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Abstract: This paper introduces a new three-step algorithm to solve the split feasibility problem.
The main advantage is that one of the projective operators interferes only in the final step, resulting
in less computations at each iteration. An example is provided to support the theoretical approach.
The numerical simulation reveals that the newly introduced procedure has increased performance
compared to other existing methods, including the classic CQ algorithm. An interesting outcome of
the numerical modeling is an approximate visual image of the solution set.
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1. Introduction

The split feasibility problem (abbreviated SFP) was first introduced by Censor and Elfving [1]
for solving a class of inverse problems. In their paper, Censor and Elfving produced also consistent
algorithms to solve the newly introduced type of problem. However, their procedure did not benefit
from much popularity, as it was requiring matrix inverses at each step, thus making it less efficient.

Soon enough, Byrne [2] (see also [3]) proposed a new iterative method called CQ-method
that involves only the orthogonal projections onto C and Q (subsets of the Euclidean arithmetic
spaces Rn and Rm, respectively) and it is not requiring the matrix inverse. His study generated
important developments on different directions, based on the fact that the procedure itself has multiple
possible interpretations. For instance, it is well known that the SFP can be naturally rephrased as
a constrained minimization problem. From this perspective, the CQ algorithm is exactly the gradient
projection algorithm applied to the optimization problem. Several studies provided alternative gradient
(projection) algorithms, using selection techniques (see [4,5] for the multiple-sets split equality or feasibility
problems, [6] for split equality and split feasibility problems, or [7] for a self-adaptive method).

In addition, the SPF could be rephrased as a fixed point searching issue, the involved operator
being nonexpansive. This opens to the perspective of using alternative iteration procedures for
reckoning a solution. For instance, in [8], Xu introduced a Krasnosel’skii–Mann algorithm; in [9],
Dang and Gao introduced a three-step KM-CQ-like algorithm, inspired by Noor’s three-step iteration
procedure; similarly, Feng et al. introduced a three-step SFP algorithm inspired by the TTP iterative
procedure defined by Thakur et al. in [10].

Moreover, in [11], the possibility of seeing the CQ algorithm as a special case of Krasnosel’skii-Mann
type algorithm was pointed out. Basically, this ensures the weak convergence of the procedure. In fact,
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assuming the solution set of the SFP is consistent, Byrne proved that his algorithm (running for
Euclidean (arithmetic) spaces) is strongly convergent to a solution. In [11], Wang and Xu pointed
out that the strong convergence is kept also for arbitrary finite dimensional Hilbert spaces, but it is
most likely lost when dealing with infinite dimension. Starting from the CQ algorithm, improved
procedures where searched in order to ensure the strong convergence toward a solution. For instance,
Wang and Xu proposed in [11] a modified CQ algorithm based on the idea of using contractions to
approximate nonexpansive mappings. The three-step procedures defined by Dang and Gao in [9],
and Feng et al. in [12] turned out to be strongly convergent under additional assumptions.

Inspired by Feng et al.’s three-step procedure (hereinafter referred to as SFP-TTP algorithm),
we define a new algorithm, using one of the projection mappings only partially. Making fewer
projections at each step, the running time of the algorithm is expected to be lower. A numerical
simulation will prove the new algorithm to be more efficient than both SFP-TTP and CQ algorithms.
Moreover, an approximate visual image of the set of solutions will be obtained during numerical
modeling. Last, but not least, we consider that this study opens new research perspectives. Extensions
to SFP constrained by variational inequalities [13], fixed point problems [14–16], and zeros of nonlinear
operators or equilibrium problems [17,18] could be challenging research topics.

2. Preliminaries

Let H1 and H2 be two real Hilbert spaces, C and Q be closed, convex, and nonempty subsets of
H1 and H2, respectively, and let A : H1 → H2 be a bounded and linear operator. The split feasibility
problem can be mathematically described by finding a point x in H1 such that

x ∈ C and Ax ∈ Q. (1)

In this paper, we assume that the split feasibility problem is consistent, meaning that the solution set

Ω = {x ∈ C : Ax ∈ Q} = C ∩ A−1Q,

of the SFP (1) is nonempty. If so, it is not difficult to note that Ω is closed and convex.
The CQ algorithm (see [2,3]) relies on an iteration procedure defined as follows.

Algorithm 1. For an arbitrarily chosen initial point x0 ∈ H1, the sequence {xn} is generated by

xn+1 = PC[I − γAT(I − PQ)A]xn, n ≥ 0,

where PC and PQ denote the projections onto sets C and Q, respectively, 0 < γ < 2/ρ(AT A),
with AT : H2 → H1 being the transpose of A, while ρ(AT A) is the spectral radius or the largest
eigenvalue of the selfadjoint operator AT A.

Let us note that we may assume x0 ∈ C. Otherwise, after performing the first iteration step,
we reach a point belonging to C. The CQ algorithm converges to a solution of the SFP, for any initial
approximation x0 ∈ C, whenever the SFP has solutions. When the SFP has no solutions, the CQ
algorithm converges to a minimizer of the function

f (x) =
1
2

∥∥PQ Ax− Ax
∥∥2

over the set C, provided such constrained minimizers exist. Therefore, the CQ algorithm is an iterative
constrained optimization method. This algorithm could be easily extended to arbitrary (even infinite)
real Hilbert spaces (naturally, AT must be substituted by A∗, the adjoint operator); a significant
difference is the fact, in this case, that the algorithm is only weakly convergent.

To make the presentation self-contained, we review some concepts and basic results that will be
used later.
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Definition 1 ([3] and the references herein). Let H be a a Hilbert space and T : H → H be a (possibly
nonlinear) selfmapping of H. Then,

• T is said to be nonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖ , ∀x, y ∈ H.

• T is said to be an averaged operator if T = (1− α)I + αN, where α ∈ (0, 1), I is the identity map and
N : H → H is a nonexpansive mapping.

• T is called monotone if
〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H.

• Assume ν > 0. Then, T is called ν-inverse strongly monotone (ν-ism) if

〈Tx− Ty, x− y〉 ≥ ν ‖Tx− Ty‖2 , ∀x, y ∈ H.

• Any 1-ism T is also known as being firmly nonexpansive; that is,

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2 , ∀x, y ∈ H.

Several properties are worth to be mentioned next.

Lemma 1 ([3] and the references herein). The following statements hold true on Hilbert spaces.

(i) Each firmly nonexpansive mapping is averaged and each averaged operator is nonexpansive.
(ii) T is a firmly nonexpansive mapping if and only if its complement I − T is firmly nonexpansive.

(iii) The composition of a finite number of averaged operators is averaged.

(iv) An operator N is nonexpansive if and only if its complement I − N is a
1
2

-ism.

(v) An operator T is averaged if and only if its complement is a ν-ism, for some ν >
1
2

. Moreover, if T =

(1− α)I + αN, then I − T is a
1

2α
-ism.

(vi) If T is a ν-ism and γ > 0, then γT is
ν

γ
-ism.

Let C ⊂ H be a nonempty, closed and convex subset of a Hilbert space. Then, for each x ∈ H,
there exists a unique x∗ ∈ C such that

‖x− x∗‖ = inf
c∈C
‖x− c‖ .

The function assigning to each x the unique proximal point x∗ is usually denoted by PC, and it
is known as the metric projection, or the nearest point projection, proximity mapping, or the best
approximation operator. Hence, one could define

PC : H → C, PC(x) = arg minc∈C ‖x− c‖ . (2)

The following Lemma lists some important properties of the metric projection.

Lemma 2. Let C ⊂ H be a nonempty closed convex subset of a Hilbert space and let PC denote the metric
projection on C. Then,

(i) 〈x− PC(x), PC(x)− c〉 ≥ 0, ∀c ∈ C.
(ii) PC is a firmly nonexpansive operator, hence also averaged and nonexpansive.
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Lemma 3 ([19]). If in a Hilbert space H, the sequence {xn} is weakly convergent to a point x then, for any
y 6= x, the following inequality holds true

lim inf
n→∞

‖xn − y‖ > lim inf
n→∞

‖xn − x‖ .

Lemma 4 ([19]). In a Hilbert space H, for every nonexpansive mapping T : C → X defined on a closed convex
subset C ⊂ H, the mapping I − T is demiclosed at 0 (if xn ⇀ x and lim

n→∞
‖xn − Txn‖ = 0, then x = Tx).

Lemma 5 ([20], Lemma 1.3). Suppose that X is a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1
for all n ≥ 1 (i.e., {tn} is bounded away from 0 and 1). Let {xn} and {yn} be two sequences of X such that
lim sup

n→∞
‖xn‖ ≤ r, lim sup

n→∞
‖yn‖ ≤ r and lim sup

n→∞
‖tnxn + (1− tn)yn‖ = r hold true for some r ≥ 0. Then,

lim
n→∞

‖xn − yn‖ = 0.

3. Main Results

Feng et al. initiated in [12] a three-step algorithm to solve the split feasibility problem. Their
starting point was the TTP three-step iterative procedure introduced in [10], adapted for a properly
chosen projective type nonexpansive mapping.

Algorithm 2 ([12]). For an arbitrarily chosen initial point x0 ∈ C, the sequence {xn} is generated by
the procedure

un = (1− αn)xn + αnTxn,

vn = (1− βn)un + βnTun,

xn+1 = (1− γn)Tun + γnTvn,

where T = PC[I − γA∗(I − PQ)A], and {αn}, {βn}, {γn} are three real sequences in (0,1).

Note that Feng et al.’s approach relies on the following two key elements:

(1) A point x ∈ C solves the SFP (1) if and only if it solves the fixed point equation (see [8])

PC[I − γA∗(I − PQ)A]x = x, x ∈ C,

where γ > 0 denotes a positive constant. Hence, F(T) = Ω.
(2) the iteration function inside Algorithm 2, namely T = PC[I − γA∗(I − PQ)A] is nonexpansive,

for properly chosen γ (see Lemma 3.1 in [12]).

Turning back to the CQ Algorithm 1, we may rewrite it as follows:

xn+1 = PC

[(
1− γ ‖A‖2

2

)
xn +

γ ‖A‖2

2
(I − B∗(I − PQ)B)xn

]
, n ≥ 0,

where

B : H1 → H2, B =

√
2

‖A‖A.

By introducing the mapping

S : H1 → H1, S = I − B∗(I − PQ)B, (3)

one finds

xn+1 = PC

[(
1− γ ‖A‖2

2

)
xn +

γ ‖A‖2

2
Sxn

]
, n ≥ 0.
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We notice that the resulting procedure has the pattern of a Krasnosel’skii iterative process.
This inspires us a study involving the TTP procedure. Our algorithm is defined as follows.

Algorithm 3. For an arbitrarily chosen initial point x0 ∈ C, the sequence {xn} is generated by

un = (1− γn)xn + γnSxn,

vn = (1− βn)un + βnSun,

xn+1 = PC [(1− αn)Sun + αnSvn] , (4)

where {αn}, {βn}, {γn} are three real sequences in (0,1). We shall refer to this algorithm as partially
projective TTP iteration procedure, since it runs as a classical TTP iterative scheme, except the last step,
where a projection is included.

Lemma 6. Ω = F(PCS) = F(S) ∩ C.

Proof. According to conditions (1), we have Ω = F(T) for each mapping T = PC[I − γA∗(I − PQ)A]

with γ > 0. Looking more closely to PCS, we note that

PCS = PC(I − B∗(I − PQ)B) = PC

(
I − 2

‖A‖2 A∗(I − PQ)A

)
,

which proves the first equality. Let us prove next the inclusion F(S) ∩ C ⊂ F(PCS) = Ω. Indeed,
if x ∈ F(S) ∩ C, it follows that x ∈ C and Sx = x. Then, PCSx = PCx = x, and the proof of this
statement is complete.

Finally, let us also check that Ω ⊂ F(S) ∩ C. We start with an arbitrary point x ∈ Ω. Then, x ∈ C
and Ax ∈ Q, resulting in

Sx = (I − B∗(I − PQ)B)x

= (I − 2

‖A‖2 A∗(I − PQ)A)x

= x− 2

‖A‖2 A∗(Ax− PQ Ax)

= x− 2

‖A‖2 A∗0

= x.

Hence, x ∈ F(S) ∩ C and the proof is complete.

Lemma 7. The mapping S introduced in (3) is nonexpansive.

Proof. We start by pointing out that the mapping U = B∗(I − PQ)B is 1
L -ism, where L = ‖B‖2

(see Lemma 3.1 in [12]). On the other hand,

L = ‖B‖2 =

∥∥∥∥∥
√

2
‖A‖A

∥∥∥∥∥
2

= 2,

hence U is in fact 1
2 -ism. According to Lemma 1 (iv), S = I −U is nonexpansive.

Lemma 8. Let {xn} be the sequence generated by Algorithm 3. Then, limn→∞ ‖xn − p‖ exists for any p ∈ Ω.
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Proof. Let p ∈ Ω = F(S) ∩ C (according to Lemma 6). Since S is nonexpansive, it follows that S is also
quasi-nonexpansive, i.e., ‖Sx− p‖ ≤ ‖x− p‖ for each x ∈ H1. Thus, the procedure in Algorithm 3
leads to

‖un − p‖ = ‖(1− γn)xn + γnSxn − p‖
= ‖(1− γn)(xn − p) + γn(Sxn − p)‖
≤ (1− γn) ‖xn − p‖+ γn ‖Sxn − p‖
≤ (1− γn) ‖xn − p‖+ γn ‖xn − p‖
= ‖xn − p‖ ,

therefore
‖un − p‖ ≤ ‖xn − p‖ . (5)

The same reasoning applies to ‖vn − p‖, and one obtains

‖vn − p‖ = ‖(1− βn)un + βnSun − p‖
= ‖(1− βn)(un − p) + βn(Sun − p)‖
≤ (1− βn) ‖un − p‖+ βn ‖Sun − p‖
≤ (1− βn) ‖un − p‖+ βn ‖un − p‖
= ‖un − p‖ .

Now, using inequality (5), one finds

‖vn − p‖ ≤ ‖xn − p‖ . (6)

In addition, using the property of the projection mapping PC being nonexpansive and the fact
that p ∈ C, p being thus a fixed point of PC, we find that

‖xn+1 − p‖ = ‖PC [(1− αn)Sun + αnSvn]− p‖
≤ ‖(1− αn)Sun + αnSvn − p‖
= ‖(1− αn)(Sun − p) + αn(Svn − p)‖ ,

therefore
‖xn+1 − p‖ ≤ (1− αn) ‖un − p‖+ αn ‖vn − p‖ . (7)

Together with (5) and (6), one obtains

‖xn+1 − p‖ ≤ (1− αn) ‖xn − p‖+ αn ‖xn − p‖
= ‖xn − p‖ . (8)

We conclude from (8) that {‖xn − p‖} is bounded and decreasing for all p ∈ Ω. Hence,
lim

n→∞
‖xn − p‖ exists.

Lemma 9. Let {xn} be the sequence generated by Algorithm 3. Then,

lim
n→∞

‖xn − Sxn‖ = 0.

Proof. Let p ∈ Ω = F(S) ∩ C. By Lemma 8, it follows that lim
n→∞

‖xn − p‖ exists. Let us denote

r = lim
n→∞

‖xn − p‖ . (9)
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From (5), it is known that ‖un − p‖ ≤ ‖xn − p‖. Taking lim sup on both sides of the inequality,
one obtains

lim sup
n→∞

‖un − p‖ ≤ lim sup
n→∞

‖xn − p‖ = r. (10)

Again, since S is quasi-nonexpansive, one has

lim sup
n→∞

‖Sxn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = r. (11)

Now, inequality (7) combined with (6) leads to

‖xn+1 − p‖ − ‖xn − p‖ = (1− αn)[‖un − p‖ − ‖xn − p‖] + αn[‖vn − p‖ − ‖xn − p‖]
≤ (1− αn)(‖un − p‖ − ‖xn − p‖).

Dividing the above relation by (1− αn) results in

‖xn+1 − p‖ − ‖xn − p‖
(1− αn)

≤ ‖un − p‖ − ‖xn − p‖ ,

and it follows that

‖xn+1 − p‖ − ‖xn − p‖ ≤ ‖xn+1 − p‖ − ‖xn − p‖
(1− αn)

≤ ‖un − p‖ − ‖xn − p‖ ,

that is,
‖xn+1 − p‖ ≤ ‖un − p‖ . (12)

Applying lim sup to (12) and using (9) together with (10), one obtains

r = lim sup
n→∞

‖xn+1 − p‖ ≤ lim sup
n→∞

‖un − p‖ ≤ r,

which implies
lim sup

n→∞
‖un − p‖ = r. (13)

Relation (13) can be rewritten as

lim sup
n→∞

‖un − p‖ = lim sup
n→∞

‖(1− γn)xn + γnSxn − p‖

= lim sup
n→∞

‖(1− γn)(xn − p) + γn(Sxn − p)‖

= r.

From (9), (11), (13), and Lemma 5, one finds lim
n→∞

‖Sxn − xn‖ = 0.

Theorem 4. Let {xn} be the sequence generated by Algorithm 3. Then, {xn} is weakly convergent to a point
of Ω.

Proof. Let
ωw(xn) = {x ∈ C : ∃{xni} weakly convergent to x}

denote the weakly subsequential limit set of the sequence {xn}. One immediate consequence of
Lemma 8 is that {xn} is bounded. In conclusion, there exists at least one weakly convergent
subsequence, hence ωw(xn) is a nonempty subset. We prove next that it contains exactly one weak limit
point. To start, let us assume the contrary: let x, y ∈ ωw(xn), x 6= y and let {xni}⇀ x and {xnj}⇀ y.
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By Lemma 9, we have lim
n→∞

‖xni − Sxni‖ = 0, where S is a nonexpansive mapping (see Lemma 7).

Applying Lemma 4, we find that Sx = x, hence x ∈ F(S). On the other hand, since C is closed and
convex, it follows that it is also weakly closed, hence it contains the weak limits of all its weakly
convergent sequences. Therefore, x ∈ C and ultimately x ∈ Ω = F(S) ∩ C. Similar arguments provide
y ∈ Ω = F(S) ∩ C. In general, ωw(xn) ⊂ Ω.

From Lemma 8, the sequences {‖xn − x‖} and {‖xn − y‖} are convergent. These properties,
together with Lemma 3, generate the following inequalities:

lim
n→∞

‖xn − x‖ = lim
n→∞

‖xni − x‖ < lim
n→∞

‖xni − y‖ = lim
n→∞

‖xn − y‖

= lim
n→∞

∥∥∥xnj − y
∥∥∥ < lim

n→∞

∥∥∥xnj − x
∥∥∥ = lim

n→∞
‖xn − x‖ .

This provides the expected contradiction. Hence, ωw(xn) is a singleton. Let ωw(xn) = {p}.
We just need to prove that xn ⇀ p. Assume the contrary. Then, for a certain point y0 ∈ H1, there exists
ε > 0 such that, for all k ∈ N, one could find nk ≥ k satisfying | < xnk − p, y0 > | > ε. The resulting
subsequence {xnk} is itself bounded (since {xn} is bounded), hence it contains a weakly convergent
subsequence {xnkl

}. However, this new subsequence is also a weakly convergent subsequence of {xn},
hence its weak limit must be p. Taking l → ∞ in the inequality

| < xnkl
− p, y0 > | > ε,

one finds 0 ≥ ε > 0, contradicting consequence. Hence, xn ⇀ p ∈ Ω.

The next two theorems provide sufficient conditions for strong convergence. In order to phrase
these conditions, let us consider the mapping T : C → C, T = PC ◦ S. Then, T is a nonexpansive
mapping and F(T) = F(PC ◦ S) = Ω. Moreover,

‖xn − Txn‖ = ‖PCxn − PC(Sxn)‖ ≤ ‖xn − Sxn‖ ,

hence
lim

n→∞
‖Txn − xn‖ = 0.

The arguments to prove the following statements are not different at all from those used in the
proof of Theorems 3.2 and 3.3 in [12].

Theorem 5. Let {xn} be the sequence defined by Algorithm 3. Then, {xn} is strongly convergent to a point in
Ω if and only if lim inf

n→∞
d(xn, Ω) = 0, where d(x, Ω) = infp∈Ω ‖x− p‖.

In [21], the so-called Condition (A) was defined in connection with nonexpansive mappings.
A mapping T : C → C is said to satisfy Condition (A), if there exists a nondecreasing function
f : [0, ∞)→ [0, ∞) with f (0) = 0, f (r) > 0, for all r ∈ (0, 1), such that ‖x− Tx‖ ≥ f (d(x, F(T)), for all
x ∈ C, where C is a nonempty subset of a normed space X.

Theorem 6. Let {xn} be the sequence generated by Algorithm 3. If T = PC ◦ S satisfies Condition (A),
then {xn} is strongly convergent to a point in Ω.

4. Numerical Simulation

In the following, we shall provide an example to analyze the efficiency of the partially projective
TTP algorithm compared to the SFP-TTP and the CQ algorithms.
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Example 1. Let H1 = R2, H2 = R3, C = {x ∈ R2 : ‖x‖ ≤ 1} and Q = {x ∈ R3 : ‖x‖ ≤ 1}.
The projection mappings PC and PQ are defined as follows:

PC : R2 → C, PC(x) =

{
x, ‖x‖ ≤ 1

1
‖x‖ x, ‖x‖ > 1;

PQ : R3 → Q, PQ(x) =

{
x, ‖x‖ ≤ 1

1
‖x‖ x, ‖x‖ > 1.

Consider

A : R2 → R3, A(x1, x2) =

(
x1 +

1
2

x2,
1
2

x2,−x1 +
1
2

x2

)
.

The associated matrix of this linear operator is A =


1 1

2

0 1
2

−1 1
2

 , and its spectral norm is ‖A‖ =
√

2,

hence B = A.

The purpose of our numerical experiment is to apply the newly introduced algorithm in order
to determine the number of iterations required to remain below an acceptable error, say ε = 10−10.
Moreover, we look to apply the analysis to all the points of the domain H1. An immediate consequence
of this approach is obtaining an approximative visual image of the solution set Ω (as being the set
of the points needing just one iterative step). Since we already established that it is sufficient to
choose initial points inside the set C (the unit disc), we can limit our analysis to the [−1, 1]× [−1, 1]
square. One possible problem could be the existence of initial points with very long orbits, which
would slow down the performance of the algorithm considerably. However, these points are not
particularly interesting to us (they do not belong to Ω). Hence, in order to increase the performance of
the numerical algorithm, we add an additional exit criterion: if a solution is not found with error less
than ε, we set the algorithm to break after K = 30 iterative steps.

Let us start by assigning some values to the parameters involved in the experimental procedure.

Consider, for instance, αn = βn = γn =
1
2

. For each point in the selected squared area, we apply

the algorithm until one of the two previous mentioned exit criteria are satisfied (‖xn+1 − xn‖ < ε

or n > 30). Meanwhile, we count the number of iterations performed. Depending on the number
of iterative steps taken, we associate the starting point with a certain color. For instance, we assign
olive color to the points needing just one iteration step (the set Ω), a darker yellow-green to the
points needing two iterations and so on (all the color assignments are gathered into the right-sided
colorbar of every image; running the color band from bottom to top, we find the number of iterations
corresponding to each color.)

The final result is the image included in Figure 1. Similar numerical simulation, involving the
SFP-TTP procedure in Algorithm 2, or the CQ-algorithm 1, provide the images in Figures 2 and 3,

respectively. For these two procedures, we have set the γ parameter to the value
1
4

.
Let us analyze the first image i.e., the one corresponding to the partially projective TTP iterative

process. The central elliptic disc is olive colored, meaning that its points require just one iteration to
reach the requested error. This is an approximate visual representation of the solution set Ω. Identical
visual images for Ω are obtained when using the other two algorithms. Nevertheless, when comparing
the three figures, except this central part, they are completely distinct. In Figure 1, corresponding to
the partially projective TTP procedure, all the points outside the central elliptic disc are colored with
yellow-green. Checking with the color bar display, this means that they require two iteration steps
to reach the exit criterion. This changes dramatically in Figure 2. We can see that these outer points
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take on all kinds of colors and shades, going up to light orange, which corresponds to 30 iterative
steps. This proves that the partially projective TTP procedure is in general convergent faster than the
SFP-TTP and the CQ procedures. Going further and analyzing Figure 3, we notice that many points
are black, meaning that they require more that 30 iteration steps. Hence, the CQ algorithm has the
slowest convergence of all.

Figure 1. The partially projective TTP algorithm.

Figure 2. The SFP-TTP algorithm.
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Figure 3. The CQ algorithm.

We point out again that the SFP-TTP algorithm, as well as the CQ algorithm, require an additional
parameter, namely γ. For the example under consideration, this parameter range must be the interval
(0, 1). Figures 2 and 3 resulted for γ = 1

4 . We wondered if changing this parameter would cause major
changes in the convergence behavior of the algorithms. We perform this analysis for a fixed initial
approximation x0 = (1, 0). By assigning various values to γ between 0.1 and 0.9, and counting the
number of iteration steps to be performed using the three algorithms, it results in the graph in Figure 4.
As expected, the partially projective TTP procedure does not depend on γ. The interesting fact is that
the CQ algorithm also reveals a uniform distribution of the number of iteration steps, despite the
change of γ. Again, Algorithm 3 appears to be the most efficient, while Algorithm 1 is the slowest.
Moreover, the SFP-TTP algorithm seems to improve its efficiency as γ approaches 1.

Figure 4. Number of iteration steps for variable γ parameter.

5. Conclusions

Our paper finds its motivation in recently developed approaches on split feasibility concerning
the search for new algorithms, as well as strong convergence results. The reasoning behind our
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study was to avoid the excessive interference of the projection mappings in each iteration step.
Consequently, we provided a partially projective three-step procedure, as a less computational
resource-consuming alternative to other existing algorithms (including the classical CQ). In this regard,
several weak and strong convergence results were stated and proved. In addition, a numerical
simulation involving the new algorithm and other existing procedures revealed its advantages
concerning the convergence speed. Perhaps the most important novelty comes from generating
an approximate visual representation of the solution set.
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