zi} is a Cauchy sequence that converges to z∗

Theorem 12. Assuming θ ≤ −1, sequence {zi} converges to z∗, where z∗ satisfies g(z∗) = 0, or sequence
{zi} vibrates.

Proof.

zi+1 − zi = tanh(θzi + b)− tanh(θzi−1 + b) = θ sec2(ζ) (zi − zi−1) , (20)

where ζ is between zi−1 and zi. Therefore,

|zi+1 − zi| ≤ |θ| sec2(ζ) |zi − zi−1| . (21)

If |θ| sec2(ζ) < 1, sequence {zi} is a Cauchy sequence that converges to z∗. If |θ| sec2(ζ) ≥ 1,
sequence {zi} vibrates.

4. Numerical Experiments

In this section, we confirmed the numerical results to identify RNN analysis interpreted in the
previous section. As we saw in the previous section, RNN predictions appeared in three cases. Case 1
is Equation (17) that has one solution, Case 2 is Equation (17) that has two solutions, and Case 3
is Equation (17) that has three solutions. In Cases 1 to 3, we checked the number of solutions in
Equation (17), and predicted the values according to the initial conditions. In Cases 4 through 7,
experiments were conducted on the situation where learning data increase, learning data increase and
decrease, learning data decrease and increase, and learning data vibrate. We obtained a picture from
each numerical experiment. In each figure, (a) plots the RNN predictions and the learning data, the red
curve is sin, (b) denotes θ and b in the area of existence of the solution, and (c) is a picture of z about
Equation (17).

4.1. Case 1: One-Solution Case of Equation (17)

The situation with one solution was divided into the case where θ is less than 1 and θ is greater
than 1.

4.1.1. Theta < 1

Let x0 = 0, x1 = 0.12, x2 = 0.23, x3 = 0.38, and x4 = 0.5. x0 ∼ x4 are learning data. In this case,
we obtained w1 = 0.9, w2 = 0.9, w3 = 0.09, by = 0.2 and bh = −0.08. Therefore, θ = 0.9 and b = 0.1.
The limit of the yt is y∗(0.65).

In Figure 2a, x0 ∼ x4 are the black stars and y0 ∼ y40 are the prediction values (blue line).
Figure 2b shows θ and b(∗ = (θ, b)). Figure 2c shows the result of Equation (17). In Figure 2c, ∗ is z0.
From Figure 2, we see that from the learning data, the solution of Equation (17) is one, initial value z0

is 0.6, and z40 is 0.5.
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(a) Plot of real and predicted values. (b) Solution number region in Case1-1.

(c) Plot of z in Equation (17).

Figure 2. One-solution case of Equation (17) (θ < 1).

4.1.2. Theta > 1

Let x0 = 0, x1 = −0.03, x2 = 0.15, x3 = 0.33, and x4 = 0.4. x0 ∼ x4 are learning data. In this case,
we obtained w1 = 0.9, w2 = −0.1, w3 = 1.39, by = −0.2 and bh = 0.18. Therefore, θ = 1.3 and b = 0.2.
The limit of yt is y∗(0.64).

Figure 3 also shows results similar to those in Figure 2. Figure 3a shows x0 ∼ x4 and y4 ∼ y40

(y4 ∼ y40 are the prediction values). Figure 3b shows θ and b. Figure 3c shows the result of Equation (17).

(a) Plot of real and predicted values. (b) Solution number region in Case1-2.

(c) Plot of z in Equation (17).

Figure 3. One-solution case of Equation (17) (θ > 1).
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4.2. Case 2: Two-Solution Case of Equation (17)

This situation is two solutions of Equation (17) by (θ, b) = (1.3, 0.101). Let x0 = 0, x1 = 0.02,
x2 = 0.19, x3 = 0.36, and x4 = 0.5. x0 ∼ x4 are learning data. Figure 4 shows the solution number
region and (θ, b) (black star). As shown in Figure 4, there are two solutions to Equation (17) from the
learning data. In this situation, we conducted two experiments. The first case was initial condition z0

existing between zl and zr. The second case was initial condition z0 being less than zl . In the first case,
the limited value of zi from the proof had to go to zr, and in the second case, the limited value of zi
from the proof had to go to zl . This result was verified from the numerical experiments. The theory of
the previous section was exempted through this numerical experiment.

Figure 4. Solution number region in Case 2.

4.2.1. First Case

In this case, we obtained w1 = 0.9, w2 = 0.4, w3 = 0.94, by = −0.1 and bh = 0.141. Therefore,
θ = 1.3 and b = 0.101. The limit of yt is y∗(0.47).

Figure 5a shows that x0 ∼ x4 are the black stars and y0 ∼ y40 are the prediction values (blue line).
Figure 5b shows the result of Equation (17). In Figure 5b, ∗ is z0, and z40 is 0.71.

(a) Plot of real and predicted values. (b) Plot of z in Equation (17).

Figure 5. Two-solution case of Equation (17).

4.2.2. Second Case

In this case, we obtained w1 = −0.6, w2 = −6.5, w3 = −2.6, by = 0.7 and bh = 4.65. Therefore,
θ = 1.3 and b = 0.101. The limit of yt is y∗(0.2).

Figure 6a shows that x0 ∼ x4 are the black stars and y0 ∼ y40 are the prediction values (blue line).
Figure 6b shows the result of Equation (17). In Figure 6b, ∗ is z0, and z40 is −0.34.
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(a) Plot of real and predicted values. (b) Plot of z in Equation (17).

Figure 6. Two-solution case of Equation (17).

4.3. Case 3: Three-Solution case of Equation (17)

This situation is three solutions of Equation (17) by (θ, b) = (2, 0.1). Let x0 = 0, x1 = −0.01,
x2 = 0.16, x3 = 0.37, and x4 = 0.46. x0 ∼ x4 are learning data. Figure 7 shows the solution number
region and (θ, b) (black star). As shown in Figure 7, there are three solutions from the learning data.
In this situation, we conducted two experiments. For convenience, the three roots are indicated by zl ,
z∗, and zr, respectively, as in the notation above. The first case was initial condition z0 existing between
zl and zr. The second case is initial condition z0 existing between zl and z∗. In the first case, the limited
value of zi from the proof had to go to zr, and in the second case, the limited value of zi from the proof
had to go to zl . This result was verified from the numerical experiments. The theory of the previous
section was exempted through numerical experiments.

Figure 7. Solution number region in Case 3.

4.3.1. First Case

In this case, we obtained w1 = 0.6, w2 = 0.5, w3 = 1.7, by = −0.1 and bh = 0.15. Therefore, θ = 2
and b = 0.1. The limit of the yt is y∗(0.58).

In Figure 8a, x0 ∼ x4 are the black stars and y0 ∼ y40 are the prediction values (blue line).
Figure 8b shows the result of Equation (17). In Figure 8b, ∗ is z0, and z40 is 0.79.
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(a) Plot of real and predicted values. (b) Plot of z in Equation (17).

Figure 8. Three-solution case of Equation (17).

4.3.2. Second Case

In this case, we obtained w1 = −1.2, w2 = −3, w3 = −1.6, by = −0.1, and bh = −0.2. Therefore,
θ = 2 and b = 0.1. The limit of yt is y∗(1.03).

In Figure 9a, x0 ∼ x4 are the black stars and y0 ∼ y40 are the prediction values (blue line).
Figure 9b shows the result of Equation (17). In Figure 5b, ∗ is z0, and z40 is −0.86.

(a) Plot of real and predicted values. (b) Plot of z in Equation (17).

Figure 9. Three-solution case of Equation (17).

4.4. Case 4: Learning Data Increase

Let x0 = 0, x1 = 0.15, x2 = 0.3, x3 = 0.45, and x4 = 0.58. x0 ∼ x4 are learning data. In this case,
we obtained w1 = −0.96, w2 = −0.95, w3 = 0.13, by = 0.24, and bh = 0.08. Therefore, θ = 1.04 and
b = −0.15. The limit of yt is y∗(0.93).

In Figure 10a, x0 ∼ x4 are the black stars and y0 ∼ y40 are the prediction values (blue line).
Figure 10b shows θ and b. Figure 10c shows the result of Equation (17). In this case, x4. From θ and b,
Equation (17) has one solution. As can be seen in Figure 10, learning data increased and converged to
a specific value.
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(a) Plot of real and predicted values. (b) Solution number region in Case 4.

(c) Plot of z in Equation (17).

Figure 10. Learning data increase.

4.5. Case 5: Learning Data Increase and Decrease

Let x0 = 0.95, x1 = 0.98, x2 = 1, x3 = 0.98, and x4 = 0.95. x0 ∼ x4 are learning data. In this case,
we obtained w1 = −0.49, w2 = −0.58, w3 = −0.07, by = 0.67, and bh = −0.2. Therefore, θ = 0.21 and
b = −0.6. The limit of yt is y∗(0.97).

In Figure 11a, x0 ∼ x4 are the black stars and y0 ∼ y40 are the prediction values (blue line).
Figure 11b shows θ and b. Figure 11c shows the result of Equation (17). In this case, x4. From θ and b,
Equation (17) has one solution. As can be seen in Figure 11, the training data converged to a specific
value after increasing and decreasing. From θ and b, Equation (17) has one solution. As can be seen in
Figure 11, the average value of the learning data gave the predicted value.

(a) Plot of real and predicted values. (b) Solution number region in Case 5.

(c) Plot of z in Equation (17).

Figure 11. Learning data increase and decrease.
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4.6. Case 6: Learning Data Decrease and Increase

Let x0 = −0.95, x1 = −0.98, x2 = −1, x3 = −0.98, and x4 = −0.95. x0 ∼ x4 are learning data.
In this case, we obtained w1 = −0.32, w2 = −0.55, w3 = −0.14, by = −0.58, and bh = 0.28. Therefore,
θ = 0.06 and b = −0.47. The limit of yt is y∗(-0.97).

In Figure 12a, x0 ∼ x4 are the black stars and y0 ∼ y40 are the prediction values (blue line).
Figure 12b shows θ and b. Figure 12c shows the result of Equation (17). In this case, x4. From θ and b,
Equation (17) has one solution. As can be seen in the Figure 12, data increased and converged to a
specific value. From θ and b, Equation (17) has one solution. As can be seen in Figure 12, the average
value of the learning data gave the predicted value.

(a) Plot of real and predicted values. (b) Solution number region in Case 6.

(c) Plot of z in Equation (17).

Figure 12. Learning data decrease and increase.

4.7. Case 7: Learning Data Vibrate

Let x0 = 1, x1 = −1, x2 = 1, x3 = −1, and x4 = 1. x0 ∼ x4 are learning data. In this case,
we obtained w1 = 0.5, w2 = 11.74, w3 = −5.15, by = 0, and bh = 2.48. Therefore, θ = 0.71 and b = 2.48
The limit of yt is y∗(0.5).

In Figure 13a, x0 ∼ x4 are the green circles, y0 ∼ y4 are the black stars, and y4 ∼ y40 are the
prediction values (blue line). In Figure 13a, the reason that the value of learning data (xt) and the
values of the learning result (yt) are different is that the RNN structure was simple, and sufficient
learning was not achieved. In future work, we aim to study the RNN structure to learn these complex
learning data well. Figure 13b shows θ and b. Figure 13c shows the result of Equation (17). In this
case, x4. From θ and b, Equation (17) has one solution. As can be seen in Figure 13, data increased
and converged to a specific value. In this case of θ and b, the solution of Equation (17) should be one.
However, two contents are contradictory because learning data should be presented in two cases,
1 and −1. As a result, the cost function only increased.
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(a) Plot of real and predicted values. (b) Solution number region in Case 7.

(c) Plot of z in Equation (17).

Figure 13. Learning data vibrate.

5. Conclusions

In this paper, we interpreted the structure of the underlying the RNN and, on this basis, we found the
principles that the RNN could predict. A basic RNN works like a time series in a very narrow range of
variables. In a general range, a nonlinear function of which the maximum and minimum are specified
causes the value of a function to fall within an iterative range. Because the function value is repeated within
a certain range, the predicted value behaves like fixed-point iteration. In other words, we used the tanh
(activation) function, so that the value was in the range of−1 to 1, and the absolute value of the predicted
value in this range was less than 1. As a result, as the prediction value was repeated, the prediction
value converged to a specific value. Through this paper, we found that the basic operating principle of
a RNN is the operation principle of the time series, which we know as linear analysis and fixed-point
iteration, which is nonlinear. In general, the solution of Equation (17) was one of the numerical calculations.
Therefore, the present structure could not be solved in the case of numerical experiment Case 7 (learning
data vibration). To solve this problem, it is necessary to diversify the structure, increase the number of
layers, and switch to a vector structure. Next, we aim to further study RNNs in vector structures.
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