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Abstract: This paper introduces a new family of asymmetric distributions that allows to fit unimodal
as well as bimodal and trimodal data sets. The model extends the normal model by introducing
two parameters that control the shape and the asymmetry of the distribution. Basic properties of
this new distribution are studied in detail. The problem of estimating parameters is addressed by
considering the maximum likelihood method and Fisher information matrix is derived. A small
Monte Carlo simulation study is conducted to examine the performance of the obtained estimators.
Finally, two data set are considered to illustrate the developed methodology.
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1. Introduction

Probability distributions for modeling data with high asymmetry and bimodality have been
proposed by several authors. They stand out those distributions that have been supported under the
general structure of the skew-symmetric probability density function (pdf) given by

fSS(z; λ) = 2 f (z)F (λz), z ∈ R, (1)

where f (·) is a symmetric pdf, F (·) is an absolutely continuous symmetric cumulative distribution
function (cdf) and λ ∈ R is a shape parameter. A particular unimodal case of density function given in
(1) is the skew-normal (SN) distribution [1], which has pdf given by

fSN(z; λ) = 2φ(z)Φ(λz), z ∈ R, (2)

where φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively. Among the
densities of bimodal type supported under general structure (1), it can be stood out the proposals of
Arnold et al. [2], Gómez et al. [3] and Kim [4]. Based on the alpha-power family of distributions by
Durrans [5] with pdf given by

fAP(z; α) = α f (z)
{
F (z)

}α, z ∈ R, (3)

whereF (·) is a cdf absolutely continuous, f = dF and α ∈ R+ is a shape parameter, Bolfarine et al. [6]
studied a new bimodal distribution. Other proposals for fitting data with bimodal behavior have
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been considered by Elal-Olivero [7], Elal-Olivero et al. [8] and Ma and Genton [9]. For example,
Ma and Genton [9] introduced the family of distributions with pdf

f (z) = 2φ(z)Φ
(
w(z)

)
, z ∈ R, (4)

where φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively; and w(z) is
a polynomial of odd order. Elal-Olivero et al. [8] defined the bimodal elliptical skew-normal (BESN)
model by multiplying the pdf of the SN distribution by a polynomial of even order resulting the pdf
given by

fBESN(z; α) = 2
1 + αz2

1 + α
φ(z)Φ(λz), z ∈ R, (5)

where λ ∈ R, is an asymmetry parameter, and α ≥ 0 is a shape parameter. They showed that the model
fits data of bimodal type for α > 0. The case α = 0 is reduced to the SN distribution and for α = λ = 0,
the standard normal distribution is obtained. An asymmetric extension of the bimodal-normal model
which has pdf given by

fBN(z) = z2φ(z), z ∈ R, (6)

was proposed by Elal-Olivero [7]. This extension is called the alpha-skew-normal (ASN) distribution
and its pdf is

fASN(z; α) =
(1− αz)2 + 1

2 + α2 φ(z), z ∈ R, (7)

for α ∈ R. This model fits data with bimodal shape for α 6= 0, and for α = 0 the model is reduced to
the normal distribution. Properties of the model and the statistical inference for the parameters can be
seen in Elal-Olivero [7]. Recently Shafiei et al. [10] presented a generalization of the ASN model by
adding a parameter β resulting a more general and flexible model. This addition allows to modeling
data sets with the possibility of until four modes and model is denominated alpha-beta skew-normal
(ABSN). The pdf of the ABSN model is given by

fABSN(z; α) =
(1− αz− βz3)2 + 1
α2 + 15β2 + 6αβ + 2

φ(z), x ∈ R, (8)

where α, β ∈ R. Note that, for β = 0 the ASN model of Elal-Olivero [7] is obtained, and for α = β = 0
the normal distribution is followed.

One of the great disadvantages of the widely known SN model by Azzalini [1], is that the
information matrix is singular when λ = 0. This same characteristic is presented by the BESN model
for the case α = λ = 0. The bimodal models by Arnold et al. [2] and Gómez et al. [3] also present the
problem of singularity of the information matrix. Elal-Olivero [7] shows that ASN distribution has
singular information matrix when the shape parameter α is equal to zero, and given that ABSN model
of Shafiei et al. [10] contains the ASN model as a particular case, it can be shown that for α = β = 0,
the ABSN model also has singular information matrix, a situation also presented by the proposal
of Ma and Genton [9]. In this way, models of bimodal type that result from including polynomials
of even order in the density of normal or skew-normal model; or polynomials of odd order in the
argument of skew-normal model, acquire the same characteristic of the skew-normal model in its
information matrix; situation that also happens with those models of bimodal type that contain this
model as a special case, as it happens with the proposals of Arnold et al. [2] and Gómez et al. [3].

On the other hand, Pewsey et al. [11] studied the alpha-power (AP) model given in (3) for the
special case F (·) = Φ(·), which is denominated the power-normal (PN) model and they found that α

values near to one (greater and smaller than one), the information matrix is non-singular, being this
an advantage in the inferential process and the asymptotic properties of the maximum likelihood
estimator (MLE). Further, Martínez-Flórez et al. [12] extended the SN distribution to the alpha-power
family of distributions, and they obtained a more flexible model in terms of asymmetry and kurtosis
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than SN and PN models. The bimodal model based on the PN distribution of Bolfarine et al. [6] also
presents the same property of information matrix non-singular. Hence, given the characteristics of the
information matrix of the alpha-power family of distributions, in this paper we propose an extension
alpha-power of a multimodal model by using a polynomial of even degree. The introduced model is
a more flexible distribution in terms of asymmetry and kurtosis than those existing in the literature
and with information matrix non-singular.

The rest of this paper is organized as follows—Section 2 presents the beta-skew alpha-power
model and discusses its main properties. In particular, we show how bimodality and trimodality shape
are obtained. We consider a location-scale family and the inference process is carried out by using
maximum likelihood method. In addition, some properties of the special case of the beta-skew-normal
model are studied in details. In Section 3 a small Monte Carlo simulation is presented. In Section 4
two real data application are reported and compares it with several rival models.

2. The Asymmetric Beta-Skew Alpha-Power Distribution

In this section, we introduce a new multimodal asymmetric distribution by considering the
asymmetric beta-skew-normal (BSN) model and by incorporating an additional parameter. The new
family of distributions extend the usual normal model and others distributions are also particular
cases from this model.

Definition 1. The random variable Z is said to have a beta-skew alpha-power distribution, which we will denote
as Z ∼ BSAP(β, α), if Z has the following pdf

fBSAP(z; β, α) = α fBSN(z; β) [FBSN(z; β)]α−1 , z ∈ R, (9)

for α > 0 and β ∈ R. The functions fBSN(z; β) and FBSN(z; β) are the pdf and cdf of the BSN distribution
given by

fBSN(z; β) =

(
1− βz3)2

+ 1
2 + 15β2 φ(z) (10)

and

FBSN(z; β) = Φ(z) +
4β− 15β2z + 2βz2 − 5β2z3 − β2z5

2 + 15β2 φ(z), (11)

respectively. Here, φ(·) and Φ(·) are de pdf and cdf of the standard normal distribution, respectively.

Figure 1 depicts the shape of the beta-skew alpha-power (BSAP) distribution for some selected
values of α and β parameters. It can see from the graph that BSAP distribution has unimodal,
bimodal and multimodal (three modes) behavior. Notice that, when β increases, the density function
takes a bimodal shape. The graphs in the figure also show a bimodal shape for great values of α.

If Z ∼ BSAP(β, α), the following properties are deduced immediately from the definition

(i) If α = 1, then Z ∼ BSN(β).
(ii) If β = 0, then Z ∼ PN(α).
(iii) If α = 1 and β = 0, then Z ∼ N(0, 1).

Proposition 1. The density function (9) has at most three modes.

Proof. Given that α is an asymmetry parameter, without loss of generality we take α = 1 (the case of
the BSN distribution) and by differentiating Equation (10) we obtain

f ′BSN(z; β) = − zφ(z)
2 + 15β2

(
β2z6 − 6β2z4 − 2βz3 + 6βz + 2

)
, (12)
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thus, f ′BSN(z; β) has at most seven zeros. It can be seen that for 0 < |β| < +∞, the value z = 0 is a zero
of the f ′BSN(z; β) function and it can be shown that f ′′BSN(0; β) = −

√
2/π/(2 + 15β2) < 0, therefore,

at z = 0 occurs a maximum when 0 < |β| < +∞. By analyzing the polynomial of the BSN model,
we making g(z) = (1− βz3)2 + 1 = β2z6 − 2βz3 + 2, hence g(−z) = β2z6 + 2βz3 + 2. For β > 0 the
number of positive roots of the polynomial g(z) is two, while g(−z) does not change of sign, hence,
the polynomial does not have negative roots. It is concluded that the polynomial has at most four
complex roots. For β < 0, the polynomial would have two or no negative roots and four complex roots.
Using computational methods, it can be shown that for values of β ∈ [0, 1000] the resulting polynomial
from the derivative β2z6 − 6β2z4 − 2βz3 + 6βz + 2 has at least two non-real complex roots, therefore,
it would have at most four real roots, and therefore it is concluded that at most they would have three
maximums in the model.
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Figure 1. Density function of BSAP(β, α) distribution. (a) BSAP(0.25, α) for α = 0.75 (dotted-dashed
line), α = 1.0 (dotted line), α = 2.0 (dashed line) and α = 3.0 (solid line). (b) BSAP(0.75, α) for
α = 0.75 (dotted-dashed line), α = 1.0 (dotted line), α = 2.0 (dashed line) and α = 3.0 (solid line).
(c) BSAP(1.5, α) for α = 0.75 (dotted-dashed line), α = 1.0 (dotted line), α = 2.0 (dashed line) and
α = 3.0 (solid line).

Proposition 2. Let Z ∼ BSAP(β, α),
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(i) The cdf of Z, which we denote by FBSAP(t, β, α), is given by

FBSAP(z, β, α) =

[
Φ(z) +

4β− 15β2z + 2βz2 − 5β2z3 − β2z5

2 + 15β2 φ(z)
]α

. (13)

(ii) The survival function, denoted by SBSAP(z), is

SBSAP(z, β, α) = 1−
[

Φ(z) +
4β− 15β2z + 2βz2 − 5β2z3 − β2z5

2 + 15β2 φ(z)
]α

. (14)

(iii) The Hazard function hBSAP(z, β, α), is

hBSAP(z, β, α) =
fBSAP(z, β, α)

SBSAP(z, β, α)
. (15)

Figure 2 shows the shape of the survival function for some selected values of α and β. In these
graphs, it can be seen that the curve becomes increasingly horizontal in the interval (0, 1) as β increases,
and the probability of survival is greater for larger α values when β is constant. It is also important to
note that, regardless of the values of β and α, the survival approaches to zero when z tends to infinite.

Proposition 3. Let Z ∼ BSAP(β, α), then the k-th moment of Z is given by

E
[
Zk] = α

2 + 15β2

∫ +∞

−∞

(
2zr − 2βzr+3 + β2zr+6

)
φ(z) [FBSN(z; β, α)]α−1 dz. (16)

Proof. The proof is direct from definition of expected value.

The expected value, the variance and the indices of skewness and kurtosis of the BSAP
model, which are denoted by µ, σ2, γ1 and γ2 respectively, can be obtained from (16) by using
the following expressions

(i) µ = µ1.
(ii) σ2 = µ2 − µ2

1.

(iii) γ1 =
µ3 − 3µ1µ2 + 2µ3

1(
µ2 − µ2

1
)3/2 .

(iv) γ2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1(

µ2 − µ2
1
)2 − 3.

Here µk = E[Zk] for k = 1, 2, 3, 4.

Remark 1. We calculated γ1 and γ2 by using (16) and numerical integration for the BSAP(β, α) model for
α ∈ (0.01, 1000) and β ∈ (−50, 50). We obtain

− 3.17 < γ1 < 1.15 and 0.00014 < γ2 < 31.18. (17)

Notice that, the length of the admissible intervals for the skewness and the kurtosis
parameters of the BSAP distribution are larger than the corresponding intervals of the
ASN, the SN, the PN and the skew-normal alpha-power (SNAP) distributions, which are
(−0.811, 0.811), (−1.300, 0.7489); (−0.995, 0.995), (3.000, 3.869); (−0.6115, 0.9007), (−1.283, 1.3556)
and (−0.14676, 0.9953), (−1.5328, 2.4386), respectively. See References [1,7,11,12] for more details.

Some additional properties for the special case when α = 1 are presented to follow.
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Figure 2. Survival function of BSAP(β, α) distribution. (a) BSAP(0.25, α) for α = 0.75 (dotted-dashed
line), α = 1.0 (dotted line), α = 2.0 (dashed line) and α = 3.0 (solid line). (b) BSAP(0.75, α) for
α = 0.75 (dotted-dashed line), α = 1.0 (dotted line), α = 2.0 (dashed line) and α = 3.0 (solid line).
(c) BSAP(1.5, α) for α = 0.75 (dotted-dashed line), α = 1.0 (dotted line), α = 2.0 (dashed line) and
α = 3.0 (solid line).

Lemma 1. Let Z ∼ BSN(β), then

E
[
Z2k] = 2 + β2(2k + 1)(2k + 3)(2k + 5)

2 + 15β2

k

∏
j=1

(2j− 1), for k = 1, 2, . . . (18)

E
[
Z2k−1] = −2β(2k + 1)

2 + 15β2

k

∏
j=1

(2j− 1), for k = 1, 2, . . . (19)
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Proof. Knowing that E
[
Y2k
]
=

k

∏
j=1

(2j− 1) and E
[
Y2k−1

]
= 0, for k = 1, 2, . . . when Y ∼ N (0, 1),

we obtain

E
[
Z2k] = 1

2 + 15β2

(
2E
[
Y2k]+ β2E

[
Y2(k+3)]), with Y ∼ N(0, 1)

=
1

2 + 15β2

(
2

k

∏
j=1

(2j− 1) + β2
k+3

∏
j=1

(2j− 1)

)

=
1

2 + 15β2

(
2

k

∏
j=1

(2j− 1) + β2
k

∏
j=1

(2j− 1)(2k + 1)(2k + 3)(2k + 5)

)

=
2 + β2(2k + 1)(2k + 3)(2k + 5)

2 + 15β2

k

∏
j=1

(2j− 1),

E
[
Z2k−1] = 1

2 + 15β2

(
2E
[
Y2k−1]− 2βE

[
Y2(k+1)]+ β2E

[
Y2(k+3)−1])

=
1

2 + 15β2

(
−2βE

[
Y2(k+1)]) =

1
2 + 15β2

(
−2β

k+1

∏
j=1

(2j− 1)

)

=
−2β(2k + 1)

2 + 15β2

k

∏
j=1

(2j− 1).

Lemma 2. Let µ, σ2, γ1 and γ2 the mean, variance and the indices of skewness and kurtosis, respectively of the
BSN(β) model,

(i) µ =
−6β

2 + 15β2 .

(ii) σ2 =
1575β4 + 204β2 + 4

(2 + 15β2)
2 .

(iii) γ1 =
21600β5 + 2088β3 − 48β

(1575β4 + 204β2 + 4)3/2 .

(iv) γ2 =
3189375β8 + 1474200β6 + 182952β4 + 6624β2 + 48

(4 + 204β2 + 1575β4)
2 .

2.1. Location and Scale Extension for BSAP Model

We can also consider a generalization of the BSAP(β, α) distribution by adding location and scale
parameters. Next definition gives the generalization of the BSAP model.

Definition 2. Let Z ∼ BSAP(β, α). The beta-skew alpha-power density of location and scale is defined as the
distribution of X = ξ + ηZ, for ξ ∈ R and η > 0. The corresponding density function is given by

fBSAP(x; θ) =
α
(
(1− βz3)2 + 1

)
φ(z)

σ(2 + 15β2)

×
[

Φ(z) +
4β− 15β2z + 2βz2 − 5β2z3 − β2z5

2 + 15β2 φ(z)
]α−1

, (20)

where z = (x− ξ)/η and θ = (ξ, η, β, α)>. We denote this as X ∼ BSAP(θ).
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The distribution function associated to the density (20) is given by

FBSAP(x; θ) =

[
Φ(z) +

4β− 15β2z + 2βz2 − 5β2z3 − β2z5

2 + 15β2 φ(z)
]α

,

and the k-th moment of the random variable X is

E
[
Xk] = k

∑
j=0

(
k
j

)
ξk−jη jE

[
Zj],

where Z ∼ BSAP(β, α).

2.2. Maximum Likelihood Estimation for BSAP Model

We consider a random sample X = (X1, . . . , Xn)> of size n, from the BSAP(θ) distribution,
where θ = (ξ, η, β, α)>. The log-likelihood function is given by

`(θ; X) = n log α− n log η − n log
(

2 + 15β2
)
− n log(

√
2π)

+
n

∑
i=1

log
[(

1− βz3
i

)2
+ 1
]
− 1

2

n

∑
i=1

z2
i + (α− 1)

n

∑
i=1

logFBSN (zi) ,

which is a continuos function in each parameter. Thus, by differentiating the log-likelihood function
we obtain the following likelihood equations

∂`(θ; X)
∂ξ

=
n

∑
i=1

[
6β
(
1− βz3

i
)

z2
i(

1− βz3
i
)2

+ 1
+ zi

]
− (α− 1)

n

∑
i=1

fBSN (zi)

FBSN (zi)
= 0, (21)

∂`(θ; X)
∂η

=
n

∑
i=1

[
6β
(
1− βz3

i
)

z3
i(

1− βz3
i
)2

+ 1
− 1 + z2

i

]
− (α− 1)

n

∑
i=1

zi fBSN (zi)

FBSN (zi)
= 0, (22)

∂`(θ; X)
∂β

= −2
n

∑
i=1

[
z3

i
(
1− βz3

i
)(

1− βz3
i
)2

+ 1
+

15β

2 + 15β2

]
+ (α− 1)

n

∑
i=1

Wi fBSN (zi)

FBSN (zi)
= 0, (23)

∂`(θ; X)
∂α

=
n
α
+

n

∑
i=1

logFBSN(zi) = 0. (24)

where Wi = (8− 60β2− 60βzi + 4z2
i − 30β2z2

i − 20βz3
i − 4βz5

i )/(2+ 15β2)2. The solutions of likelihood
Equations (21)–(24) provide the maximum likelihood estimators (MLEs) of ξ, η, α and β, which can be
obtained by numerical method such as Newton-Rapshon type procedure. Under certain regularity
conditions, the elements of the Fisher information may be calculated as

iθpθq = −E
(

∂2`(θ; X)
∂θp∂θq

)
, for p, q = 1, 2, 3, 4.

The Cramér–Rao bound states that the inverse of the Fisher information is a lower bound on the
variance of any unbiased estimator. Thus, we can find a lower bound for the standard errors (SE)
of the MLEs as the square root of the diagonal elements of the observed Fisher information matrix.
The observed information matrix can be obtained by taking the second partial derivatives of the
log-likelihoiod function and multiplying by −1, that is,
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jθpθq = −
∂2`(θ; X)

∂θp∂θq
, for p, q = 1, 2, 3, 4,

where θ1 = ξ, θ2 = η, θ3 = β, and θ4 = α. The elements of the expected and observed Fisher
information |I(θ)| and |J(θ)|, respectively, are given in the Appendix A. It can be shown that, for β = 0
and α = 1 (the normal distribution case), we have that |I(θ)| 6= 0, therefore, I(θ) is non-singular.
Hence, covariance matrix of the parameter vector is the inverse of the Fisher information matrix, that is,
Var(θ̂) = I−1(θ). Thus, the MLE θ̂ converges to a normal distribution, that is

θ̂
d→ N4(θ, I−1(θ)).

Remark 2. The Fisher information matrix for the BSN model is given by

I(θ) =



36β2d4 − 75β2 + 2
σ2(2 + 15β2)

36β2d5 + 6β

σ2(2 + 15β2)

−12βd5 − 6
σ(2 + 15β2)

36β2d5 + 6β

σ2(2 + 15β2)

36β2d6 − 330β2 + 4
σ2(2 + 15β2)

12β(15− d6)

σ2(2 + 15β2)

−12βd5 − 6
σ(2 + 15β2)

12β(15− d6)

σ2(2 + 15β2)

60β2d6 + 8d6 − 900β2

(2 + 15β2)2


where dk = E

[(
Zk(1 − βZ3)2)/((1 − βZ3)2 + 1

)]
, for k = 4, 5, 6, with Z ∼ N (0, 1), In particular,

if β = 0 then

I(θ) =


1
σ2 0

−3
σ

0
2
σ2 0

−3
σ

0 15


whose determinant is |I(θ)| = 12/σ4 6= 0, hence, I(θ) is non-singular and Var(θ̂) = I−1(θ). Hence, it follows
that the MLE θ̂ converges to the normal distribution

θ̂
d→ N3(θ, I−1(θ)).

3. Simulation Study

In order to study the performance of the MLEs of the parameters in BSAP model, we conducted
a Monte Carlo simulation study with samples sizes n = 40, 80, 120, 160 and 320. The true values of
the parameters were taken as ξ = 0, η = 1, α = 0.5, 2.0 and 5.0; and β =1.0, 1.75 and 3.0. For each
combination of parameters and sample sizes, we generated 5000 samples from the BSAP model.
To evaluate estimators performance were considered the absolute value of the bias (B), and the squared
root of the mean squared error (RMSE). They are given by

B(θ̂i) =
1

5000

5000

∑
j=1

(
θ̂
(j)
i − θi

)
, RMSE(θ̂i) =

√√√√ 1
5000

5000

∑
j=1

(
θ̂
(j)
i − θi

)2
,

respectively, where θ̂
(j)
i is the estimate of θi for the j-th sample, for θi ∈ θ = (ξ, η, β, α)>. MLEs were

computed by using optim function in R Development Core Team [13].
From Table 1 we can see that, as the sample sizes increase, the bias (in absolute value) and the

squared root of the mean squared error decrease, indicating a good behavior of the MLEs of the
parameters in BSAP model. Then, it follows that for large sample sizes, MLEs are asymptotically consistent.
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Table 1. Asymptotic behavior of the MLEsfor the BSAP(ξ, η, β, α) model.

ξ̂ η̂ α̂ β̂

α β n |B| RMSE |B| RMSE |B| RMSE |B| RMSE

0.5 1.0 40 0.0140 0.2647 0.0120 0.0808 2.2831 6.1943 0.0078 0.1752
80 0.0105 0.1791 0.0053 0.0580 0.6356 3.4120 0.0061 0.1259

120 0.0065 0.1433 0.0040 0.0461 0.2566 2.2942 0.0017 0.0940
160 0.0036 0.1212 0.0018 0.0398 0.0996 0.7387 0.0024 0.0803
320 0.0010 0.0835 0.0011 0.0270 0.0332 0.1650 0.0014 0.0557

1.75 40 0.0197 0.2170 0.0093 0.0728 6.4625 9.3573 0.0047 0.1543
80 0.0165 0.1518 0.0064 0.0515 3.9608 8.2540 0.0023 0.1078

120 0.0113 0.1270 0.0046 0.0416 2.6714 7.6473 0.0018 0.0884
160 0.0097 0.1074 0.0026 0.0355 1.6530 6.1734 0.0001 0.0751
320 0.0044 0.0748 0.0014 0.0254 0.3783 2.3064 0.0001 0.0532

3.0 40 0.0152 0.1938 0.0085 0.0685 9.1202 11.7713 0.0063 0.1449
80 0.0146 0.1371 0.0048 0.0479 8.2167 11.0228 0.0023 0.1007

120 0.0125 0.1127 0.0034 0.0389 7.6172 10.9091 0.0024 0.0819
160 0.0111 0.0986 0.0029 0.0334 6.4907 10.2152 0.0015 0.0718
320 0.0094 0.0709 0.0014 0.0240 3.4155 8.9261 0.0013 0.0504

2.0 2.0 40 0.0192 0.2110 0.0083 0.0615 1.1333 5.4692 0.0195 0.4858
80 0.0079 0.1414 0.0029 0.0428 0.1469 1.3480 0.0148 0.3384

120 0.0070 0.1127 0.0027 0.0340 0.0632 0.6112 0.0044 0.2674
160 0.0036 0.0933 0.0012 0.0286 0.0339 0.1686 0.0065 0.2219
320 0.0021 0.0667 0.0008 0.0205 0.0171 0.1122 0.0074 0.1594

1.75 40 0.0239 0.1801 0.0066 0.0523 6.4470 11.389 0.0102 0.4745
80 0.0144 0.1276 0.0035 0.0368 2.4806 7.4704 0.0001 0.3290

120 0.0084 0.1012 0.0018 0.0288 1.3470 5.6921 0.0077 0.2633
160 0.0039 0.0875 0.0011 0.0256 0.7014 4.0847 0.0079 0.2326
320 0.0026 0.0589 0.0011 0.0180 0.1161 0.6428 0.0041 0.1546

3.0 40 0.0171 0.1697 0.0042 0.0506 11.8522 12.4302 0.0224 0.4768
80 0.0151 0.1173 0.0028 0.0341 7.8559 12.6750 0.0085 0.3171

120 0.0123 0.0948 0.0031 0.0276 6.7534 11.9330 0.0155 0.2591
160 0.0092 0.0860 0.0015 0.0246 5.3014 11.2255 0.0052 0.2308
320 0.0053 0.0598 0.0012 0.0172 2.2874 7.9028 0.0073 0.1593

5.0 1.0 40 0.0135 0.4798 0.0023 0.1224 3.3512 8.2619 0.8576 4.6909
80 0.0070 0.2775 0.0029 0.0743 0.9887 4.8077 0.2170 1.7650

120 0.0035 0.2031 0.0036 0.0556 0.3442 2.8067 0.1157 0.9897
160 0.0027 0.1646 0.0029 0.0459 0.1134 1.1807 0.0759 0.7488
320 0.0027 0.1103 0.0014 0.0308 0.0270 0.1628 0.0398 0.4915

1.75 40 0.0740 0.6027 0.0108 0.1297 9.3726 10.9680 12.947 6.5324
80 0.0118 0.3007 0.0003 0.0712 6.8694 10.6797 0.3210 2.4019

120 0.0061 0.2077 0.0018 0.0522 5.0132 10.3183 0.1211 1.3300
160 0.0051 0.1609 0.0021 0.0416 3.5124 8.9549 0.0546 0.8401
320 0.0024 0.1044 0.0021 0.0278 0.9693 4.8586 0.0151 0.5193

3.0 40 0.1627 0.6833 0.0280 0.1400 10.8613 12.6877 1.9876 8.3799
80 0.0219 0.3255 0.0019 0.0720 10.8081 11.4270 0.4140 3.1350

120 0.0112 0.2030 0.0004 0.0495 9.0012 10.9669 0.1059 1.2182
160 0.0060 0.1618 0.0021 0.0403 8.5141 9.8583 0.0573 0.9396
320 0.0009 0.1039 0.0023 0.0266 6.1416 8.0937 0.0197 0.5351

4. Real Data Applications

In this section, we illustrate the proposed model by considering two real data sets. In the first
application we consider the data on the otis IQ scores of 52 non-white males hired by a large insurance
company in 1971. In the second application we use the geyser data set, available in R Development
Core Team [13].
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4.1. Application 1: The Otis IQ Scores Data

These data set have been analyzed previously by Gupta and Gupta [14] and Sharafi and
Behboodian [15]. See, Roberts [16] for more details. Table 2 shows the statistic summary for the otis
scores data. The results shows that the data present positives skewness and kurtosis lower than the
normal model, likewise, the histogram in Figure 3 shows that the data have more than one mode.

Table 2. Statistic summary for the otis IQ scores data.

Mean Variance Skewness Kurtosis

106.653 8.309 0.364 2.337

We fit the BSN and BSAP models to analyze this data set. To compare the proposed model, we also
fit the multimodal alpha-beta skew-normal (ABSN) model by Shafiei et al. [10], and the asymmetric
bimodal model (ETN) of Arnold et al. [2]. The fit of these models is carried out by using the maximum
likelihood method and optim function of [13]. Table 3 shows the parameter estimates, together with
their corresponding standard errors (SE). To compare fitted models, we use the AIC Akaike [17],
corrected CAIC, BIC by Hastie and Tibshirani [18] and the HQIC or information criterion of Hannan
and Quinn [19], namely

AIC = −2 ∗ ˆ̀(·) + 2p, CAIC = AIC +
2p(p + 1)

n− (p + 1)
, BIC = −2 ∗ ˆ̀(·) + p log(n)

and
HQIC = AIC− 2p + 2p log(log (n)),

where p is the number of parameters in the considered model. According to any of these criteria,
the BSAP and BSN seem to provide better fit to the otis IQ scores data than the ABSN and ETN models.

Table 3. Parameter estimates (SE) for the fitted models to the otis IQ scores data.

Estimate BSAP BSN ABSN ETN

ξ̂ 116.98 (1.010) 108.210 (0.946) 110.442 (0.459) 110.812 (1.336)
η̂ 2.764 (0.338) 4.160 (0.280) 3.625 (0.187) 8.48 (0.985)
β̂ −0.326 (0.107) 0.367 (0.076) 1.225 (0.611) 1.482 (1.025)
α̂ 0.120 (0.040) −0.828 (0.177) −0.592 (0.280)
AIC 366.97 368.99 400.74 370.92
CAIC 367.82 369.49 401.59 371.77
BIC 374.78 374.84 408.55 378.72
HQIC 369.96 371.23 403.73 373.91

We can use the likelihood ratio (LR) test statistic to confirm the use the BSAP model instead of the
BSN model, so we consider the following hypotheses,

H0 : α = 1 (BSN(ξ, η, β)) vs H1 : α 6= 1 (BSAP(ξ, η, β, α)),

with LR test statistic,

Λ =
LBSN(θ̂; X)
LBSAP(θ̂; X)

whereLBSN(·) andLBSPN(·) denote the likelihood functions of the BSN and BSAP models, respectively.
We obtain the value−2 log(Λ) = −2(`BSN(θ̂; X)− `BSAP(θ̂; X)) = 4.0166, and comparing this quantity
with χ2

1 = 3.841, the null hypotheses is rejected, that is, the BSAP model is more flexible than the
asymmetric BSN model, taking into account the test results of Hartigan and Hartigann [20] and
Hartigan [21].
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Figure 3. (a) Histogram for the otis data set. BSAP model (solid line), BSN model (dashed line),
ETN model (dotted line). (b) Empiric cdf for BSAP model (dashed line), BSN (dotted lines) and ETN
model (dotted-dashed line). (c) QQplot for fitted BSAP model. (d) QQplot fitted BSN model.

Figure 3a,b show the behavior of the fitted models and the empirical cdf for the ETN, BSN and
BSAP models. It can be seen from the figure that the BSAP model has the best fit against the ABSN,
BSN and ETN models, while the BSN model has a better fit than the model ETN. Also, the graphs in
Figure 3c,d show the QQplots for the BSAP and BSN models.

4.2. Application 2: Old Faithful Geyser Data

For the second application, we consider a data set consisting of 272 observations about the wait
times between the eruptions (in minutes) of the old faithful geyser in Yellowstone National Park,
Wyoming, U.S. Data set are available in the libraries stats and MASS of R Development Core Team [13].
More information of these data can be seen in Azzalini and Bowman [22] who takes a look at this set of
data. Table 4 shows the summary statistic for data set. The results shows that the data set present negative
asymmetry and kurtosis below the normal model.

In addition to the BSAP and BSN models, we also fit the ETN and the alpha-skew-normal (ASN)
models, see Elal-Olivero [7]. The results of the fit of these models can be seen in Table 5. The standard
errors of the estimators were obtained by using the observed information matrix, and again, to compare
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the fited models, we use the AIC, CAIC, BIC and CAIC criteria. According to any of these criteria,
BSAP model seems to provide better fit to the old faithful gayser data than BSN, ASN and ETN models.

Table 4. Statistic summary for the the old faithful geyser data.

Mean Variance Skewness Kurtosis

70.897 13.594 −0.414 1.843

Table 5. Parameters estimates(SE) for the fitted models to the old faithful gayser data.

Estimate BSAP BSN ASN ETN

ξ̂ 61.969 (0.850) 68.052 (0.376) 67.228 (0.242) 66.899 (0.916)
η̂ 6.778 (0.231) 5.836 (0.122) 8.109 (0.204) 13.036 (0.589)
β̂ 0.672 (0.064) −0.679 (0.066) 1.547 (0.336)
α̂ 2.637 (0.267) 25.111 (8.807) 0.337 (0.107)
AIC 2092.42 2099.31 2127.04 2156.88
CAIC 2092.56 2099.39 2127.12 2157.02
BIC 2106.85 2110.12 2137.86 2171.31
HQIC 2098.21 2103.65 2131.38 2162.67

We tested the hypotheses

H0 : α = 1 (BSN(ξ, η, β)) vs H1 : α 6= 1 (BSAP(ξ, η, β, α)),

with LR test statistic,

Λ =
LBSN(θ̂; X)
LBSAP(θ̂; X)

whereLBSN(·) andLBSPN(·) denote the likelihood functions of the BSN and BSAP models, respectively.
We obtain the value −2 log(Λ) = −2(`BSN(θ̂; X)− `BSAP(θ̂; X)) = 8.884, and comparing this quantity
with χ2

1 = 3.841, the null hypotheses is rejected, that is, the BSAP model is more flexible than the
asymmetric BSN model.

Figure 4 shows the behavior of the fitted models and the empirical cdf for the ETN, BSN and
BSAP models. It can be seen that the BSAP model has the best fit against the BSN and ETN models,
while the BSN model has a better fit than the ETN model. The graphs in Figure 4 also show the QQplot
for the BSAP model.
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Figure 4. (a) Histogram for the old faithful geyser data. BSAP model (solid line), BSN model (dotted
line), ETN model dashed( line). (b) Empiric cdf for BSAP model (dashed line), BSN (dotted lines) and
ETN model (dotted-dashed line). (c) QQplot for fitted BSAP model.

5. Conclusions

In this paper, a new class of unimodal, as well as bimodal and trimodal, skew distribution was
proposed. The main statistical properties of the model and the problem of the parameters estimation
are studied in details by using maximum likelihood method. The model extends the usual normal
distribution to trimodal asymmetric case and the BSN model is also a special case. Furthermore,
we have shown that such distribution is more flexible than certain rival models and it fits better to
some real data sets.
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Appendix A. Information Matrix for the BSAP Model

In this section, expressions for the elements of the observed and expected information matrix of
the BSAP model are provided. The observed elements are denoted by jξξ , jξη , iξβ, iξα, jηη , jηβ, jηα, jββ,
jβα and jαα, and they can be calculated by using

jθpθq = −
∂2`(θ; X)

∂θp∂θq
, for p, q = 1, 2, 3, 4.

After some algebraic manipulations we obtain
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jξξ = − 1
η2

n

∑
i=1

6βzi
(
5βz3

i − 2
)(

1− βz3
i
)2

+ 1
−

36β2z4
i
(
1− βz3

i
)2[(

1− βz3
i
)2

+ 1
]2 − 1


+

(α− 1)
η

n

∑
i=1

[
6βz2

i
(
1− βz3

i
)

2 + 15β2
φ (zi)

FBSN (zi)
+

zi fBSN (zi)

FBSN (zi)
+

f 2
BSN (zi)

F 2
BSN (zi)

]
,

jξη = − 2
η2

n

∑
i=1

9βz2
i
(
2βz3

i − 1
)(

1− βz3
i
)2

+ 1
−

18β2z5
i
(
1− βz3

i
)2[(

1− βz3
i
)2

+ 1
]2 − zi


+

(α− 1)
η2

n

∑
i=1

[
6βz3

i
(
1− βz3

i
)

2 + 15β2
φ (zi)

FBSN (zi)
+

(
z2

i − 1
)

fBSN (zi)

FBSN (zi)
+

zi f 2
BSN (zi)

F 2
BSN (zi)

]
,

jξβ = − 6
η

n

∑
i=1

 z2
i
(
1− 2βz3

i
)(

1− βz3
i
)2

+ 1
+

2βz5
i
(
1− βz3

i
)2[(

1− βz3
i
)2

+ 1
]2


− (α− 1)

σ

n

∑
i=1

[
2z3

i
(
1− βz3

i
)

2 + 15β2
φ (zi)

FBSN (zi)
+

30β

2 + 15β2
fBSN (zi)

FBSN (zi)
+ Wi

φ (zi) fBSN (zi)

F 2
BSN (zi)

]
,

jξα =
1
η

n

∑
i=1

fBSN (zi)

FBSN (zi)
,

jηη = − 1
η2

n

∑
i=1

2βz3
i
(
21βz3

i − 12
)(

1− βz3
i
)2

+ 1
−

36β2z6
i
(
1− βz3

i
)2[(

1− βz3
i
)2

+ 1
]2 + 1− 3z2

i


+

(α− 1)
η2

n

∑
i=1

[
6βz4

i
(
1− βz3

i
)

2 + 15β2
φ (zi)

FBSN (zi)
+

(
z3

i − 2zi
)

fBSN (zi)

FBSN (zi)
+

z2
i f 2

BSN (zi)

F 2
BSN (zi)

]
,

jηβ = − 6
η

n

∑
i=1

[
z3

i
(
1− 2βz3

i
)(

1− βz3
i
)2

+ 1
+

2βz6
i
(
1− βz3

i
)2[(

1− βz3
i
)2

+ 1
]2
]

− (α− 1)
η

n

∑
i=1

[
2z4

i
(
1− βz3

i
)

2 + 15β2
φ (zi)

FBSN (zi)
+

30βzi
2 + 15β2

fBSN (zi)

FBSN (zi)

+
Wiziφ (zi) fBSN (zi)

F 2
BSN (zi)

]
,
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jηα =
1
η

n

∑
i=1

zi fBSN (zi)

FBSN (zi)
,

jββ = −2
n

∑
i=1

[
z6

i(
1− βz3

i
)2

+ 1
−

2z6
i
(
1− βz3

i
)2[(

1− βz3
i
)2

+ 1
]2 − 15

(
2− 15β2)

(2 + 15β2)
2

]

− (α− 1)
n

∑
i=1

φ (zi)

[
Ui

FBSN (zi)
−

W2
i φ (zi)

F 2
BSN (zi)

]
,

jβα = −
n

∑
i=1

Wiφ (zi)

FBSN (zi)
, jαα =

n
α2 ,

where

Ui = −720β + 1800β3 − 120zi + 2700β2zi − 360βz2
i + 900β2z2

i − 40z3
i + 900β2z3

i

− 8z5
i + 180β2z5

i ,

Wi =
8− 60β2 − 60βzi + 4z2

i − 30β2z2
i − 20βz3

i − 4βz5
i

(2 + 15β2)
2 .

The elements of the expected Fisher information matrix can be obtained by using

iθpθq = −E
(

∂2`(θ; X)
∂θp∂θq

)
, for p, q = 1, 2, 3, 4.

and letting

hj = E
[

Zj φ (z)
FBSN (z)

]
, vjk = E

[
Zj
(

fBSN (z)
FBSN (z)

)k
]

,

gjk = E

 Zj[
(1− βz3)

2 + 1
]k

 , ujk = E
[

ZjWkφ (z) fBSN (z)
F 2

BSN (z)

]
,

a = E
[

Uφ (z)
FvBSN (z)

]
, and bk = E

[
Wkφk (z)
F k

BSN (z)

]
,

where Z ∼ BSAP(β, α); we have
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iξξ =
(α− 1)

η

[
6β

2 + 15β2 (h2 − βh5) + v11 + v02

]
− 1

η2

[
6β (5βg4,1 − 2g1,1)− 36β2

(
g4,2 − 2βg7,2 + β2g10,2

)
− 1
]

,

iξη =
(α− 1)

η2

[
6β

2 + 15β2 (h3 − βh6) + v21 − v01 + v12

]
− 2

η2

[
9β (2βg5,1 − g2,1)− 18β2

(
g5,2 − 2βg8,2 + β2g11,2

)
− g1,0

]
,

iξβ = − (α− 1)
η

[
2

2 + 15β2 (h2 − βh6) +
30β

2 + 15β2 v01 + u01

]
− 6

η

[
g2,1 − 2βg3,1 + 2β

(
g5,2 − 2βg8,2 + β2g11,2

)]
,

iξα =
1
η

v01,

iηη =
(α− 1)

η

[
6β

2 + 15β2 (h4 − βh7) + v31 − 2v11 + v22

]
− 1

η

[
2β (21βg6,1 − 12g3,1)− 36β2

(
g6,2 − 2βg9,2 + β2g12,2

)
+ 1− 3g1,0

]
,

iηβ = − (α− 1)
η

[
2

2 + 15β2 (h4 − βh7) +
30β

2 + 15β2 v11 + u11

]
− 6

η

[
g3,1 − 2βg6,1 + 2β

(
g6,2 − 2βg9,2 + β2g12,2

)]
,

iββ = − (α− 1) (a− b1)− 2

[
g6,1 − 2

(
g6,2 − 2βg9,2 + β2g12,2

)
−

15
(
2− 15β2)

(2 + 15β2)
2

]
,

iβα = −b1, iαα = − 1
α2 , iηα =

1
η

v11.
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